Cross-app OAuth Attacks in Integration Platforms:
Mix-up Attacks Reloaded

Kaixuan Luo' kaixuan(@ie.cuhk.edu.hk
Xianbo Wang', Adonis Fung?, Julien Lecomte?, Wing Cheong Lau'

1 The Chinese University of Hong Kong, 2 Samsung Research America

Kaixuan Luo* Xianbo Wang Wing Cheong Lau
PhD Candidate PhD Candidate Professor
kaixuan@ie.cuhk.edu.hk y) @sanebow

MoBITEC

Mobile Technologies Centre

* Part of the work done while interning at Samsung The Chinese University of Hong Kong

|]
g Julien Lecomte
. Head of Software Engineering & Operations

Samsung Research America

Adonis Fung
Director of Engineering, Security
% Samsung Research America

¥
- &
.\é_, '

Samsung Research America

2

Background: Integration Platform, OAuth Paradigm Shift
Highlights of our research: Cross-app OAuth Attacks

Suggested Changes: Based on OAuth Security BCP RFC

What are Integration Platforms?

By Usage Scenario

Workflow Automation Platforms Virtual Voice Assistants
Microsoft ®. |
O
Power Automate Google Assistant
IFTTT alex
\/‘7

Smart Homes LLM Platforms with Plugins

A\ Google Home @

o By Development Approach [N

Trigger-action Platforms Low-Code/No-Code Platforms

What are Integration Platforms?

Account Linking
Platform _; App

Account 0 < Account
dléXxd PHILIPS
\-/‘7 I~ e
Control app(s) on behalf of User 11U

Integration Platform Integrated Apps

* Integration Platform Connects & Aggregates functionalities of diverse apps/ services/ devices

* Account Linking Links the end-user's App accounts to Integration Platform account

* OAuth 2.0 is the de facto standard protocol to achieve Account Linking 6)

5

Open Ecosystem: Marketplace Design

Anyone can publish an app

’ SiriusXM r Er
. .. Power Automate AP search & The Chi;nese University ... ¢
v @ “Alexa, play the Highway on SiriusXM” ‘ ‘
All connectors
Streaming Services
o
| Microsoft o
@ Song Quiz
D catexe, stare song Quis” Power Automate
Games Office 365 Outl.. SharePoint Microsoft Data... OneDrive for B... Microsoft Forms Planner Microsoft Teams Outlook.com
o® My flows \M
iHeartRadio (o Approvals PRE—
@ « ” 8 (
‘Alexa, play z. one hundred Solutions \ J 3 ‘I
. . - . [
Music Info, Reviews & Recognition Services By Process mining
& Desktop flow activity RSS SQL Server Power BI Azure DevOps OneNote (Busi... Notifications Office 365 Users Google Calendar
Spotify pd Cermaciens PREMIUM PREMIUM
"Alexa, Play Spotl:f_'v” [Automation center (preview)
Podcasts £% Custom connectors | @ l W |
@] Machines
Rain Sounds by Sleep Jar® | & comectors Approvals X Excel Online (B... Mail Microsoft To-D... Gmail MSN Weather Outlook Tasks
“Alexa, open Rain Sounds” " More
Relax to gentle rain sounds & Power Platform z: 9 @’
=
@ T
) Local radio stations
. Dropbox Trello Project Online Azure Applicati... Project Roadmap File System FTP Google Drive
E “Alexa, play K-Love radio” [rremon |
Streaming Services
. u 1 salesforce
Smart Life 0
“Alexa, turn on hallway light”
P Viva Engage Slack GitHub YouTube Todoist OneDrive Azure Blob Stor... Salesforce
Smart Home [Preiom | [eremiom |
[) as
N 2
Home Devices More

Paradigm Shift: OAuth Role Reversal

End-user's Perspective

Traditional OAuth for Authorization
or Single Sign-on (SSO)

< OAuth for "Account Linking"
in Integration Platforms

Authorization server (AS)
a.k.a. Identity provider (IdP)

Authorization server (AS)

Platform g

o=
=,

PHILIPS PHILIPS
bk I~
h S Access token LGoogle Drive i o Google Home Access token U
<G Sign in with Google> i O Goog|e Assistant
OAuth AbDS API/Identity: Integration
PP Platform ! Platform Integrated Apps

Potentially Untrusted Highly Trusted Potentially Untrusted

Paradigm Shift: OAuth Role Reversal

Developer's Perspective

Traditional OAuth for Authorization
or Single Sign-on (SSO)

i< OAuth for "Account Linking"
in Integration Platforms

m Authorization server (AS)

Registration

OAuth client Authorization server (AS)
a.k.a. Relying party (RP) ll a.k.a. Identity provider (IdP)

Registration

.

Integrated Apps

Sign in with Google

b 4

OAuth AbDS API/Identity: Integration
PP Platform ! Platform
Potentially Untrusted Highly Trusted Potentially Untrusted

Paradigm Shift: OAuth Role Reversal

Right-h
;34:; stsuSBfg/ |:S>lc()jtee-|nt|ally malicious Auth/Token EPs; Platform supplies redirect uri for each app

Traditional OAuth for Authorization | »< OAuth for "Account Linking"
or Single Sign-on (SSO) in Integration Platforms

G Registration Registration @
‘ (Manual)

(Manual or ~
Authorlzatlon Server Metadata
App provides Platform:
 Authorization Endpoint URL

+ Dynamic Client Registration)
e Token Endpoint URL

Platform

”
J

App provides Platform:

e redirect_uri

Platform provides App:

e.g.,

: : : client_id
* Authorization Endpoint URL LGoogIe Drive | o Goog|e Home . client secret
: I(;Ii(z:tEgjpomt oRE <~7 Sign '"W't“G°°9'e> o Google Assistant platform provides App:
. client:secr‘et * redirect_uri

API/Identlty:Integratlon
OAuth Apps p1atform ; Platform Integrated Apps

Paradigm Shift: OAuth Role Reversal

Full Picture

Traditional OAuth for Authorization
or Single Sign-on (SSO)

Registration

Access token

API/Identity!
Platform 1;

OAuth Apps

“= / Platform
0

»< OAuth for "Account Linking"
in Integration Platforms

Authorization server (AS)

Registration 3 @

Access token

--

Platform Ny App
: Account (5) Account
Integration
P1atform Integrated Apps

When OAuth-based Account Linking Goes Wrong

gess token

N DAcesstoken e, |
:\, Account Linking
: Platform <§) App :

--

el)\'R | Users control their own apps User Same User

UaF 100 da Lo g AT WiV XI M | Account Takeovers | Attacker Victim

LACIGAREUETLN | Forced Account Linking| Victim Attacker

11

: Platform <§> Acﬁgpnt :
£ unt :

: Account

Attacker as a Victim's
Malicious App Benign App Account (Target)
\ 4

4 Cross-app I

W

OAuth Attacks
Platform

@9

Attack Scenario:

1. SET UP malicious app
2. TRICK the victim

3. CONFUSE the platform

Challenge: Supporting Multiple Integrated Apps
OAuth client.

€

Authorization server (AS)

e_alexa

1
Platform Backend Platform Frontend One App's Another App's

Server Server

Start OAuth with Lyft I

< : i .
/authorize?state=<state>&redirect ur|=ﬂ_)

<code, state> Authorize

Embed
Active App Info

Extract || - . /tokenwith code=<code> ___ __ ____ [Token
Active App Infol} =~ = - - _ /token with cod Exchange
andSelect § = T T==E €=<code- L
~~~~~~~ ]
______ Token
= » | Exchange
[ ]

Active App Tracking

13



Common (but Flawed) designs for Active App Tracking

Start OAuth with Lyft
Embed < :

/authorize?state=<

te>&redirect uri=ﬂ_)

Active App Info .
<code, state> Authorize
Extract _ _ Jtoken with code=<code> _ _ _ _ _ _ _ __ > Tgen
i - - - : Exchange
Active App Info - -/t-OISeD With coge g
and Select = ==4€=<codex . —
state isopaque to | R | Token
... - Exchange
Authorization Servers -g

Platform shall embed in (and extract from):
¢ state=eyJxxx.yyy.zzz
{"app_id": <lyft>,

!

[ platform's internal state
(e.g., session, frontend-managed state) i



Attack #1:

Cross-app OAuth Account Takeover (COAT)

calexa
~—"
Platform Backend Platform Frontend Malicious App's Bemgn App's
Server Server
Victim Start OAuth @ GET https://malicious.com/authorize
Embed active a w/ malicious app P : : _ ..
ot PP @ Jauthorize?state=state ?client_id+redirect_uri=<malicious_app>
T / &state=<malicious_app>
<malicious_app> Crafted Redirect - . .
&~ (3) state Authorize @ Redirect to benign app,
—

<code Vietim states T while keeping malicious app's state

@ Retrieve active app (@ GET https://benign.com/authorize

from Stﬁte code Victim E);I(-:Ohkae:ge 2client_id+redirect_uri=<benign_app=>
<malicious_app> Victim's code leaked to attacker N B &state=<malicious_app>
,l

@ Flaw: Track active app

Unauthorized Access [l , Authorization Code Injection ool by ctate
: Attacker's _ Victim's 7 per Sec 4.5 of OAuth 2.0 Security BCP y by

: Platform ¢§2 App :
: Account ok Account :

-----------------------------------------

15



Common (but Flawed) designs for Active App Tracking

Start OAuth with Lyft

Embed < : : :
Active App Info fauthorize?state=<state>&redirect _uri=(3), _
<code, state> Authorize
Extract _ _ [Jtoken with code=<code>_ _ _ _ _ _ _ _ __ » To.ken
Active App Info ] = - - - _ _ /token Wi Exchange
and Select ST s Lth~C9qe.=<_Code> .
_______ |
_______ Token
= » | Exchange
. ]
Platform shall embed in (and extract from):
eyJXXX.yyy.zzz OR * redirect_uri: redirect uri has
{"app_id": , https://platform.com/<lyft>/redirect EWEEY NI -{ataY
coo } /
[ platform's internal state

(e.g., session, frontend-managed state) . app_id



Attack #2:

Cross-app OAuth Request Forgery (CORF)

Attacker prepares codeAttacker
a fresh authorization code at Benign App

/—\ i
0o — | (o= (o= @ GET . . :
=l ® \ (o (o https://malicious.com/authorize
e_dleXxd (o_ (. . . .

) \ ?client_id=<malicious_app>

Platform Backend Platform Frontend \\ Malicious App's Benign App's g&redirect_uri=platform.com/<malicio

S . Server Server us_app>/redirect&state=<state>
. Victim Start OAuth \\
Embed active app w/ malicious app :
into redirect_uri @ /authorize?redirect_uri= \ @ et e

|
<malicious_app>

G, Injecting the

prepared code

benign app's

<codeAttacker state @Crafted Redirect
L e

https://platform.com/<benign_app=>/redirect (3 GET

@ Retrieve active app https://platform.com/<benign_app=

from redirect _uri .
hads code/\ttacker Token /redirect
<benign_app oxenAtiacker Exchange ?code=<attacker>&state=<state>
Privacy Leakage [G—_—_g ‘ (@) Flaw: Track active app
: Victim's _ Attacker's: solely by distinct redirect_uri

: Platform ¢§2 App

: Account ~ Account : .



Defense for both COAT and CORF:
Consistency Check at redirection endpoint

Start OAuth with Lyft

Embed <« : : :
Active App Info fauthorize?state=<state>&redirect uri= (g}, |
<code, state> Aliihornize
Extract _ _ Jtoken with code=<code> _ _ _ ___ _ __ > Tgen
Active App Info & = = - - _ _ token i Exchange
Match, and Select s Eh~C9qu<_CQde> . [ ]
........... Token
= » | Exchange
L]
() shall embed a unique app ID in (and extract from) BOTH: (@Enforce Matching
» state=eyJxxx.yyy.zzz AND* redirect_uri: at G
{"app_id": <lyft>, https://platform.com/<lyft>/redirect
co o } /
[ platform's internal state

(e.g., session, frontend-managed state) . app_id



Defense for both COAT and CORF:

Why does it work?

Start OAuth with Malicious

/authorize?state=<state>&redirect uri= ‘;!

-<code,

Embed
Active App Info

=
.
1%
-

Extract _ _ ltoken with code=<code> _ __ _ _ __ __ »| Token
Active App Info § = = - - _ _ token wi Exchange
Match, and Select B '~th~09fie_=<_09de> B m
.......... Token
~ = » | Exchange

[ ]

Enforce Matching
* state=eyJxxx.yyy.zzz BUT ¢ redirect_uri: at e

{"ap}p_id": <malicious>, https://platform.com/<spotify>/redirect Mismatch
|
| platform's internal state o Detected!

(e.g., session, frontend-managed state)

. app _id



Make the World a Better Place

Bug Hunting

COAT Attack Vector
Type Platform #Users |-0aT, COAT, CORF ~App Distribution Single-Click
Microsoft Power Automate 33M MAU (o] (oo ) Share, Publish v
IFTTT 27TM N/A N/A
6 Workflow Rl 20M N/A N/A
Automation A Business Collab. Platform 54M MAU o o) Share v
Platforms Workato 21K Orgs o] Share, Publish
A Top-tier iPaaS 70K Companies ® Publish + Share v
Google Assistant 500M MAU ® Share, Publish
6 Virtual Amazon Alexa 100M (oo ) Share, Publish v
Voice Samsung Bixby 200M ® Publish
Assistant Xiaomi XiaoAl 115M @ Publish v
kb  Baidu Xiaodu 40M @ Publish v
Alibaba AliGenie 40M oo Publish

COATYy: COAT with universal redirect_uri for multiple apps;
COATp: COAT with distinct (per-app) redirect_uris.

20



Make the World a Better Place

Bug Hunting (cont'd)

COAT Attack Vector
Type Elatiorm i Laers COATy; COAT) COKY App Distribution Single-Click
500M Installs ® Share, Publish

Google Home ,
4 Smart Samsung SmartThings 285M ® Share, Publish of
Homes Xiaomi Mi Home 83M (oo Publish

Yandex Smart Home 45M (o o] Share, Publish v

A leading LIM platform 180M WAU ® Share, Publish
g Plugm ByteDance Coze 2M MAU ® Share, Publish v

Total 18 7 5 5 9

COATYy: COAT with universal redirect_uri for multiple apps;
COATp: COAT with distinct (per-app) redirect_uris.
Summary
* 16/18 are vulnerable Q

2 o Lo (1] (NI (el [oXJTT =W | CVE-2023-36019 CVSS: 9.6
* 11to COAT, 5to CORF

* Informed all 16 vulnerable platforms
* 9 canbedonein1-Click

* Confirmed by 11 platforms
* Patched by 9: 6 Robust fix, 3 Extra consent screen

21



FAQ 1: Isn't PKCE supposed to solve the problem?

OAuth client User-agent Authorization server (AS) | OAuth client User-agent Authorization server (AS)
AR Crra— I T
¢ ! = e -~
Platform Backend Platform Frontend Mallcwus App s Bemgn App s 1 7S s )
Phase 1: I Platform Backend Platform Frontend Malicious App's Benlgn APP s
Victim's Device Cognect to Malicious App 1 Phase 1: Server Server
Embed active app D N -~ I Victim's Device Connect to Malicious App
into state victim victim
<ma"c|°us app> code_challenge code_challenge ) . 1 Embed active app >
Jo be continued in Phase 3 I into redirect_uri code_challengevictim code_challengeVictim
. I - N
Phase 2: 1 <malicious app> - _ .
Attacker's Device Connect to Benign App | - - ~ Jobe continued in Phase 3
- > I , N
<) Phase 2: : \
code_challengei““"e’ y I Attackear'sseDevi . Connect to Benign App ‘
- - P
R To be continued in Phase 4 : < > code_challengeVictim S
Phase 3: ~Ss S | code_challengeattacker
b - Continuing_Phase 1
Victim's Device o S | @ :odeattacker of Benign App,
| ‘ \ bound to code_challengevictim
_Q_ Crafted ! 1 ~ N
Redirect ‘ | Ph . N\
ase 3: N\ fe
/ code_chall attacker L . ontinuing_ Phase 1
/ Wil Pollb > 1 Victim's Device | - N
«___codeVictim codeVictimof Benign App, I Crafted'& Sa -
h bound to code_challengeattacker | attacker i attacker
Retrieve active app https://platform.com/< benlgn app>/redirect | n . < code Redirect w/ code -
A T ?code=<Vvictim>&state=<malicious_app> I Retrieve active ap https://platform.com/<benign_a > /redirect
Il victi . victi from redirect_uri ps://P : gn_app
<malicious_app> code"'®!'™ + code_verifierV'®!'™ 1 ol ?code=<attacker>8&state=<state> PKCE
AN i - sbenian-app> code?ttacker 4 code verifierVictim Verifigl
\ 1 = >
Phase 4: —
Attacker's Device \\ Continuing Phase 2 1 Platform . App < tokenattacker
s 1 Account X'Account
Victi Attack
. y, @ ictim acker
> cQdevictim . I . d
< PKCE Invalidate PKCE
codeVictim 4 code _verifierattacker Verified 2
Platf A < — - -
=2 2 Bl protection!

Attacker Victim

COAT w/ PKCE: (PKCE Chosen Challenge Attack)
Victim uses Attacker's code challenge

CORF w/ PKCE:
Attacker uses Victim's code challenge

i
i
i
i
1
22



FAQ 2:

Isn't it mix-up attack?

Review on Mix-up Attacks in OAuth

Initial Discoveries

* [CCS 16] A Comprehensive Formal Security Analysis of OAuth 2.0 IdP Mix-up Attack
* [EuroS&P 17] SoK: Single Sign-On Security — An Evaluation of OpenlD Connect

OAuth Security Workshop (OSW) Sessions

+ [OSW 15
+ [OSW 16]
+ [OSW 16]
.+ [OSW 21]

Standardization Efforts

* [RFC9207] OAuth 2.0 Authorization Server Issuer Identification

|dP Confusion /
Malicious Endpoints Attack

Initial Discussions by Daniel Fett, Christian Mainka et al. | ]

"Does the IdP Mix-Up attack really work?" by Wanpeng Li | 11 ]

"OAuth 2.0 Mix-Up Mitigation: Status and Next Steps" by Michael B. Jones | ]
"Overall pictures of Identity provider mix-up attack patterns and trade-offs between costs

and effects for its mitigations" by Yoshiyuki Tabata [ 11 ]

Auth EP Auth EP

/ Crafted Redirect | l Q_.,.,‘

h Code Q’
* [RFC9700] Best Current Practice for OAuth 2.0 Security “lient AU
K Token EP
&/

23 Auth Code



https://mailarchive.ietf.org/arch/msg/oauth/JIVxFBGsJBVtm7ljwJhPUm3Fr-w/
https://osw2016.sec.uni-stuttgart.de/documents/osw2016_slides_li.pdf
https://osw2016.sec.uni-stuttgart.de/documents/osw2016_paper_1.pdf
https://osw2016.sec.uni-stuttgart.de/documents/osw2016_paper_5.pdf
https://www.slideshare.net/slideshow/overall-pictures-of-identity-provider-mixup-attack-patterns-and-tradeoffs-between-costs-and-effects-for-its-mitigations/250756915
https://www.youtube.com/watch?v=WbxE03yqCo4

FAQ 2: Isn't it mix-up attack?

Paradigm Shift: Reflections on Trust

Traditional OAuth for »<  OAuth for "Account Linking"
Single Sign-on (SSO) in Integration Platforms

e
'@' OAuth client Authorization server (AS)
a.k.a. Relying party (RP) ll a.k.a. Identity provider (IdP)

% Sign in with Facebook
o~
a3

< i E 3 Sign in wit;GoogIe

AcceSS tOken & Sign in with Apple

K OAuth client Authorization server (AS)

?2 IgR

J

O Google Home
@+ Google Assistant
Access token
Practical attacks 4{ Untrusted Apps

* Multiple Auth Servers: Easy % (IdP) mix-up attack — Cross-app OAuth Account Takeover (COAT)
* One of them is malicious: Hard

i Theoretlcal attacks -4- Trusted IdPs

24



FAQ 2: Isn't it mix-up attack?

Suggested Changes: Attack Scenario

Extend the mix-up attack scenarios:

®* The attacker uses dynamic registration to register the client
at their own authorization server; | Hard | =—— Spotify adds
e.g.

malicious.com for sign in

®* [NEW] The attacker exploits open ecosystems to register
their own authorization server at the client for app

integrations; ‘ Easy‘ - Malicious app integrated
e.g. , _
with Google Assistant

®* An authorization server becomes compromised.
| Hard | === "Sign in with Google"
e.g.
gets hacked

25



FAQ 2: Isn't it mix-up attack?

Paradigm Shift: Reflections on Trust

Traditional OAuth for »<  OAuth for "Account Linking"
Single Sign-on (SSO) in Integration Platforms

'@' OAuth client Authorization server (AS)
a.k.a. Relying party (RP) ll a.k.a. Identity provider (IdP)

€6

¢) Sign in with Facebook

-ph
= -9
'C) Sign in wﬂ;Google

AcceSS tOken & Sign in with Apple

o~
J

A Google Home
@+ Google Assistant
Access token

i Theoretlcal attacks -4- Trusted IdPs

Practical attacks 4{ Untrusted Apps

* Multiple Auth Servers: Easy % (IdP) mix-up attack — Cross-app OAuth Account Takeover (COAT)

e One of them is malicious: Hard ** Naive RP session integrity attack — Cross-app OAuth Request Forgery (CORF)
260




FAQ 3: Why can't we use existing mix-up defense?

Review on Existing Countermeasures

vs. in integration platform:
per-App ID, not per-AS ID

Mix-Up Defense via Issuer Identification (Detailed in [RFC9207| ) [

« Each Authorization Server returns a unique ID in authorization response (the issuer identifier)

« Client knows the expected issuer, and ensures this ground truth is trustworthy
(e.g., sourced from OAuth Authorization Server metadata|RFcg414|)

« Client compares the returned issuer with the ground truth at the redirection endpoint

Mix-Up Defense via Distinct Redirect URIs | Basis of defense for Cross-app OAuth Attacks

« Client issues a distinct redirect _uri for each Authorization Server during OAuth registration,
which serves as the ground truth

« Client compares the request URL (corresponding to redirect_uri) with the ground truth
at the redirection endpoint

27



FAQ 3: Why can't we use existing mix-up defense?
Compatibility/scalability and responsibility concerns

Issuer-sharing Apps

fficial

/files/upload

/ “" /ﬁles/downloadRS

zhent /oauth2/authorize
R /oauth2/token AS
N, @ Custom |

"“/ﬁles/upload RS
/files/download_zip
[files/export

28



FAQ 3: Why can't we use existing mix-up defense?

Compatibility/scalability and responsibility concerns

vs. in integration platform:
per-App ID, not per-AS ID

Mix-Up Defense via Issuer Identification (Detailed in [RFC9207| ) [

« Each Authorization Server returns a unique ID in authorization response (the issuer identifier)

« Client knows the expected issuer, and ensures this ground truth is trustworthy

(e.g., sourced from OAuth Authorization Server metadata|RFc8414|) [vs. in integration platform:]
manual registration

« Client compares the returned issuer with the ground truth at the redirection endpoint

Why is the Issuer Identification defense not practical?

 Two apps can share issuer: issuer (per-AS ID) is not unique; per-App ID is unique.

« Scalability and responsibility concerns: No trusted ground truth for issuers, as most apps
lack (latest) standards-compliance. Better shift responsibilities from apps to platform.

29



FAQ 3: Why can't we use existing mix-up defense?

Suggested Changes: Countermeasure

[ stored by the Client ] Functional Requirement
The user’s choice
[ returned by the Authorization Server] Security Requirement

could be not only an authorization server, but also an app.

Practical Defense Based on Mix-Up Defense via Distinct Redirect URIs

 Use a per-app ID rather than a per-authorization server ID (issuer), to better reflect the
multi-app nature of integration platforms.

« To maximize compatibility, impose no new dependencies on apps' authorization
servers already compliant with the original OAuth spec [RFC6749].

= Essential for securing platforms integrated with hundreds of apps,

potentially with shared issuers.

« Defense also applies to CORF/Naive RP session integrity attack.

30



Key Takeaways

* As open ecosystems, Cross-app OAuth Attacks in Integration Platforms
enable practical variants of Mix-up Attacks via malicious app integrations.

« Existing RFCs have AS-centric defense but lack app-centric defense.
A per-app ID is the correct isolation boundary for multi-app integrations.

« With 15+ vulnerable mainstream platforms identified and
Hundreds/thousands of integrated apps per platform:

o Pervasive Impact across the Internet;

o Better rely on the platform (client) rather than individual apps (AS)
for the defense.

= Next Steps: Revision to the OAuth Security BCP?

31



More Info

USENIX Security '25 paper: |Full-blown Analysis| [Vulnerability Detection

"Universal Cross-app Attacks: Exploiting and Securing OAuth 2.0 in Integration

Platforms."
Kaixuan Luo, Xianbo Wang, Pui Ho Adonis Fung, Wing Cheong Lau, and Julien Lecomte.

To appear in 34th USENIX Security Symposium, August 2025.

Black Hat USA '24 talk: Attack-centric Style| |Other Interesting Issues

"One Hack to Rule Them All: Pervasive Account Takeovers in Integration Platforms
for Workflow Automation, Virtual Voice Assistant, loT, & LLM Services."

Video: https://www.youtube.com/watch?v=grHEBElig3c
Slides: https://i.blackhat.com/BH-US-24/Presentations/US24-Luo-One-Hack-to-Rule-Them-All-Thursday.pdf

32


https://www.youtube.com/watch?v=qrHEBElig3c
https://i.blackhat.com/BH-US-24/Presentations/US24-Luo-One-Hack-to-Rule-Them-All-Thursday.pdf

Cross-app OAuth Attacks in Integration Platforms:

Mix-up Attacks Reloaded

Research paper
* Full texts of proposed spec changes
to IETF OAuth Security BCP

[=]

q.

o This slide deck E
https://mobitec.ie.cuhk.edu.hk/osw2025

_ Questions?
Kaixuan Luo! kaixuan(@ie.cuhk.edu.hk
Xianbo Wang', Adonis Fung?, Julien Lecomte?, Wing Cheong Lau’

1 The Chinese University of Hong Kong, 2 Samsung Research America



https://mobitec.ie.cuhk.edu.hk/osw2025

More on "Mix-up Attacks Reloaded"

(Unconference Session)




Suggested Spec Changes based on Security BCP®

Section 4.4. Mix-Up Attacks
#1 — Attack Scenario (Lead Paragraph of Section 4.4.)
#2 — Attack Description (Section 4.4.1.)

#3 — Countermeasure (Section 4.4.2.)

#4 — Others (Section 4.4.1.)

* Updates based on the published version of OAuth Security BCP [RFC9700 ]| :

35



https://datatracker.ietf.org/doc/html/rfc9700

Suggested Spec Changes #1 - Attack Scenario

Section 4.4. Mix-Up Attacks New texts in red
Changes:

This can be the case, for example, if the attacker uses dynamic registration to
register the client at their own authorization server, if the attacker exploits
open ecosystems to register their own authorization server at the client
for app integrations, or if an authorization server becomes compromised.

Rationale:

Extend the mix-up attack scenarios, to reflect the possibility of proactively

iIntroducing attacker-controlled authorization servers in open ecosystems like
integration platforms.

36



Suggested Spec Changes #2 - Attack Description

App Integration: More than <AS, RS>

»<  OAuth for "Account Linking"
in Integration Platforms

Reglstratlon @

App prov1des Platform:

API Endpoints > Resource server (RS)

Platform

Custom Business Logic w.r.t.  API Wrappers
* whenand how toinvoke the APIs . Aythorization Endpoint URL ]
o Triggers and Actions « Token Endpoint URL —
or . client id all Authorization server (AS)
o Intents client_secret

* extend API Responses -

Platform provides App:

* redirect_uri

Integration
P1atform Integrated Apps

37




Suggested Spec Changes #2 - Attack Description

Section 4.4.1. Attack Description

Functional The user’s choice stored by the client could be

] Requirement: not only an authorization server, but also an app.
Rationale:

« For attack precondition, clarified that in multi-app integration ecosystems, app is the
correct isolation boundary: they may share the same authorization server,
but handle the requests to resource server differently. e.qg.,

@ Official
: : _ " /files/upload  pg
(D Sending to different resource servers such as an API gateway first, / @) files/download

(2) Sending to different APl endpoints of the same resource server,

@ ent /oauth2/authorize

(3) Sending to the APlIs with different request parameters, Q foauth2/token AS
(4) Having different wrappers around the same APIs at the client side. \0‘ C/USt/Om
files/upload

— Motivates the client to differentiate by apps rather than authorization servers. @’ /ﬁles/download_éig
[files/export

* For attack description, added a brief attack scenario description and
pointed to our USENIX Security '25 paper for further reference.

38




Suggested Spec Changes #2 - Attack Description

Section 4.4.1. Attack Description New texts in red
Changes:

Variants:

 Mix-Up with Interception: ... - Implicit Grant: ...

 Per-AS Redirect URls: ... - OpenlD Connect: ...

 Multi-app Integration Ecosystem: In ecosystems such as workflow automation platforms or
virtual assistants, a client integrates with multiple pairs of authorization and resource servers that
function as connected apps. While several apps may share the same authorization server, each
app requires the client to interact with the corresponding resource server in different ways. To
handle each app independently, the client needs to treat shared authorization servers as
separate servers and obtain authorization codes or access tokens from each individually.

In these scenarios, the client typically stores the selected app instead of the selected
authorization server in the user’s session. Attackers can mount a mix-up attack by targeting the
H-AS of an uncompromised app with the A-AS of a malicious or compromised app. For details on
this attack vector, see Section 4.2.1 of [research.cuhk] (“Cross-app OAuth Account Takeover”).

39



Suggested Spec Changes #3 - Countermeasure

Section 4.4.2. Countermeasures

Section 4.4.2.1. Mix-Up Defense via Issuer Identification

Each Authorization Server returns a unique ID in the authorization response (the issuer identifier)

vS. in integration platform: per-App ID, not per-AS ID

Client knows the expected issuer when initiating OAuth, and this ground truth is trustworthy (e.g.,

sourced from OAuth Authorization Server metadata |RFC8414)

vS. in integration platform: Manual Registration!

Client compares the returned issuer with the ground truth at the redirection endpoint

Detailed in OAuth 2.0 Authorization Server Issuer Identification

Section 4.4.2.2. Mix-Up Defense via Distinct Redirect URIs

RFC9207

Basis of defense for Cross-app OAuth Attacks

Client issues a distinct redirect_uri for each Authorization Server during OAuth registration,

which serves as the ground truth

Client compares the request URL (corresponding to the redirect_uri) with the ground truth

at the redirection endpoint

40




Suggested Spec Changes #3 - Countermeasure

Section 4.4.2.2. Mix-Up Defense via Distinct Redirect URIs New texts in red

Changes:

— For this defense, clients MUST use a distinct redirection URI for each issuer they interact with.

Clients MUST check that the authorization response was received from the correct issuer by
— comparing the distinct redirection URI for the issuer to the URI where the authorization
response was received on. If there is a mismatch, the client MUST abort the flow.

Note that for the mix-up variant in multi-app integration ecosystem (see Section 4.4.1), where an
iIssuer is not always unique to a client, a variant of this defense is RECOMMENDED:

—| Clients SHOULD use a distinct redirection URI for each app they interact with,

and SHOULD check that the authorization response was received from the correct app by
— comparing the distinct redirection URI for the app to the URI where the authorization
response was received on. If there is a mismatch, the client MUST abort the flow.

41



Suggested Spec Changes #3 - Countermeasure

Section 4.4.2.2. Mix-Up Defense via Distinct Redirect URIs

Security The user’s choice returned by the Authorization Server
Requirement: could be not only an authorization server, but also an app.

Rationale:

« Specifies the use of a per-app identifier rather than per-authorization server (issuer),
to better reflect the multi-app nature of integration platforms.

« To maximize compatibility, it imposes no new dependencies on apps' authorization
servers that are already compliant with the original OAuth spec [RFC6749]. This is
essential for securing platforms that are integrated with thousands of apps.

« Defense also applies to CORF/Naive RP session integrity attack.

« We currently mark this variant defense as RECOMMENDED/SHOULD, which is open for
discussion.

42



Suggested Spec Changes #4 - Others

Common misunderstanding:

distinct redirect_uris -> no mix-up;
of, mix-up -> shared redirect_uri

X

Ref: [OSW '16] Does the |dP Mix-Up attack really work?; [EuroS&P '24] SSO-Monitor;
[RFC9700] OAuth Security BCP

e.qg., 'Preconditions: the client uses the same redirection URI for each authorization server."

We Clarify that:

(1) mix-up could still happen if distinct redirect_uri is used (COAT, or Slide #15)

(2) [TODQ] Even if not susceptible to mix-up, the use of distinct redirect_uri
could still result in CORF / Naive RP Session Integrity Attack

43



Suggested Spec Changes #4 - Others

Section 4.4.1. Attack Description New texts in red

Changes:

Variants:

Per-AS Redirect URIs: When clients use different redirection URIs for different
authorization servers but treat them as the same URI, the attack would still work.
An attacker can achieve this by replacing the redirection URI as well as the client ID

at A-AS with those at H-AS in the authorization request in Step 3.

Alternatively, if clients use different redirection URIs for different authorization servers,
clients do not store the selected authorization server in the user's session, and
authorization servers do not check the redirection URIs properly, attackers can mount an
attack called "Cross Social-Network Request Forgery" (refer to [research.jcs_14] for
details). These attacks have been observed in practice.

44



