
Kaixuan Luo1 kaixuan@ie.cuhk.edu.hk
Xianbo Wang1, Adonis Fung2, Julien Lecomte2, Wing Cheong Lau1

1 The Chinese University of Hong Kong, 2 Samsung Research America

Cross-app OAuth Attacks in Integration Platforms:
Mix-up Attacks Reloaded



2

Xianbo Wang
PhD Candidate

@sanebow

Kaixuan Luo*
PhD Candidate
kaixuan@ie.cuhk.edu.hk

Wing Cheong Lau
Professor

Adonis Fung
Director of Engineering, Security
Samsung Research America

Julien Lecomte
Head of So9ware Engineering & Opera>ons
Samsung Research America

* Part of the work done while interning at Samsung

About us



Agenda

Background: Integration Platform, OAuth Paradigm Shift

Highlights of our research: Cross-app OAuth Attacks

Suggested Changes: Based on OAuth Security BCP RFC

3



Virtual Voice Assistants

Smart Homes

Workflow Automation Platforms

LLM Platforms with Plugins

Microsoft
Power Automate

What are Integration Platforms?

Low-Code/No-Code PlatformsTrigger-action Platforms

By Usage Scenario

By Development Approach

4



Integrated AppsIntegration Platform

• Integration Platform Connects & Aggregates functionalities of diverse apps/ services/ devices

• Account Linking Links the end-user's App accounts to Integration Platform account

• OAuth 2.0 is the de facto standard protocol to achieve Account Linking
5

What are Integration Platforms?

Control app(s) on behalf of User

"Alexa,
Turn off my lights and
Get me a Lyft ride to SFO."

Platform
Account

App
Account

Account Linking



6

Microsoft
Power Automate

Anyone can publish an app

Open Ecosystem: Marketplace Design



Access token Access token

Paradigm Shift: OAuth Role Reversal
End-user's Perspective

Integrated AppsIntegration
Platform

Authoriza*on server (AS)OAuth client

OAuth Apps API/Identity
Platform

Authoriza*on server (AS)
a.k.a. Iden*ty provider (IdP)

OAuth client
a.k.a. Relying party (RP)

Potentially UntrustedPotentially Untrusted

e.g.,

Platform

OAuth for "Account Linking"
in Integration Platforms

Traditional OAuth for Authorization
or Single Sign-on (SSO)

⭐

Highly Trusted
7



RegistrationRegistration

Integrated AppsIntegration
Platform

Authoriza*on server (AS)OAuth client

OAuth Apps API/Identity
Platform

Authoriza*on server (AS)
a.k.a. Iden*ty provider (IdP)

OAuth client
a.k.a. Relying party (RP)

OAuth for "Account Linking"
in Integration Platforms

Traditional OAuth for Authorization
or Single Sign-on (SSO)

⭐

Paradigm Shift: OAuth Role Reversal
Developer's Perspective

8



RegistrationRegistration

(Manual or
Authorization Server Metadata
+ Dynamic Client Registration)

(Manual)Platform

OAuth for "Account Linking"
in Integration Platforms

Traditional OAuth for Authorization
or Single Sign-on (SSO)

⭐

App provides Platform:
• Authorization Endpoint URL
• Token Endpoint URL
• client_id
• client_secret
Platform provides App:
• redirect_uri

App provides Platform:
• redirect_uri
Platform provides App:
• Authorization Endpoint URL
• Token Endpoint URL
• client_id
• client_secret

e.g.,

9

Paradigm Shift: OAuth Role Reversal
[Right-hand side]
Apps supply potentiallymalicious Auth/Token EPs; Platform supplies redirect_uri for each app



Access tokenAccess token

RegistrationRegistration

Authoriza*on server (AS)OAuth client

Platform

OAuth for "Account Linking"
in Integration Platforms

Traditional OAuth for Authorization
or Single Sign-on (SSO)

⭐

10

Paradigm Shift: OAuth Role Reversal
Full Picture

Platform
Account

App
Account

Account Linking



Access token

11

When OAuth-based Account Linking Goes Wrong

User Same User

Attacker Victim

Victim Attacker

Platform
Account

App
Account

Account Linking

LGTM !

Privacy Leakage

Account Takeovers

Forced Account Linking

Users control their own apps

Unauthorized Access



Platform

12

How to Accomplish Goals

Victim's
Benign App Account (Target)

Attacker as a
Malicious App

Cross-app
OAuth A.acks

Attacker Victim

Victim Attacker

App
Account

Account Linking

Privacy Leakage

Account Takeovers

Forced Account Linking

Unauthorized Access

Platform
Account

😵💫
Victim

Start A.ack Scenario:
1. SET UP malicious app
2. TRICK the vic:m
3. CONFUSE the pla?orm



13

Challenge: Supporting Multiple Integrated Apps

Active App Tracking

Authoriza*on server (AS)OAuth client User-agent



14

Common (but Flawed) designs for Active App Tracking

Platform shall embed in (and extract from):

state is opaque to
Authoriza.on Servers

• state=eyJxxx.yyy.zzz
{"app_id": <lyft>,
…}

/ platform's internal state
(e.g., session, frontend-managed state)



15

④ Flaw: Track active app
solely by state

① GET https://malicious.com/authorize
?client_id+redirect_uri=<malicious_app>
&state=<malicious_app>

② Redirect to benign app,
while keeping malicious app's state

③ GET https://benign.com/authorize
?client_id+redirect_uri=<benign_app>
&state=<malicious_app>

Authorization Code Injection
per Sec 4.5 of OAuth 2.0 Security BCP

Attack #1:
Cross-app OAuth Account Takeover (COAT)



16
app_id

Platform shall embed in (and extract from):
• redirect_uri:

https://platform.com/<lyft>/redirect
OR redirect_uri has

weak integrity

Common (but Flawed) designs for Active App Tracking



17

① GET
https://malicious.com/authorize
?client_id=<malicious_app>
&redirect_uri=platform.com/<malicio
us_app>/redirect&state=<state>

② Redirect to
benign app's , Injecting the
prepared code

③ GET
https://platform.com/<benign_app>
/redirect
?code=<attacker>&state=<state>

Attacker prepares codeAttacker
a fresh authorization code at Benign App

④ Flaw: Track active app
solely by distinct redirect_uri

Attack #2:
Cross-app OAuth Request Forgery (CORF)



18

①Shall embed a unique app ID in (and extract from) BOTH: ②Enforce Matching
at

Defense for both COAT and CORF:
Consistency Check at redirection endpoint

app_id

• redirect_uri:
https://platform.com/<lyft>/redirect

AND• state=eyJxxx.yyy.zzz
{"app_id": <lyft>,
…}

/ platform's internal state
(e.g., session, frontend-managed state)



Enforce Matching
at

19

…

Mismatch
Detected!

Defense for both COAT and CORF:
Why does it work?

app_id

• redirect_uri:
https://platform.com/<spotify>/redirect

BUT• state=eyJxxx.yyy.zzz
{"app_id": <malicious>,
…}

/ platform's internal state
(e.g., session, frontend-managed state)



20

7

6

6 Workflow
Automation

Platforms

6 Virtual
Voice

Assistants

Bug Hunting

Make the World a Better Place



21

• 16/18 are vulnerable
• 11 to COAT, 5 to CORF
• 9 can be done in 1-Click

Summary
• Informed all 16 vulnerable platforms
• Confirmed by 11 platforms
• Patched by 9: 6 Robust fix, 3 Extra consent screen

Responsible Disclosure

2 LLM Plugins

4 Smart
Homes

Bug Hunting (cont'd)

Make the World a Better Place

CVE-2023-36019 CVSS: 9.6



22

FAQ 1: Isn't PKCE supposed to solve the problem?

COAT w/ PKCE: (PKCE Chosen Challenge A<ack)
Vic.m uses A<acker's code_challenge

CORF w/ PKCE:
A<acker uses Vic.m's code_challenge

Invalidate PKCE
protection!



Initial Discoveries
• [CCS 16] A Comprehensive Formal Security Analysis of OAuth 2.0

• [EuroS&P 17] SoK: Single Sign-On Security — An Evaluation of OpenID Connect

OAuth Security Workshop (OSW) Sessions
• [OSW 15] Initial Discussions by Daniel Fett, Christian Mainka et al. [summary]

• [OSW 16] "Does the IdP Mix-Up attack really work?" by Wanpeng Li [slides] [whitepaper]

• [OSW 16] "OAuth 2.0 Mix-Up Mitigation: Status and Next Steps" by Michael B. Jones [proposal]

• [OSW 21] "Overall pictures of Identity provider mix-up attack patterns and trade-offs between costs
and effects for its mitigations" by Yoshiyuki Tabata [slides] [video]

Standardization Efforts
• [RFC9207] OAuth 2.0 Authorization Server Issuer Identification

• [RFC9700] Best Current Practice for OAuth 2.0 Security

23

IdP Mix-up Attack

IdP Confusion /
Malicious Endpoints Attack

Auth EP

Client Auth Code

Auth Code

Token EP

Cra(ed Redirect
Auth EP

FAQ 2: Isn't it mix-up attack?
Review on Mix-up Attacks in OAuth

https://mailarchive.ietf.org/arch/msg/oauth/JIVxFBGsJBVtm7ljwJhPUm3Fr-w/
https://osw2016.sec.uni-stuttgart.de/documents/osw2016_slides_li.pdf
https://osw2016.sec.uni-stuttgart.de/documents/osw2016_paper_1.pdf
https://osw2016.sec.uni-stuttgart.de/documents/osw2016_paper_5.pdf
https://www.slideshare.net/slideshow/overall-pictures-of-identity-provider-mixup-attack-patterns-and-tradeoffs-between-costs-and-effects-for-its-mitigations/250756915
https://www.youtube.com/watch?v=WbxE03yqCo4


Access token Access token

FAQ 2: Isn't it mix-up attack?
Paradigm Shift: Reflections on Trust

Authoriza*on server (AS)OAuth clientAuthoriza*on server (AS)
a.k.a. Iden*ty provider (IdP)

OAuth client
a.k.a. Relying party (RP)

OAuth for "Account Linking"
in Integration Platforms

Traditional OAuth for
Single Sign-on (SSO)

⭐

Trusted IdPsTheoretical attacks Untrusted AppsPractical attacks

24

• Multiple Auth Servers: Easy
• One of them is malicious: Hard

v (IdP) mix-up attack→ Cross-app OAuth Account Takeover (COAT)



25

Extend the mix-up attack scenarios:

• The attacker uses dynamic registration to register the client 
at their own authorization server;

• [NEW] The attacker exploits open ecosystems to register 
their own authorization server at the client for app 
integrations;

• An authorization server becomes compromised.
"Sign in with Google"
gets hacked

Spo:fy adds
malicious.com for sign in

Malicious app integrated
with Google Assistant

Hard

Easy

Hard

e.g.

e.g.

e.g.

FAQ 2: Isn't it mix-up attack?
Suggested Changes: Attack Scenario



Access token Access token

FAQ 2: Isn't it mix-up attack?
Paradigm Shift: Reflections on Trust

Authoriza*on server (AS)OAuth clientAuthoriza*on server (AS)
a.k.a. Iden*ty provider (IdP)

OAuth client
a.k.a. Relying party (RP)

OAuth for "Account Linking"
in Integration Platforms

Traditional OAuth for
Single Sign-on (SSO)

⭐

Trusted IdPsTheoretical attacks Untrusted AppsPractical attacks

26

• Multiple Auth Servers: Easy
• One of them is malicious: Hard

v (IdP) mix-up attack→ Cross-app OAuth Account Takeover (COAT)
v Naïve RP session integrity attack→ Cross-app OAuth Request Forgery (CORF)



FAQ 3: Why can't we use existing mix-up defense?
Review on Existing Countermeasures

27

Mix-Up Defense via Issuer Identification (Detailed in )

• Each Authorization Server returns a unique ID in authorization response (the issuer identifier)

• Client knows the expected issuer, and ensures this ground truth is trustworthy
(e.g., sourced from OAuth Authorization Server metadata )

• Client compares the returned issuer with the ground truth at the redirection endpoint

Mix-Up Defense via Distinct Redirect URIs

• Client issues a distinct redirect_uri for each Authorization Server during OAuth registration,
which serves as the ground truth

• Client compares the request URL (corresponding to redirect_uri) with the ground truth
at the redirection endpoint

Basis of defense for Cross-app OAuth Attacks

RFC8414

RFC9207 vs. in integration platform:
per-App ID, not per-AS ID 



FAQ 3: Why can't we use existing mix-up defense?
Compatibility/scalability and responsibility concerns

28

Issuer-sharing Apps

Client

Official

Custom

/oauth2/authorize
/oauth2/token AS

/files/upload
/files/download RS

/files/upload
/files/download_zip
/files/export

RS



FAQ 3: Why can't we use existing mix-up defense?
Compatibility/scalability and responsibility concerns

29

Mix-Up Defense via Issuer Identification (Detailed in )

• Each Authorization Server returns a unique ID in authorization response (the issuer identifier)

• Client knows the expected issuer, and ensures this ground truth is trustworthy
(e.g., sourced from OAuth Authorization Server metadata )

• Client compares the returned issuer with the ground truth at the redirection endpoint

Why is the Issuer Identification defense not practical?

• Two apps can share issuer: issuer (per-AS ID) is not unique; per-App ID is unique.

• Scalability and responsibility concerns: No trusted ground truth for issuers, as most apps
lack (latest) standards-compliance. Better shift responsibilities from apps to platform.

RFC8414

RFC9207 vs. in integration platform:
per-App ID, not per-AS ID 

vs. in integration platform: 
manual registration



30

Practical Defense Based on Mix-Up Defense via Distinct Redirect URIs

• Use a per-app ID rather than a per-authorization server ID (issuer), to better reflect the 
multi-app nature of integration platforms.

• To maximize compatibility, impose no new dependencies on apps' authorization 
servers already compliant with the original OAuth spec [RFC6749].

Þ Essential for securing platforms integrated with hundreds of apps,
potentially with shared issuers.

• Defense also applies to CORF/Naïve RP session integrity attack.

FAQ 3: Why can't we use existing mix-up defense?
Suggested Changes: Countermeasure

The user’s choice 

could be not only an authorization server, but also an app.
Security Requirement

stored by the Client Functional Requirement

returned by the Authorization Server



Key Takeaways

31

• As open ecosystems, Cross-app OAuth Attacks in Integration Platforms
enable practical variants of Mix-up Attacks via malicious app integrations.

• Existing RFCs have AS-centric defense but lack app-centric defense.
A per-app ID is the correct isolation boundary for multi-app integrations.

• With 15+ vulnerable mainstream platforms identified and
Hundreds/thousands of integrated apps per platform:

o Pervasive Impact across the Internet;

o Better rely on the platform (client) rather than individual apps (AS)
for the defense.

Þ Next Steps: Revision to the OAuth Security BCP?



USENIX Security '25 paper:
"Universal Cross-app A1acks: Exploi7ng and Securing OAuth 2.0 in Integra7on 
PlaDorms."
Kaixuan Luo, Xianbo Wang, Pui Ho Adonis Fung, Wing Cheong Lau, and Julien Lecomte.
To appear in 34th USENIX Security Symposium, August 2025.

Black Hat USA '24 talk:
"One Hack to Rule Them All: Pervasive Account Takeovers in Integra7on PlaDorms 
for Workflow Automa7on, Virtual Voice Assistant, IoT, & LLM Services."
Video: hIps://www.youtube.com/watch?v=qrHEBElig3c

Slides: hIps://i.blackhat.com/BH-US-24/Presenta>ons/US24-Luo-One-Hack-to-Rule-Them-All-Thursday.pdf

32

Full-blown Analysis Vulnerability Detection

Other Interesting IssuesAttack-centric Style

More Info

https://www.youtube.com/watch?v=qrHEBElig3c
https://i.blackhat.com/BH-US-24/Presentations/US24-Luo-One-Hack-to-Rule-Them-All-Thursday.pdf


Kaixuan Luo1

Xianbo Wang1, Adonis Fung2, Julien Lecomte2, Wing Cheong Lau1

1 The Chinese University of Hong Kong, 2 Samsung Research America

Cross-app OAuth Attacks in Integration Platforms:
Mix-up Attacks Reloaded

Questions?
kaixuan@ie.cuhk.edu.hk

• Research paper
• Full texts of proposed spec changes

to IETF OAuth Security BCP
• This slide deck
h<ps://mobitec.ie.cuhk.edu.hk/osw2025

https://mobitec.ie.cuhk.edu.hk/osw2025


More on "Mix-up Attacks Reloaded"
(Unconference Session)



Suggested Spec Changes based on Security BCP*

35

Section 4.4. Mix-Up Attacks

#1 – Attack Scenario (Lead Paragraph of Section 4.4.)

#2 – Attack Description (Section 4.4.1.)

#3 – Countermeasure (Section 4.4.2.)

#4 – Others (Section 4.4.1.)

* Updates based on the published version of OAuth Security BCP : hFps://datatracker.ieJ.org/doc/html/rfc9700RFC9700

https://datatracker.ietf.org/doc/html/rfc9700


Suggested Spec Changes #1 – Attack Scenario

36

Section 4.4. Mix-Up Attacks

Changes:
This can be the case, for example, if the attacker uses dynamic registration to 
register the client at their own authorization server, if the attacker exploits 
open ecosystems to register their own authorization server at the client 
for app integrations, or if an authorization server becomes compromised.

Rationale:
Extend the mix-up attack scenarios, to reflect the possibility of proactively 
introducing attacker-controlled authorization servers in open ecosystems like 
integration platforms.

New texts in red



Registration

(Manual)Platform

OAuth for "Account Linking"
in Integration Platforms

⭐

App gives Platform:
• Authorization Endpoint URL
• Token Endpoint URL
• client_id
• client_secret
Platform provides App:
• redirect_uri

37

Authoriza*on server (AS)

Resource server (RS)
Custom Business Logic w.r.t.
• when and how to invoke the APIs
o Triggers and Actions

or
o Intents

• extend API Responses
• …

App provides Platform:
• API Endpoints
• API Wrappers

Suggested Spec Changes #2 – Attack Description
App Integration: More than <AS, RS>



Suggested Spec Changes #2 – Attack Description

38

Section 4.4.1. Attack Description

Rationale:
• For attack precondition, clarified that in multi-app integration ecosystems, app is the

correct isolation boundary: they may share the same authorization server, 
but handle the requests to resource server differently. e.g.,
① Sending to different resource servers such as an API gateway first, 
② Sending to different API endpoints of the same resource server, 
③ Sending to the APIs with different request parameters,
④ Having different wrappers around the same APIs at the client side.

Þ Motivates the client to differentiate by apps rather than authorization servers.
• For attack description, added a brief attack scenario description and

pointed to our USENIX Security '25 paper for further reference.

Client

Official

Custom

/oauth2/authorize
/oauth2/token AS

/files/upload
/files/downloadRS

/files/upload
/files/download_zip
/files/export RS

The user’s choice stored by the client could be 
not only an authorization server, but also an app.

Functional
Requirement:



Suggested Spec Changes #2 – Attack Description

39

Section 4.4.1. Attack Description

Changes:
Variants:
• Mix-Up with Interception: … · Implicit Grant: …
• Per-AS Redirect URIs: … · OpenID Connect: …
• Multi-app Integration Ecosystem: In ecosystems such as workflow automation platforms or 

virtual assistants, a client integrates with multiple pairs of authorization and resource servers that 
function as connected apps. While several apps may share the same authorization server, each 
app requires the client to interact with the corresponding resource server in different ways. To 
handle each app independently, the client needs to treat shared authorization servers as 
separate servers and obtain authorization codes or access tokens from each individually.
In these scenarios, the client typically stores the selected app instead of the selected 
authorization server in the user’s session. Attackers can mount a mix-up attack by targeting the 
H-AS of an uncompromised app with the A-AS of a malicious or compromised app. For details on 
this attack vector, see Section 4.2.1 of [research.cuhk] (“Cross-app OAuth Account Takeover”).

New texts in red



Suggested Spec Changes #3 – Countermeasure

40

Section 4.4.2. Countermeasures
Section 4.4.2.1. Mix-Up Defense via Issuer Identification

• Each Authorization Server returns a unique ID in the authorization response (the issuer identifier)

• Client knows the expected issuer when initiating OAuth, and this ground truth is trustworthy (e.g.,
sourced from OAuth Authorization Server metadata )

• Client compares the returned issuer with the ground truth at the redirection endpoint

• Detailed in OAuth 2.0 Authorization Server Issuer Identification

Section 4.4.2.2. Mix-Up Defense via Distinct Redirect URIs
• Client issues a distinct redirect_uri for each Authorization Server during OAuth registration,

which serves as the ground truth
• Client compares the request URL (corresponding to the redirect_uri) with the ground truth

at the redirection endpoint

RFC9207

RFC8414

Basis of defense for Cross-app OAuth Attacks

vs. in integraMon plaJorm: Manual RegistraMon!

vs. in integraMon plaJorm: per-App ID, not per-AS ID



41

Section 4.4.2.2. Mix-Up Defense via Distinct Redirect URIs

Changes:
For this defense, clients MUST use a distinct redirection URI for each issuer they interact with.
Clients MUST check that the authorization response was received from the correct issuer by 
comparing the distinct redirection URI for the issuer to the URI where the authorization 
response was received on. If there is a mismatch, the client MUST abort the flow.
…
Note that for the mix-up variant in multi-app integration ecosystem (see Section 4.4.1), where an 
issuer is not always unique to a client, a variant of this defense is RECOMMENDED: 
Clients SHOULD use a distinct redirection URI for each app they interact with, 
and SHOULD check that the authorization response was received from the correct app by 
comparing the distinct redirection URI for the app to the URI where the authorization 
response was received on. If there is a mismatch, the client MUST abort the flow.

Suggested Spec Changes #3 – Countermeasure

New texts in red



42

Section 4.4.2.2. Mix-Up Defense via Distinct Redirect URIs

Rationale:

• Specifies the use of a per-app identifier rather than per-authorization server (issuer), 
to better reflect the multi-app nature of integration platforms.

• To maximize compatibility, it imposes no new dependencies on apps' authorization 
servers that are already compliant with the original OAuth spec [RFC6749]. This is 
essential for securing platforms that are integrated with thousands of apps.

• Defense also applies to CORF/Naïve RP session integrity attack.

• We currently mark this variant defense as RECOMMENDED/SHOULD, which is open for 
discussion.

The user’s choice returned by the Authorization Server 
could be not only an authorization server, but also an app.

Security
Requirement:

Suggested Spec Changes #3 – Countermeasure



Suggested Spec Changes #4 – Others

43

❌

Common misunderstanding:

distinct redirect_uris -> no mix-up;
or, mix-up -> shared redirect_uri

Ref: [OSW '16] Does the IdP Mix-Up attack really work?; [EuroS&P '24] SSO-Monitor;

[RFC9700] OAuth Security BCP

e.g., "Preconditions: the client uses the same redirection URI for each authorization server."

We Clarify that:
(1) mix-up could still happen if distinct redirect_uri is used (COATD, or Slide #15)
(2) [TODO] Even if not susceptible to mix-up, the use of distinct redirect_uri

could still result in CORF / Naïve RP Session Integrity Attack



Suggested Spec Changes #4 – Others

44

Section 4.4.1. Attack Description
Changes:

Variants:
• …
• Per-AS Redirect URIs: When clients use different redirection URIs for different 

authorization servers but treat them as the same URI, the attack would still work. 
An attacker can achieve this by replacing the redirection URI as well as the client ID 
at A-AS with those at H-AS in the authorization request in Step 3.
Alternatively, if clients use different redirection URIs for different authorization servers, 
clients do not store the selected authorization server in the user's session, and 
authorization servers do not check the redirection URIs properly, attackers can mount an 
attack called "Cross Social-Network Request Forgery" (refer to [research.jcs_14] for 
details). These attacks have been observed in practice.

New texts in red


