
Universal Cross-app Attacks:
Exploiting and Securing OAuth 2.0 in Integration Platforms

Kaixuan Luo∗ 1, Xianbo Wang1, Pui Ho Adonis Fung2, Wing Cheong Lau1, and Julien Lecomte2

1The Chinese University of Hong Kong
2Samsung Research America

Abstract

Integration Platforms such as Workflow Automation Plat-
forms, Virtual Assistants and Smart Homes are becoming
an integral part of the Internet. These platforms welcome
third-parties to develop and distribute apps in their open mar-
ketplaces, and support “account linking” to connect end-users’
app accounts to their platform account. This enables the plat-
form to orchestrate a wide range of external services on behalf
of the end-users. While OAuth is the de facto standard for ac-
count linking, the open nature of integration platforms poses
new threats, as their OAuth architecture could be exploited
by untrusted integrated apps.

In this paper, we examine the flawed designs of multi-app
OAuth authorizations that support account linking in integra-
tion platforms. We unveil two new platform-wide attacks due
to the lack of app differentiation: Cross-app OAuth Account
Takeover (COAT) and Request Forgery (CORF). As long as a
victim end-user establishes account linking with a malicious
app, or potentially with just a click on a crafted link, they risk
unauthorized access or privacy leakage of any apps on the
platform.

To facilitate systematic discovery of vulnerabilities, we de-
velop COVScan, a semi-automated black-box testing tool that
profiles varied OAuth designs to identify cross-app vulnerabil-
ities in real-world platforms. Our measurement study reveals
that among 18 popular consumer- or enterprise-facing integra-
tion platforms, 11 are vulnerable to COAT and another 5 to
CORF, including those built by Microsoft, Google and Ama-
zon. The vulnerabilities render widespread impact, leading
to unauthorized control over end-users’ services and devices,
covert logging of sensitive information, and compromising a
major ecosystem in single click (a CVE with CVSS 9.6). We
responsibly reported the vulnerabilities and collaborated with
the affected vendors to deploy comprehensive solutions.

∗Part of this work was done during the author’s internship at Samsung
Research America.

Platform
Control App(s)

on behalf of end-user

App
Account

Platform
Account

Account Linking e.g.,
Productivity apps

e.g.,
Streaming services

e.g.,
IoT devices

Workflow
Automation

Virtual
Assistant

Smart
Home ...

Figure 1: From Account Linking to Integrated App Control

1 Introduction

Integration Platforms. Designed to break down silos and
build an interconnected ecosystem, integration platforms are
cloud-based platforms that unify the functionalities of diverse
integrated apps (as well as services and devices) towards a
dedicated goal. In a narrow sense, they are often referred to as
Workflow Automation platforms (e.g., Microsoft Power Auto-
mate), which chain multiple connectors to trigger automated
events (e.g., saving Gmail attachments to Dropbox). In this
paper, we also take into account other types of platforms with
a similar architecture: Virtual Assistants, such as voice-based
Amazon Alexa or Large Language Model (LLM)-empowered
ChatGPT Plugins, allow for interactions with voice apps or
plugins in natural language (e.g., streaming favorite playlists
on Spotify); Smart Homes, such as Google Home, aggregate
device control from different IoT providers (e.g., controlling
Wi-Fi connected Philips Hue light bulbs).

Account Linking. As a fundamental feature, integration
platforms support “account linking” to connect end-users’
accounts at third-party apps to their platform account (as
depicted in Fig. 1). Behind the scenes, apps delegate end-
users’ access tokens to the platform backend, primarily based
on the OAuth 2.0 protocol [1] (hereafter referred to as OAuth
for simplicity). This delegation empowers the platform to
make API calls on behalf of the end-user, enabling aggregated
access across various apps.

1

OSW
&

IE
TF Prev

iew
Only

Our Study. OAuth Role Reversal. Integration platform
poses a paradigm shift in OAuth roles and trust relations when
it comes to account linking. In OAuth terminology, an OAuth
client receives access tokens issued by an authorization server.
Traditionally, OAuth clients, operated by third-party applica-
tions, register themselves at trusted authorization servers. In
contrast, within integration platforms, it is the authorization
servers – operated by untrusted integrated apps in the plat-
form’s open marketplace – that proactively register with the
platform’s OAuth client. This paper is thus motivated to ex-
plore the security considerations of OAuth within the unique
context of integration platforms, endeavoring to bridge this
knowledge gap.

Compromising App Accounts in Integration Platforms. In
a multi-app integration architecture, an attacker can exploit
the flawed OAuth design at the platform to manipulate au-
thorizations through a malicious app. With Cross-app OAuth
Account Takeover (COAT) and Cross-app OAuth Request
Forgery (CORF) attacks, they respectively enable an attacker
to steal a victim’s authorization towards a targeted benign app,
or inject their own authorization to be forcefully used by the
victim. Notably, the integrated apps are most often granted
with all and privileged permissions (i.e., scopes in OAuth) to
enable full control from the platform, be it fully automated (in
workflows) or reacting to an end-user’s commands (in virtual
assistants and smart homes). As a result, stealing these apps’
authorizations is virtually equivalent to a compromise of the
whole app account (i.e., account takeover). For example, be-
ing able to read, send and delete emails essentially amounts
to taking over an email account.

Attacker Model: Malicious Apps. In line with the saying
One rotten apple spoils the whole barrel, both attacks exploit
the presence of a malicious app and have platform-wide impli-
cations. Their practical nature requires only that the victim be
tricked into establishing account linking with an app set up by
the attacker. This assumption can be further relaxed in certain
circumstances, leading to single-click attacks. Moreover, the
platform-wide exposure leaves all individual apps at risk with
no means of self-protection.

Semi-automated Testing. We devise a decision tree that
distinguishes OAuth design patterns and identifies cross-app
vulnerabilities across platforms. Building on this, we develop
COVScan (Cross-app OAuth Vulnerability Scanner), a semi-
automated tool for scalable vulnerability detection. The tool
functions by analyzing and manipulating network traffic, ex-
empting the need to act as a malicious party or have internal
knowledge of the platform. We incorporate COVScan to evalu-
ate the security of real-world platforms, proving cost-effective
and accurate compared with our manual exploitation.

Evaluation Results. Our evaluation across 18 mainstream
integration platforms revealed that 16 are susceptible to cross-
app attacks. Given the prevalence across different platforms
and the platform-wide implications within each, this issue
represents a universal challenge. High-profile affected plat-

forms include Microsoft Power Automate, Amazon Alexa
and Google Home, with significant security impact such as
gaining unauthorized control over cloud services or physical
devices, and logging sensitive information of the victim. For
instance, one can take over any end-user’s Microsoft 365 or
Azure assets in one click, without explicit consent.

Countermeasures. The prevalence of cross-app vulnerabili-
ties can be attributed to the fact that the latest OAuth specifi-
cations [2, 3] are unclear when analyzed from the perspective
of integration platforms, which could easily lead to imple-
mentation mistakes. In response, we have proposed robust
countermeasures and collaborated with affected platform ven-
dors to deploy them, with critical severity CVE [4] assigned
and $35K bug bounties awarded.

Contributions. In summary, this paper makes the following
contributions:

• We demystify the authorization architecture of integra-
tion platforms, with a highlight on the trust relationship.

• We present the first in-depth analysis of cross-app OAuth
attacks in integration platforms, incorporating easily met
attack assumptions and real-world exploits.

• We introduce COVScan, a black-box testing tool to fa-
cilitate scalable, low-cost vulnerability detection.

• We identify severe vulnerabilities1 in 16 out of 18 main-
stream integration platforms, of which attacks in 9 plat-
forms can be single-click, and propose robust solution
to safeguard their OAuth-based account linking.

Roadmap. In the remainder of this paper, we first provide
the background of OAuth and integration platforms in §2. We
then identify the threat model in §3 and describe cross-app
OAuth attacks in §4. Root cause and defense mechanisms are
discussed in §5, followed by a comparison with similar attacks
in §6. §7 dissects the methodology of vulnerability detection
and seeks automation. Evaluation on real-world platforms is
presented in §8. We discuss related work in §9 and conclude
our work in §10. Following this we discuss ethical concerns
and our responsible disclosure efforts.

Artifact Availability. The source code of COVScan can be
found at https://doi.org/10.5281/zenodo.14677002.

2 Background

2.1 When OAuth Meets Integration Platforms
OAuth protocol. OAuth is a widely adopted multi-party
protocol for authorization. In a typical setup, the OAuth client
obtains an access token from an authorization server (AS)
via the user-agent (usually a web browser). Then the OAuth
client can access the end-user’s resources with the token.
Additionally, OAuth has been repurposed for authentication

1The attack PoCs (Proof of Concept) are available on our project website:
https://mobitec.ie.cuhk.edu.hk/cross-app-oauth-security.

2

OSW
&

IE
TF Prev

iew
Only

https://doi.org/10.5281/zenodo.14677002
https://mobitec.ie.cuhk.edu.hk/cross-app-oauth-security

e.g., Microsoft
Power Automate

AS

1) Initiate Account Linking

2) Go to App's AS

Integration Platform
Backend

Active App's
Servers

Integration Platform
Frontend

7) Access Token Response w/ token

OAuth client User-agent

Generate
state

AS

Another App's
Servers

R

A

T

A

R TAuthorization Endpoint Token EndpointRedirection Endpoint

3) Authorization Request:
Visit App's AS

4) Authorization Response:
Redirect to w/ codeR

5) Visit w/ code

6) Access Token Request w/ code

...

Authentication & Consent

API
8) Call w/ token

API

Authorization server (AS)
& API endpoints

App
Account

Platform
Account

R

e.g.,
Dropbox

e.g.,
Gmail

e.g.,
Chrome Browser

Figure 2: Protocol Flow of OAuth Authorization Code Grant
in Account Linking

to provide Single Sign-On (SSO) [5–7]. In this context, OAuth
client is referred to as the relying party (RP), and authorization
server takes the role of identity provider (IdP).2

The Auth Paradigm in Integration Platforms.
Authentication. In integration platforms, authentication re-

sembles conventional websites. Both the platform itself and
the apps may employ traditional password logins or SSO to
first authenticate the end-users. Establishing user sessions is
the prerequisite for using the platform and account linking.

Authorization (Account Linking). In integration platforms,
authorization comes into play when connecting the authen-
ticated entities during account linking. Account linking is
indispensable for apps that wish to offer a customized user
experience by leveraging their existing account systems. Be-
sides a fraction of adoptions of Basic Authentication or API
keys, OAuth protocol is the most prevalent choice for account
linking, which is the central focus of this paper.

Given the multi-app integration architecture, OAuth-based
account linking is inherently complex. The platform provides
a one-time OAuth setup for each integrated app and serves as
their unified OAuth client. Each app registers its authorization
server and delegates authorization to the platform backend
through the end-user’s interaction with platform’s frontend
(in a browser and/or platform’s native app). The platform can
then perform aggregated control over apps through API calls.

OAuth Authorization Code Grant. Zooming in on Fig. 1,
Fig. 2 illustrates the detailed workflow of the OAuth au-
thorization code grant that underlies account linking of in-
tegration platforms. When only one app is involved, the
workflow is no different from traditional OAuth deploy-
ment: The end-user selects an app (i.e. the active app)

2This work predominantly uses the terms OAuth client and authorization
server to align with the paper’s focus on authorization. Note that the OAuth-
based OpenID Connect (OIDC) protocol [8], which is designed specifically
for SSO purposes, is neither related to nor supported by any integration
platforms for account linking, making it out of scope.

to establish account linking with (Step 1), which requests
the OAuth client to load pre-registered AS information
from the platform backend and generate a fresh state pa-
rameter.3 The end-user is then redirected to the authoriza-
tion endpoint of the active app’s AS by an authorization
request (e.g., https://app.com/authorize?state=foo&
redirect_uri=https://platform.com/redirect,4 Step
2&3). The end-user authenticates at the app and authorizes
the account linking if they haven’t done so, after which
the authorization endpoint issues an authorization code
(auth code) in an authorization response. The code is sent
through the user-agent to the OAuth client’s redirection end-
point (as specified by redirect_uri), which functions as a
callback (e.g., https://platform.com/redirect?state=
foo&code=bar, Step 4&5).

In the next server-to-server round trip, the code (as a tem-
porary grant) is exchanged at the token endpoint of the active
app’s AS for a long-lasting access token, to be stored by the
OAuth client (Step 6&7). This wraps up the account linking
process, associating the access token which indicates the app
account’s access with the end-user’s platform account. From
this point, the platform can call APIs with the token attached
to control the app on behalf of the end-user (Step 8).

To clarify, our study does not encompass OAuth for public
clients prevalent in native apps’ use cases [11]. Account link-
ing solely involves confidential clients in web servers, which
holds true also for mobile integration platforms such as voice-
based virtual assistants and smart homes. In these scenarios,
access tokens retrieved are not consumed by the platform’s
mobile client (as in public clients), but instead associated with
end-user’s platform account by the platform backend.

2.2 App Integration Process

Apps are pre-registered, developed at integration platform’s
developer console, and distributed before they can be utilized.
Registration. Besides basic information such as app name
and icon, the most critical aspect of registration is account link-
ing information. Each app registers its authorization endpoint
URL, token endpoint URL, client_id, client_secret, etc.
at the platform. These fields are usually entered as static en-
tries, but some platforms allow dynamic code to give apps
greater control over how their account linking functions, such
as customizing access token requests with JavaScript.5

The platform stores the registered information at its back-
end as the app’s manifest and issues each app a unique identi-
fier (i.e., an app ID) to better manage its transactions internally.
The platform also assigns each app a redirect_uri, which
can be either distinct or universal across apps.

3An unforgeable value, potentially JWT (JSON Web Token) [9]-
encoded [10], to maintain state information in OAuth.

4For URL samples in this paper, several OAuth parameters like
response_type, scope and grant_type are omitted for simplicity.

5This has an impact on the defense of our attacks, detailed in Appendix A.

3

OSW
&

IE
TF Prev

iew
Only

Access token Access token

Integrated
Apps

Integration
Platform

(b) OAuth for "Account Linking"
in Integration Platforms

Authoriza*on server (AS)OAuth client

Websites/
Apps

API/Identity
Platform

Authoriza*on server (AS)
a.k.a. Iden*ty provider (IdP)

OAuth client
a.k.a. Relying party (RP)

(a) Traditional OAuth for Authorization
or Single Sign-on (SSO) ⭐

Untrusted 3rd-partiesTrusted

Spotify

Google
Assistant

Philips
Hue Google

Home
Google
Sign-in

Untrusted 3rd-parties

e.g.,
Outlook

Google
Drive

e.g.,

Platform

Figure 3: Flipped Paradigm: OAuth Role Reversal

Development. While core functionalities are handled by ex-
ternal APIs, apps must implement essential business logic at
the platform so that it can invoke their APIs when appropriate
and in a specified manner. These API wrappers are known as
triggers and actions in workflow automation platforms, and as
intents in virtual assistants and smart homes. Apps in virtual
assistants may further extend the API responses to provide
audio or visual responses to end-users.
Distribution. After registration and development, apps can be
distributed through varied channels: The standard approach
is to publish in the open marketplace after vetting. Some
platforms also support a sharing-based, targeted distribution
channel without vetting, allowing installation as a custom
app via a private link or invitation. For example, app distribu-
tion within the same organization does not require vetting in
Microsoft Power Automate and Slack workflow builder.

2.3 Paradigm Shift with OAuth Role Reversal
Although based on the established OAuth flow (Fig. 2),
account linking in integration platform presents a unique
paradigm shift in OAuth roles compared to traditional OAuth,
with ASes now becoming untrusted, as depicted in Fig. 3:

In a traditional OAuth scenario (Fig. 3a), well-known “plat-
form” like Google serves as the AS for third-party apps.
The third-parties, such as Outlook and Spotify, act as OAuth
clients, because they rely on the resources (e.g., Google Drive
access) or identities (“Sign in with ...”) provided by the trust-
worthy AS. These third-parties, commonly known as OAuth
apps [12], can be registered freely at the AS, making them
untrusted.

However, in account linking for integration platforms
(Fig. 3b), there is a role reversal when adapting the tradi-
tional OAuth framework: Well-known entities like Google
now run the OAuth client, powering the integration platform
(e.g., Google Assistant/Home). Meanwhile, various untrusted
third-party apps, including potentially malicious ones, take up
the position of “trustworthy” AS in traditional OAuth. This
reversal occurs because it is now the wide range of integrated
apps that own resources and provide them to the platform by
integrating with its open marketplace.

3 Threat Model

Generally speaking, there are three types of threats, corre-
sponding to the three entities involved in OAuth:
• Malicious App. Untrusted third-parties can be taken up by

malicious entities, as outlined in both paradigms in §2.3.
• Malicious End-user. The most prevalent form of OAuth

threat, where attackers manipulate OAuth URLs at the user-
agent and distribute to victim end-users. Some examples to
be discussed in §4.1.

• Malicious Platform. An integration platform can theoret-
ically be compromised, as studied in [13, 14]. If the re-
source or identity providers (i.e., API or identity platforms
in Fig. 3a) from the traditional OAuth paradigm turn mali-
cious, attacks would also be feasible, as detailed in §6.

This paper assumes the threat model of malicious apps. We
assume existing apps in the platform’s marketplace are benign
and secure. However, due to the OAuth role reversal (§2.3),
new infiltration of malicious apps poses a significant risk.

Ease of Malicious App Infiltration.
• Open Marketplace. Any attacker can register an innocent-

looking app with custom AS configuration and get listed
in the open marketplace after the platform’s vetting (a.k.a.
certification) process.

• Endure Vetting. ASes are external servers that are black-
box to the platform. Due to the possibility of server-side
dynamic changes, the app’s AS can keep malicious deeds
dormant during vetting, only misbehave after approval.

• Bypass Vetting. In certain platforms, an attack can be
launched without going through vetting, either by design
(sharing-based app distribution, §2.2), or due to platform-
side flaws (§4.3.1).

Attack Assumptions.
• Attacker Capabilities. Our attack aligns with the web at-

tacker model [15], where an attacker is unable to alter the
victim’s network traffic, but capable of setting up victim-
accessible malicious endpoints by integrating a malicious
app.

• Victim’s Requirement. The victim typically needs to be an
end-user at the platform. They may have previously linked
some of their app accounts to their platform account. The
victim can be tricked into interacting with a malicious app
on the platform or clicking an unassuming hyperlink.

Attack Scenario. Account linking is intended to involve
only one app per OAuth flow (i.e., the active app), as shown
in Fig. 2. However, with the presence of a malicious app, two
apps could get involved simultaneously, where an attacker-
owned malicious app targets a benign app during the former’s
account linking process. The attacker’s primary goal is to
gain unauthorized access to or compromise the privacy of the
victim’s benign app account.

4

OSW
&

IE
TF Prev

iew
Only

4 Platform-wide Cross-app OAuth Attacks

This section introduces the attacks and their extended impacts.

4.1 New Attack Surface in Integration Plat-
form

Typical OAuth Attacks in Traditional Settings. In tradi-
tional OAuth deployment, two fundamental security require-
ments are redirect_uri matching by the AS and state
matching by the OAuth client. Violations would result in well-
known attacks under the malicious end-user threat model.
Next, we illustrate them based on Fig. 2.

1) Regular Account Takeover. Before issuing an auth
code in Step 4, the AS must match the pre-registered
redirect_uri with the parameter value in the authorization
request URL. Failure to do so allows an attacker to com-
plete Step 1 and 2 as a normal end-user, but then distribute
a manipulated authorization request URL (Step 3) with a
redirect_uri pointing to their server. When the victim com-
pletes Step 3 and 4, the auth code would be leaked to the
attacker’s endpoint at Step 5. The attacker can then exchange
the auth code for an access token with an authorization code
injection attack [2, §4.5], leading to account takeovers.

2) Regular Login CSRF (Cross-Site Request Forgery). The
state parameter should be bound to the user-agent or user
session when issued at Step 2 (see [16, §5.3.5], [2, §4.7.1]),
and returned unchanged in the authorization response (Step 4).
This allows the OAuth client to match the returned state
value against the initially issued value between Step 5 and 6.
Failure to do so results in a login CSRF attack, where an
attacker completes Step 1 to 4 and distributes Step 5’s link to
the victim, injecting the attacker’s auth code into the victim’s
unsolicited OAuth flow, leading to forced authorization or
login. The state parameter thus serves as a CSRF token.

Our Focus: Implications of Active App Tracking. While
the security requirements above also apply to integration plat-
forms, these measures are insufficient to secure a multi-app
ecosystem. Similar impacts could be achieved through new
attack vectors under the threat model of malicious apps.

Given the multiple integrated apps and their respective
ASes, integration platform necessitates that its OAuth client
coherently track the active app it interacts with during account
linking, ensuring contact with the intended authorization and
token endpoint. Since the access token request is not triggered
until a callback, as a functional requirement, the platform shall
embed the active app information in the OAuth flow, for later
consumption at the redirection endpoint.

Reviewing Step 5 of Fig. 2, state and code are sent to
the redirection endpoint specified by the redirect_uri pa-
rameter, typically with the platform session attached. The
auth code itself does not indicate its originated app. There-
fore, the platform’s OAuth client commonly employs one of
the two design choices: embedding the active app ID in the

T

Malicious App's
Server

Benign App's
Server

OAuth client User-agent Authorization server (AS)

Platform Backend Platform Frontend

codeattacker

codeattacker
CORF

T

A

A
T

COAT

Normal

R

R

state=<benign_app> or
redirect_uri=<benign_app>

state=<malicious_app>

redirect_uri=<benign_app>

codevictim
codevictim

code

code
R

A R TAuthorization Endpoint Token EndpointRedirection Endpoint

A

Figure 4: Insufficiency in Active App Tracking

OAuth state parameter (or within the platform’s internal
state, e.g., a session, subsumed under state for conciseness),
or embedding it in the redirect_uri parameter.

In normal operations, either design choice ensures that the
authorization endpoint issuing the auth code (Fig. 2 Step 4)
and the token endpoint redeeming it (Fig. 2 Step 6) be-
long to the same app, as shown in the “Normal” scenario
of Fig. 4. However, this mechanism is insufficient (more pre-
cisely, flawed) to serve as a security requirement:

The state parameter only reflects how OAuth is started,
but cannot track how it ends up. Since state is opaque to
the ASes [1, §4.1.1], it may have traversed multiple ASes
without the platform or the apps being aware. On the other
hand, redirect_uri by itself has weak integrity, hence it
can be tampered with by an AS. Consequently, as shown
in the latter two scenarios in Fig. 4, the platform could be
deceived by a malicious app, into either unknowingly leaking
the auth code from a benign app to the malicious one (COAT
attack, detailed in §4.2.1), or injecting an auth code from the
malicious app into a benign one (CORF attack, §4.2.2).

4.2 Attack Details
In this subsection, we detail the two platform-wide cross-app
attacks with the OAuth authorization code grant. The attacks
are also applicable to the implicit grant [17], where the access
token (instead of auth code) is directly issued and sent to the
redirection endpoint via the user-agent, doing away with auth
code exchange at the token endpoint. Table 1 presents a con-
cise summary and comparison of Cross-app OAuth Account
Takeover (COAT) with Request Forgery (CORF) attack.

4.2.1 Cross-app OAuth Account Takeover (COAT)

At the core of the attack is the malicious app’s ability to 1)
redirect from its authorization endpoint to that of a targeted
benign app, while 2) still receiving the benign app’s auth
code at the malicious app’s own token endpoint. This attack
requires the OAuth client to track the active app using the

5

OSW
&

IE
TF Prev

iew
Only

Malicious App's
Server

Benign App's
Server

https://platform.com/<benign_app>/redirect
?code=<victim>&state=<malicious_app>

OAuth client User-agent Authorization server (AS)

Connect to Benign App

of Benign App

Send codevictim to Malicious App③

S1

S3

S5

S4

S6
R

T

R

T

A

Platform Backend Platform Frontend

codevictimcodevictim

codevictim

Victim's
Device

Attacker's
Device

codevictim

tokenvictim

Crafted
Redirect

Connect to Benign App

of Benign App

https://platform.com/<benign_app>/redirect
?code=<attacker>&state=<state>

S2

S1

S3

A

T

A

Malicious App's
Server

Benign App's
Server

OAuth client User-agent Authorization server (AS)

Platform Backend Platform Frontend

Intercept Traffic

Malicious App
Benign App

Active App in OAuth Flow

S2

tokenattacker

codeattacker

w/ codeattackercodeattacker

Send codeattacker to Benign App②

Victim's
Device

Attacker's
Device

of Benign App

A

App
Account

Platform
Account
Victim Attacker

App
Account

Platform
Account
Attacker Victim

Embed active app
into redirect_uri

Retrieve active app
from redirect_uri

<malicious_app>

=

<benign_app>

=

redirect_uri ①

Embed active app
into state

Retrieve active app
from state

<malicious_app>

=

<malicious_app>

=

state ①

state ②
Crafted
Redirect

Connect to Malicious App

① GET https://malicious.com/authorize?client_id=<malicious_app>
&redirect_uri=https://platform.com/<malicious_app>/redirect&state=<malicious_app>
② GET https://benign.com/authorize?client_id=<benign_app>
&redirect_uri=https://platform.com/<benign_app>/redirect&state=<malicious_app>

③ POST https://malicious.com/token
client_id=<malicious_app>&client_secret=<malicious_app>
&redirect_uri=https://platform.com/<malicious_app>/redirect&code=<victim>

① GET https://malicious.com/authorize?client_id=<malicious_app>
&redirect_uri=https://platform.com/<malicious_app>/redirect
&state=<state>

② POST https://benign.com/token
client_id=<benign_app>&client_secret=<benign_app>
&redirect_uri=https://platform.com/<benign_app>/redirect
&code=<attacker>

Malicious Step

R

Connect to Malicious App

Figure 5: Attack Flow of Cross-app OAuth Account Takeover (COAT, Left) and Request Forgery (CORF, Right)

Table 1: A Comparison of COAT and CORF Attack
Aspects COAT

Cross-app OAuth Account Takeover
CORF

Cross-app OAuth Request Forgery
Applicability Distinguish active app by state Distinguish active app by redirect_uri

Attack Setup
Attacker: Registers (must) and Publishes/Shares (optional) a Malicious app;
Victim: Establishes Account Linking w/ Malicious app,

potentially by a hyperlink click

Execution
Process

Victim: Malicious app redirects to
Benign app’s Authorization Endpoint,
while retaining Malicious app’s state
↪→ Victim’s Benign app auth code

leaked to Attacker’s Token Endpoint
Attacker: Regular Auth Code Injection

Attacker:
Prepares Attacker’s Benign app auth code
Victim: Malicious app changes active app
in redirect_uri to Benign app
and Injects the auth code
↪→ Attacker’s Benign app auth code

injected to Victim’s OAuth flow

Consequence Victim’s App Account
linked w/ Attacker’s Platform Account

Attacker’s App Account
linked w/ Victim’s Platform Account

Security
Impact

Account Takeover
(Unauthorized Access)

Forced Account Linking
(Privacy Leakage)

state parameter. An end-to-end attack flow is depicted on
the left-hand side of Fig. 5, with each step labeled as Sn.

Phase 1: Attack Preparation.
S0: The attacker registers an app in the platform, specifying
their own authorization endpoint URL (e.g., https://malici
ous.com/authorize) and token endpoint URL (e.g., https:
//malicious.com/token). They shall be assigned an app ID
and a redirect_uri. There are two variations of this setup,
based on whether a distinct per-app redirect_uri (e.g., ht
tps://platform.com/<malicious_app>/redirect, used
as example in Fig. 5) or a universal URI for apps (e.g., htt
ps://platform.com/redirect) is issued. We refer to the
two variants as COATD and COATU respectively. Then, the
attacker attempts to establish account linking with a targeted
benign app and captures an actual authorization request URL

to construct the attack logic of the malicious authorization
endpoint that functions in Step 2.

Phase 2: Leaking Auth Code (Victim’s Interaction).
S1: The victim initiates account linking with the malicious
app. The platform then directs the user-agent to the attacker-
controlled authorization endpoint as specified in Step 0, with
a freshly generated state parameter.
S2: Upon receiving the authorization request, the malicious
app’s authorization endpoint redirects to the benign app’s au-
thorization endpoint. The entire URL is replaced with the
URL captured in Step 0, except for the state parameter,
which is kept as the one just received (i.e., the active state
generated with victim’s device).
S3: From the benign app AS’s perspective, the authorization
request appears no different from a genuine one directly initi-
ated from the platform (i.e., redirect_uri, client_id, and
scope, if provided, are all correct). Given its prior linkage to
the platform, the benign app issues an auth code without re-
prompting end-user for explicit consent, as detailed in §4.3.2.
S4: The auth code, representing access to the victim’s
benign app account, is sent to the platform-hosted redirec-
tion endpoint (corresponding to the redirect_uri). An
example URL is: https://platform.com/<benign_app>
/redirect?code=<victim>&state=<malicious_app>.
Following OAuth specification, the platform verifies that the
state parameter is not tampered with, as it matches what
was issued in Step 1 and is bound to the victim’s user-agent.
S5: The account linking initiated in Step 1 was with the ma-
licious app, the context of which embedded in or associated

6

OSW
&

IE
TF Prev

iew
Only

with the state parameter. Consequently, the platform sends
the auth code to the attacker-controlled token endpoint.

Phase 3: Attack Wrap-up.
S6: Authorization Code Injection. The attacker then initiates
a new OAuth flow with the benign app on their own platform
console. Intercepting the network traffic, the attacker visits
the redirection endpoint with a newly generated state param-
eter and the stolen auth code from the victim. The platform
exchanges the code for an access token for the victim’s be-
nign app account, completing its linkage with the attacker’s
platform identity. The attacker can subsequently enjoy all the
privileged access of the app, impersonating the victim.

4.2.2 Cross-app OAuth Request Forgery (CORF)

To defend against regular login CSRF, the state parameter
should be mandated, tied to the platform’s user session or
user-agent, and matched against (see §4.1). However, this is
inadequate for integration platforms, as a state generated for
one app’s account linking would also be valid for other apps.
To accommodate active app tracking, some platforms in turn
rely on the distinctive element in each app’s pre-registered
redirect_uri. However, this opens up the login CSRF attack
under cross-app context, as shown on the right-hand side of
Fig. 5, resulting in forced account linking.

Phase 1: Attack Preparation.
S0: The attacker registers an app, specifying the authorization
endpoint to a server under their control. They shall be assigned
an app ID and a corresponding redirect_uri, e.g., https://
platform.com/<malicious_app>/redirect. The attacker
sets up the authorization endpoint for use in Step 2, intending
to deceive the platform into believing it is interacting with a
benign app’s AS.
S1: The attacker initiates account linking with a benign app,
authenticates at and authorizes the app with their own account.
They intercept the authorization response to capture a valid
auth code without redeeming it.

Phase 2: Victim’s Interaction.
S2: When the victim starts account linking with the ma-
licious app, the attacker’s malicious authorization end-
point returns a crafted authorization response that issues
a redirection to https://platform.com/<benign_app>
/redirect?code=<attacker>&state=<state>. This hits
the redirection endpoint with the benign app’s redirect_uri,
along with the attacker’s auth code obtained in Step 0 and the
state parameter returned as its issued value.
S3: The platform backend receives the auth code from the
attacker and perceives the active app as the targeted benign
app based on the app ID in redirect_uri. Consequently,
the platform contacts the benign app to redeem an access
token and associates it with the victim’s platform account.
The token will also replace the app’s existing token linked to
the victim’s platform account, if any.

Malicious App's
Server

Benign App's
Server

R*: Silent Auth or
Consent
Bypass

Authorization server (AS)

R2: No
DEV-PROD
Env Isolation

Crafted
Hyperlink

R1: GET request to start
OAuth w/ Malicious App,

w/o CSRF protection
A

R

T

A

OAuth client User-agent

Platform Backend Platform Frontend

codevictim codevictim

codevictim

Victim's
Device

To be redeemed
on Attacker's Device

R3: Redirect to
Authorization Endpoint

Figure 6: Worst-case Scenario: Single-click COAT Attack
without Malicious App Distribution

Henceforth, whenever the victim interacts with the targeted
benign app, all data will be saved to the attacker’s benign app
account, accessible remotely by the attacker. A detailed dis-
cussion of CORF attack’s impact can be found in Appendix B.

4.3 Additional Impact

In several platforms, an attack does not necessitate the at-
tacker to distribute or the victim to enable a malicious app.
The victim also may not need to explicitly consent to the
authorization with the targeted benign app. This can escalate
the attack to single-click. We refer to this as the worst-case
scenario, with a typical example illustrated in Fig. 6.

4.3.1 Platform-side Design Enabling Practical Attacks

In normal cases, the victim navigates the integration platform
interface and enables a published malicious app to initiate
the OAuth flow. If the following platform-side requirements
(denoted as Rn) are satisfied, the attack can be exempt from
malicious app vetting (R2), and detached from platform-side
interactions (R1 & R3):
R1: Starting OAuth with cross-site GET request. The
mechanism to initiate an OAuth flow (as shown in Fig. 2
Step 1) is sending a GET request to the platform backend (e.g.,
https://platform.com/connect/<app_id>), without any
CSRF protection mechanisms in place. This enables practical
phishing attacks even with the default SameSite=Lax cookie
policy enforced in mainstream web browsers [18]. An attacker
can simply share the request URL that initiates OAuth with
the malicious app as a hyperlink, and tricking the victim to
trigger the click.

Please note that single-click attacks by directly sharing an
authorization request URL of the malicious app are infeasible,
since it would break the binding of the state parameter in
the URL with the user-agent or the platform’s user session.
R2: Inadequate access control. The platform may lack iso-
lation between development and production environments,

7

OSW
&

IE
TF Prev

iew
Only

or only apply isolations on main functionalities of the apps
(e.g., prohibiting anyone from invoking a non-published app
other than its developer), but misses the access control on
OAuth. This allows a victim to establish account linking with
a non-published app built by an attacker.
R3: Auto-triggered authorization request. The platform
backend directly triggers the authorization request, typically
with HTTP redirects, without further user interactions needed.

4.3.2 Circumventing Consent at Authorization Server

The above platform-side requirements are sufficient to con-
duct CORF in single-click. For COAT attacks, there is an addi-
tional requirement R* regarding the app’s AS consent design.
R*: Adoption of silent authorizations. With an authenticated
session and prior consent in place, many ASes are designed
to avoid requesting explicit user consent again (i.e., reprompt-
ing consent screen for previously-linked apps), but issue an
auth code instantly. This design, commonly termed silent or
automatic authorizations [19, 20], is adopted by big names
such as Microsoft, GitHub, Dropbox and Xiaomi, which can
be abused to make a COAT attack stealthier. Since all end-
users on the same integration platform typically share the
same pre-configured OAuth client_id per published app,
an attacker-controlled malicious app in COAT can learn the
targeted benign app’s client_id, and then trigger silent au-
thorizations if the victim has previously linked their benign
app account to the platform.

Additionally, a COAT attacker has the potential to bypass
explicit consent at ASes. Although several mainstream ASes
support silent authorizations, they are disabled by default and
only enabled for certain trusted authorization contexts due to
security concerns. As a common design, a custom GET param-
eter (e.g., skip_confirm, force_reapprove, prompt6) in
the authorization request controls the consent screen’s visibil-
ity. For instance, apps could register at trusted platforms with
https://app.com/authorize?prompt=none for the autho-
rization endpoint URL, and either set prompt=consent or
omit the parameter at regular platforms. While this extra pa-
rameter can be tampered with at the user-agent during an
OAuth flow, it poses no threat alone, due to the inability to
directly share the authorization request URL for single-click
attacks (as discussed in R1).

However, a COAT attacker can modify the parameter in
the crafted redirection from the malicious app’s authorization
endpoint to that of the benign app (Step 2 of §4.2.1), bypassing
the consent process. This technique, verified with GitHub,
Dropbox and Xiaomi’s AS, can also be applied to bypass
forced re-authentication (observed in Dropbox) and account
selection (seen in GitHub and Microsoft’s AS).

Listing 1 illustrates an end-to-end single-click attack with
consent bypass (derived from Yandex Smart Home’s design).

6The prompt parameter is standardized in OIDC, but also widely adopted
by ASes in OAuth for authorization.

1 [Benign Flow]
2 POST https://platform.com/connect/<benign_app> w/ CSRF protection
3 redirects to
4 https://benign.com/authorize?prompt=consent&state=<benign_app>&...
5

6 [Malicious Flow (with consent bypass)]
7 GET https://platform.com/connect/<malicious_app> // Send to victim
8 redirects to
9 https://malicious.com/authorize?state=<malicious_app>&...

10 redirects to
11 https://benign.com/authorize?prompt=none&state=<malicious_app>&...
12 redirects to
13 https://platform.com/redirect?code=<victim>&state=<malicious_app>
14 POST (auto−sent by platform backend)
15 https://malicious.com/token with code=<victim>&...

Listing 1: Single-click COAT Attack with Consent Bypass

5 Root Cause Analysis and Defense

In this section, we examine the root cause of cross-app OAuth
vulnerabilities and explore a spectrum of countermeasures.
We distinguish between solutions that address the issues
from the root cause (§5.2.1), those that offer temporary relief
(§5.2.2), and others that fall short (§5.2.3 and later in §6.3).

5.1 Root Cause
The essence of securing multi-app OAuth design is to avoid
the platform’s confusion in determining the active app
throughout each OAuth flow. In a vulnerable case, the plat-
form’s OAuth client fails to ensure that the endpoint issuing
the auth code belongs to the active app that redeems this code:
Specifically, in COAT attacks, the platform merely relies on
the state parameter to identify the malicious app as the ac-
tive app. This is the app the platform initially contacts, but
the platform is unaware that the authentic issuer of auth code
is the benign app. Conversely, in CORF attacks, the platform
relies on redirect_uri to identify the active app as the be-
nign app, unaware that the auth code is actually issued by the
platform’s initial contact, which is the malicious app.

5.2 Defenses
The key to defending against cross-app vulnerabilities is ver-
ifying the consistency of the authorization context. Only
the platforms have both the obligation and the capability to
achieve this, as they alone, unlike individual apps, know which
app is the platform’s initial contact.

At the platform side, identifying the active app requires dual
confirmation: 1) One indicating the app initially contacted
by the platform, typically managed via the state parameter,
where a unique identifier for each app is embedded. 2) An-
other confirmation should be one identifier that the app’s AS
can validate (or inherently trust) and subsequently return in
the authorization response, to mark the actual issuer of the
auth code. The platform’s OAuth client must match the two

8

OSW
&

IE
TF Prev

iew
Only

identifiers to ensure the active app is consistent, preventing the
auth code from being sent to the wrong app’s token endpoint.

Notably, the second identifier could potentially be app-
specific (§5.2.1), or AS-specific (§6.3). The former, as the
defense we suggest, turns out to be the more practical ap-
proach under the context of integration platforms.

5.2.1 Robust Countermeasure: App-specific Bindings

To universally defend all apps against COAT and CORF at-
tacks, we propose to have a globally unique identifier gen-
erated for each app (e.g., a random UUID-based app ID)
during registration, which must be both associated with the
state parameter and embedded into the redirect_uri path
or subdomain. The redirect_uri is therefore a distinct app-
specific URL, which can be validated and returned by the
AS while preserving the original protocol flow. The platform
MUST compare the app ID in state against its counterpart in
redirect_uri at the redirection endpoint before proceeding
with the access token request.

The above solution should be a robust fix for both COAT
and CORF, but their migration steps vary:
Platforms affected by COATU . If the platform’s original
design is issuing universal redirect_uri for all apps (i.e.,
COATU as discussed in §4.2.1), the first step is to switch to
distinct, app-specific redirect_uris for both existing and fu-
ture apps. App developers must be informed to whitelist only
this new redirect_uri at their AS. This migration require-
ment is considerably protracted since it involves coordinating
with every third-party. A platform enforcing an immediate fix
overnight can break those unmigrated apps, whose ASes will
reject the new distinct URI from the platform. Conversely,
it is impractical and insecure to wait until the migrations of
all apps to be completed, which may take forever. There-
fore, a transition period is likely needed to maintain back-
ward compatibility, during which both distinct and universal
redirect_uris shall be accepted by the platform.
Platforms affected by COATD. For these platforms, the de-
fense is the most straightforward, requiring only that the plat-
form updating their OAuth client backend code, extracting and
matching the existing app ID in state and redirect_uri.
Platforms affected by CORF. Affected platforms shall up-
date the format of the state parameter to embed or associate
with the app ID (e.g., as a new field in the JWT payload).
Then, they should enforce matching against the distinctive
element in redirect_uri at the redirection endpoint. The
migration is expected to cause no compatibility issues, as
state should be opaque to the AS.

5.2.2 Temporary Mitigations

Comparing the migration steps in mitigating different cross-
app OAuth attacks, it is the most challenging to defend against
COATU , which requires considerable communication and

coordination overheads between the platform and all apps’
developers. This section covers temporary measures to ease
the transition before a complete fix is rolled out.

Securing apps which opted in for a fix. During the tran-
sition period, the platform may track individually whether
an app has completed its migration and based on which in-
clude the old or new redirect_uri in the authorization re-
quest for that app. Apps which completed the migration (e.g.,
through the developer console) will stick to only the new
redirect_uris. To be specific, the platform must abort the
OAuth flow if a universal redirect_uri is used in migrated
apps, and enforce the app ID matching at OAuth client when a
distinct redirect_uri is returned. The platform will remain
as is for those unmigrated apps during the transition period.
This is an effective and practical measure to let apps opt-in
towards the complete fix and be secured as soon as possible.

Mitigating impacts on Single-clicks. Another track of mit-
igations is to eliminate single-click attack possibilities. One
way is to ensure that every request to the platform in OAuth
is CSRF protected (reflecting on R1 of §4.3.1), such that an
OAuth flow cannot be inadvertently initiated or conducted
by an end-user. In case this is hard to achieve, another ap-
proach, as introduced by some affected vendors, is to present
a platform-enforced extra consent screen for unmigrated apps.
As a temporary measure, it relies on end-users to hopefully
reject malicious apps. Crucially, the platform-side consent
screen must be presented before access token request (e.g., at
Step 1 or 5 of Fig. 2), otherwise it would be in vain as the
auth code would have already been leaked.

5.2.3 Invalid Defense: PKCE

There is a common misconception that generic defenses like
PKCE (Proof Key for Code Exchange) [21] is the cure to
all attacks that involve an authorization code injection, and
PKCE can always serve as an alternative CSRF protection.
To clarify, although PKCE is supported by 3 platforms under
our analysis, it does not mitigate COAT or CORF attacks.

In COAT, an attacker can force the victim to use a different
PKCE code challenge generated within the attacker’s OAuth
flow, which can pass the validation at AS when attacker later
exchanges the stolen auth code for a token. This is discussed
by OAuth community under the name of “PKCE Chosen
Challenge Attack” [22]. Conceptually similar, in CORF, the
attacker may use the victim’s code challenge to obtain an auth
code, which is then injected back into the victim’s OAuth
flow. Fig. 7 demonstrates how CORF under PKCE can occur.

6 Comparison with IdP Mix-up Attack

Due to the OAuth “role reversal” paradigm shift in integration
platforms (§2.3), cross-app attacks are lethally practical, as
opposed to the IdP mix-up attacks discussed in prior literature.

9

OSW
&

IE
TF Prev

iew
Only

Connect to Malicious App

A

Malicious App's
Server

Benign App's
Server

OAuth client User-agent Authorization server (AS)

Platform Backend Platform Frontend
Phase 1:

Victim's Device

Crafted
Redirect

https://platform.com/<benign_app>/redirect
?code=<attacker>&state=<state>

tokenattacker

w/ codeattackercodeattacker

codeattacker + code_verifiervictim

App
Account

Platform
Account
Victim Attacker

Connect to Benign App

of Benign App,
A

codeattacker

Phase 2:
Attacker's Device

code_challengevictim code_challengevictim

code_challengeattacker

code_challengevictim

...
To be continued in Phase 3

Continuing Phase 1...

bound to code_challengevictim

PKCE
Verified

Phase 3:
Victim's Device

Embed active app
into redirect_uri

Retrieve active app
from redirect_uri

<malicious_app>

=

<benign_app>

=

R

T

Figure 7: Attack Flow of CORF under PKCE Protection

Table 2: A Comparison of Cross-app vs. IdP Mix-up Attacks
Aspects COAT / CORF IdP Mix-up /

Naïve RP Session Integrity [7, 23]
Ecosystem (§2.3) Integration Platform Ordinary Website
Mechanism (§2.3) Account Linking (Authorization) Authentication or Authorization

Attack Assumption (§6.2) Malicious App (§3) Malicious IdP (AS) (§6.1)
Typical Scenario (§6.2) Open marketplace w/ Untrusted apps Fixed set of Trusted IdPs

OAuth Registration (§6.2)
App’s AS registers at

Platform’s OAuth client (§2.2)
RP (OAuth client) registers at

IdP (AS) (§2.3)
Attack Practicality (§6.2) Practical (§8) Impractical

Defense (§6.3) Per-app ID (§5.2) Per-AS ID (issuer)

In this section, we reflect on trust relations and highlight the
limitations of prior work in producing practical attacks and
securing integration platforms.

6.1 IdP Mix-up Attacks in Traditional OAuth

Existing literature [7, 23] explores the possibilities of con-
fusions among multiple IdPs (or ASes, more generally) in
relation to the single RP of an application (e.g., a website).7 A
victim end-user engaging with a malicious IdP could render
leakage of their credentials, such as auth codes or access to-
kens, issued by an honest IdP (IdP mix-up attack in OAuth [7],
IdP confusion in OIDC [23]); or alternatively, falsely accept
an attacker’s credentials at the honest IdP (Naïve RP session
integrity attack [7]). For convenience, we collectively refer to
them as IdP mix-up attacks.

Prior work focuses on identifying flaws at the protocol
level, which ceased at conceptual attacks [7] or threat analysis
in OAuth libraries [23]. The attacks were not introduced with
the context of multi-app integration platform in mind, and
lack end-to-end exploits identified in real-world deployments.
Table 2 presents a comparison of cross-app attacks to existing
discussions of IdP mix-up attacks in the OAuth community.

7Recall the mapping of AS vs. IdP and OAuth client vs. RP in §2.1.

Authoriza*on server (AS)
a.k.a. Iden*ty provider (IdP)

OAuth client
a.k.a. Relying party (RP)

Trusted IdPs

IdP mix-up attacks

Theoretical attacks

(a) Traditional OAuth for
Single Sign-on (SSO)

Authoriza*on server (AS)OAuth client

Untrusted Apps

(b) OAuth for "Account Linking"
in Integration Platforms

Cross-app attacks⭐

Practical attacks

e.g.,
Spotify website/app Google

Assistant
Google
Home

e.g.,

Figure 8: Impact of OAuth Role Reversal on Attack Practi-
cality

6.2 Comparison of Trust Relationship
The distinction of practicality between the prior attacks in
single-app multi-IdP scenario (i.e., IdP mix-up attacks) and
the attacks in integration platforms (i.e., cross-app OAuth
attacks) lies in the divergent trust relationships rooted in their
architectures, as illustrated in Fig. 8.
(a) Difficulty of compromising a trusted party. In existing
IdP mix-up attacks, the challenge lies in the involvement of
a malicious IdP, be it compromised or dynamically added to
the RP. This conflicts with the trusted nature between RP and
IdPs. Take the multiple IdPs for website SSO as an example
(Fig. 8a). Typically, each website supports only a fixed num-
ber of reputable IdPs, pre-registered by the RP. Compromising
one of these existing, trusted IdPs like Google is thus highly
unrealistic. In terms of dynamically establishing new RP-IdP
relationships, OAuth AS metadata [24] and dynamic client
registration [25] are available solutions but their functionali-
ties are developer-oriented rather than exposed to end-users,
which limit their practical use in attacks. When new IdPs are
to be added, the registrations should be consciously initiated
by the website’s RP (developer) and therefore still imply a
trusted relation.
(b) Ease of introducing an untrusted party. Contrastingly,
under integration platform’s context, well-known entities like
Google rely on untrusted apps in an open marketplace to
serve as the ASes (Fig. 8b). With the introduction of a mali-
cious app, integration platform significantly eases the attack
assumption of the infiltration of a malicious party. Our mea-
surements in §8 find 16 out of 18 top-tier platforms vulnerable,
with 9 susceptible to single-click attacks, impacting thousands
of integrated apps internet-wide and millions of end-users.

6.3 Defense: per-app vs. per-AS ID
Based on academic work [7, 23], up-to-date IETF specifi-
cations [2, 3] propose an ad-hoc defense named issuer for
IdP mix-up attack, which is a static per-AS identifier des-
ignated by the AS itself. Ideally, this defense does protect
standards-compliant integration platforms and apps. However,
in practice, the scope of these specifications does not con-
sider the fundamental requirement in integration platforms

10

OSW
&

IE
TF Prev

iew
Only

that multiple apps can share the same issuer (thus no longer
unique), nor does it cover the setting of CORF. Additionally,
deploying this defense in integration platforms is challenging,
as most platforms and apps are not standards-compliant due
to their unique requirements for manual OAuth registration,
custom access token request logic, implicit grant support, etc.

As detailed in Appendix A, we believe that a per-AS ID
(issuer) is a misaligned isolation boundary. Conversely, a
platform-issued per-app ID, as we propose, is a more practical
solution for securing OAuth in integration platforms.

7 Black-box Testing

Based on insights of the root cause, we derive a low-cost
testing approach that enables scalable detection of cross-app
OAuth vulnerabilities in real-world platforms.

7.1 Detection Logic
As established earlier, the key differentiator of cross-app vul-
nerabilities lies in how a platform’s OAuth client identify
the active app in an OAuth flow. However, the cloud-based,
closed-source nature of most integration platforms obscures
their OAuth implementation details, prompting the need for
black-box or grey-box solutions for vulnerability detection.

Previous work has proposed detection approaches for IdP
mix-up attacks. One approach is to operate as an insider, de-
tecting vulnerabilities by registering as malicious and benign
IdPs to simulate actual attacks [23]. However, in integration
platforms, the development of an app is often labor-intensive
due to the markedly different processes involved in each plat-
form, where even skilled developers may find it challenging
to learn. Another line of research [26, 27] operates as an out-
sider, identifying active attacks by real-time, browser-side
monitoring of deviations from standard OAuth protocol flows.
However, this method is ineffective and ill-suited for vulnera-
bility detection, as protocol deviations is the prerequisite of
but does not indicate a successful attack, and therefore cannot
reflect the presence of vulnerabilities.

In summary, we envision a tool that 1) requires minimal
manual efforts, eliminating the need for app registration or
implementing ASes; and 2) can precisely detect vulnerabili-
ties rather than merely identifying active attacks. To achieve
this, we propose a lightweight, black-box testing approach
that reveals the OAuth client’s design in active app tracking.
The key advantage is its ability to identify vulnerabilities with
a small set of testing operations, and only rely on existing
apps in the platform’s marketplace for precise detection.

Key Insights. Our testing methodology is based on the
following insights: 1) The OAuth client determines the active
app at the platform’s backend without explicitly disclosing the
information to us. However, as MITM (man-in-the-middle)
attackers, we can manipulate network traffic to induce app

No

Yes

COATU

OAuth
Failure

OAuth
Success

COATD

OAuth
Failure

OAuth
Success

CORF Secure

D3: Replace
redirect_uri &

auth code?

GET
https://platform.com/<xxx>/redirect

?state=<xxx>&code=<xxx>

state
redirect_uri
auth code

app_A
app_A
app_A

app_B
app_B
app_B

Request to
redirection endpoint R

...

Start OAuth

w/ app Bw/ app A

app_A
app_B
app_A

state
redirect_uri
auth code

app_A
app_B
app_B

state
redirect_uri
auth code

D1: Identical
redirect_uri?

D2: Replace
redirect_uri?

Figure 9: Decision Tree for Vulnerability Detection

identity inconsistencies to the platform’s OAuth client. We
can then inspect the platform’s reaction in redeeming the auth
code, so as to infer how the OAuth client tracks the active app.
2) Specifically, we aim to infer whether the platform blocks
the access token request or allows it to proceed. If allowed,
we need to further distinguish which app’s AS the request is
directed to. As a black-box tester, direct inspection of traffic
on server-side is not possible. However, we can infer the
destination, by determining if an auth code can be accepted
(i.e., successfully redeemed) by the app’s AS to which the
code is routed. 3) The server-side results will manifest as an
OAuth outcome (success or failure), which will be presented
to the platform end-user and observable at the user-agent.

Based on these ideas, we present a decision tree-based
approach as follows:
Initial Setup. In an integration platform, pick two apps
(labeled as app A and app B) arbitrarily to establish account
linking, note down their respective redirect_uris, as well
as one unredeemed, valid auth code for each app.
Decision Phases. The core of our methodology is a decision
tree consisting of 3 decisions (D1-D3), as depicted in Fig. 9
and explained in detail below:

D1. Does the platform assign identical redirect_uri for
both apps?

• Yes: Vulnerable to COATU ;
• No: Proceed to D2.

Explanations. D1 is based on the observation that a plat-
form tracks the active app either by state or redirect_uri.
Therefore, identical redirect_uri for both apps implies that
the platform would solely depend on state to distinguish the
active app, from which we can directly conclude the suscepti-
bility of a COATU attack (i.e., an early exit). Otherwise, the
platform may rely on state, redirect_uri, or both, to track
the active app, which remain to be decided by D2 and D3.

D2. What is the OAuth outcome of replacing the distinctive
element (e.g., app ID) of redirect_uri in the request to
the redirection endpoint?

• Succeed: Vulnerable to COATD;
• Fail: Proceed to D3.

11

OSW
&

IE
TF Prev

iew
Only

Explanations. Based on the key insights, we intercept and
modify the traffic to induce confusion between state and
redirect_uri of the two apps. Specifically, we focus on
the request to the redirection endpoint (Step 5 in Fig. 2), e.g.,
GET to https://platform.com/<app_A>/redirect?stat
e=<app_A_state>&code=<app_A_code>. In the OAuth flow
with app A, we replace the identifier app_A with app_B in
the URL path (or subdomain, depending on where the iden-
tifier is placed), e.g., https://platform.com/<app_B>/r
edirect?state=<app_A_state>&code=<app_A_code>. If
this identity mismatch can be discerned by the platform (i.e.,
protection in place), an OAuth failure will be raised. Other-
wise, two possibilities follows: if the platform sends the auth
code to app A’s token endpoint based on app_A_state (i.e.,
COATD), then the OAuth flow will be a success; Conversely,
if the platform directs the auth code to app B’s token end-
point based on app_B in the URL path or subdomain (i.e.,
CORF), since an unidentified auth code app_A_code is used,
the OAuth flow will also fail.

To distinguish between the two possibilities that constitutes
an OAuth failure in D2, a further decision D3 is introduced:

D3. On top of the substitution made in D2, what is the OAuth
outcome of replacing the auth code as well?

• Succeed: Vulnerable to CORF;
• Fail: Protection in place, secure.

Explanations. If we replace auth code in addition to app ID
in the redirect_uri, such as https://platform.com/<ap
p_B>/redirect?state=<app_A_state>&code=<app_B_co
de>, the OAuth flow will still fail if proper check is in place,
but a platform vulnerable to CORF can be identified if the
OAuth outcome is a success.

By this means, we can distinctly identify the presence of
a defense, and, in a vulnerable case, discern the active app’s
tracking mechanism. The branching in D2 and D3 derives reli-
able conclusions by addressing ambiguities regarding whether
an OAuth failure stems from defensive measures or misrouted
auth code redemptions.

7.2 Vulnerability Detection Pipeline
To measure the prevalence and severity of cross-app OAuth
vulnerabilities in real-world integration platforms, we conduct
testing following a three-phase pipeline. First, we select a cu-
rated list of integration platforms. Next, we utilize COVScan,
a black-box scanner based on the decision tree in §7.1 for vul-
nerability detection. Finally, we perform manual verification
for PoC exploitation.

7.2.1 Platforms Collection

Our approach for collecting the set of integration platforms
potentially susceptible to the cross-app OAuth attacks is as
follows: We document the supported platform list of several

cross-platform apps (e.g., TickTick [28], a to-do list app). In
parallel, we survey the representatives in each category of in-
tegration platforms. The combined list of the above two steps
is then filtered to include only those with an open marketplace
design, ensuring the feasibility for a malicious app to engage.

7.2.2 Semi-automated Vulnerability Detection

The detection logic in §7.1 is handy for manual testing with a
web debugging proxy. Building on this, we further develop
COVScan, a low-cost testing tool to facilitate scalable detec-
tion of Cross-app OAuth Vulnerabilities.

Tool Design. COVScan tracks the OAuth flow using a
state machine and modifies intercepted traffic to assess the
(in)security of each platform. The state machine is modeled
to capture each OAuth step within the traffic and only transi-
tion to the next state when the request and response comply
with the OAuth standard (i.e., correct sequence and syntax).
The detection process begins with app B by gathering its
redirect_uri and a valid auth code without redeeming it.
Then, COVScan instructs the end-user to initiate a new flow
with app A, also collecting the two, and vets against D1. If
the redirect_uri is distinct, the tool releases the modified
request as per D2. If no decisive conclusion is reached, the
process repeats once in a new OAuth flow with app A, this
time releasing the modified request following D3. Based on
the judgment of D1 and the OAuth outcomes of D2 and D3, a
reliable conclusion is derived.

A crucial task is distinguishing between successful and
failed OAuth flows. COVScan currently monitors up to three
HTTP requests and responses at the user-agent, starting from
the request to the redirection endpoint. It filters request URLs
and response bodies using a keyword list that signifies a failed
OAuth outcome (e.g., “error”, “unsuccessful”, “invalid”). The
tool is semi-automated because it requires minimum human
intervention navigating the platform, which is inevitable due
to UI variations across platforms and the authentication needs
of the apps, yet the tool remains user-friendly for laypersons.

Implementation. We implement COVScan in Python,
which utilizes selenium-wire [29] to accomplish human
interaction-assisted browser automation while being aware
of the underlying HTTP traffic. The tool also adopts
undetected-chromedriver [30] to bypass potential bot de-
tection (e.g., human verification by cloudflare). For mobile-
based platforms where Selenium is incompatible, we develop
an alternative version based on mitmproxy [31].

Discussions. To induce inconsistencies in app identifiers,
we opt to replace the distinct element in redirect_uri rather
than substituting the state parameter. The rationale behind
is in several platforms’ designs, at most one state is con-
sidered valid for each platform end-user. Thus, substituting
the state will always fail an OAuth flow, introducing false
negatives in identifying COATD and CORF. Furthermore, as

12

OSW
&

IE
TF Prev

iew
Only

mentioned earlier, D2 and D3 should be conducted in two
separate OAuth flows with the same app. We argue that this is
the minimum setup; otherwise, D3 will be reusing the state
parameter of D2, which contravenes the one-time use property
of state and leads to false negatives in identifying CORF.
Limitations. One potential limitation of COVScan is the
occurrence of false positives and negatives due to the adoption
of OAuth failure keyword list, the mechanism to distinguish
OAuth outcomes. False negatives may arise if the list is too
general, as the keywords may be hit by normal HTTP traffic.
Conversely, a list too specific might lead to false positives by
falsely flagging a secure platform as vulnerable to COATD or
CORF attack. To address this issue, we refine the keyword list
based on empirical observations and could further incorporate
LLM to facilitate understanding OAuth outcomes.

7.2.3 Attack Verification and Impact Evaluation

For platforms identified as vulnerable by COVScan, we follow
§4.2 to conduct PoC attacks, and evaluate metrics from §4.3 to
identify potential amplifications in security impact. The PoCs
serve as the ground truth of our semi-automated vulnerability
detection and are used as proof for responsible disclosure.

Note that for platforms allowing unvetted, sharing-based
app distribution, we replicate the attack flow using two plat-
form accounts to carry out the develop-distribute-interact pro-
cess with the malicious app. For platforms that require vetting
before app distribution, we conduct testing using the same
platform account as the malicious app developer, refraining
from publishing the app due to ethical concerns.

8 Evaluation

Based on the detection pipeline in §7.2, we collected 24 main-
stream integration platforms and filtered out 6 platforms with-
out their marketplace open to third-party developers (e.g.,
Integrately [32]). With the help of COVScan, we systemati-
cally evaluated the (in)security of the remaining 18 integration
platforms regarding their cross-app OAuth vulnerabilities.

8.1 Empirical Results
The findings of our measurement study are presented in Ta-
ble 3 and 4, accompanied by the following key observations:

Prevalence of Vulnerabilities. Out of 18 platforms ana-
lyzed, 16 are susceptible to cross-app OAuth attacks, includ-
ing 4 out of 6 workflow automation platforms, all 8 virtual
assistants and all 4 smart homes. Specifically, 11 platforms
are vulnerable to COAT attacks: 7 to the COATU variant, 5 to
the COATD variant, including 1 platform susceptible to both.
Additionally, 5 platforms are subject to CORF attacks. Fur-
thermore, 9 platforms fall in the worst-case scenario, where an
end-user can be compromised with a single click and without
the need of the attacker to distribute the malicious app.

Defenses Deployed. While neither standardized nor pub-
licly discussed, the two secure platforms (Zapier and
IFTTT) adopt solutions similar to §5.2.1, which associate
an app-specific ID with state, embed an equivalent ID in
redirect_uri, and enforce matching of the two at the redi-
rection endpoint. Moreover, their design for the distinct el-
ement in redirect_uri uses a globally unique app name
for published apps, and also a globally unique app name
or numeric identifier for custom apps. This naming con-
vention effectively prevents naming conflicts and potential
redirect_uri collisions.

Feasibility of Semi-automated Detection. COVScan can
reliably detect vulnerabilities or confirm the security in all
platforms, producing consistent results as manual exploitation
which serves as the ground truth. Note that 3 of the vulnerable
platforms are labeled as N/A in Table 3 because they fixed
in early stage of our research, prior to the development of
COVScan. Despite this, we later applied the tool to these
platforms post-fix and successfully confirmed their security.

Evaluation on Open-source Implementations. Aside
from the 18 closed-source platforms listed in Table 3, we
further investigate 4 trending open-source workflow automa-
tion platforms on GitHub, with regard to their redirect_uri
setup and the presence of defense against cross-app OAuth
attacks. The evaluation result is presented in Table 4.

This evaluation serves two purposes: 1) Protecting against
downstream applications. The vulnerable platforms require
immediate action, as downstream applications that have
utilized these open-source platforms for OAuth are also
affected. For instance, Trigger.dev [33], a platform incor-
porating Nango for account linking, also issues universal
redirect_uris and is therefore likewise vulnerable to
COATU . 2) Validating testing approaches. Regarding the
presence of defense, we rely on implementation within the
open-source codebase as the fundamental ground truth to fur-
ther validate the effectiveness of COVScan (§7.2.2) and the
validity of our manual PoC exploitation (§7.2.3). No incon-
sistencies have been observed.

8.2 Case Studies
Microsoft Power Automate. A critical COAT vulnerabil-
ity [4] was identified in Microsoft Power Automate [34], a
workflow automation platform for both consumer and enter-
prise use. This vulnerability enables platform-wide, single-
click account takeovers, compromising over 50 first-party
Microsoft applications in the Microsoft 365 suite (e.g., Out-
look, OneDrive) and Azure infrastructure (e.g., Key Vaults,
SQL Servers). For example, an attacker can gain full access
to a victim’s Outlook emails or read their Azure Key Vault
secrets without explicit consent.

The single-click exploit builds upon the following insights:
1) While the platform supports publishing and sharing-based

13

OSW
&

IE
TF Prev

iew
Only

Table 3: Findings of Platform-wide Cross-app OAuth Attacks Among Mainstream Integration Platforms

Type Platform C E # Users COAT CORF Detectable Attack Vector
COATU COATD App Distribution Single-Click

Workflow
Automation
Platforms E,C

Microsoft Power Automate ✓✓ 33M MAU þ þ ✓ Share, Publish ✓
IFTTT ✓ 27M ✓ N/A N/A
Zapier ✓✓ 2.2M ✓ N/A N/A
A Business Collab. Platform ✓✓ 54M MAU þ ✓ Share ✓
Workato ✓ 21K Orgs þ ✓ Share, Publish
A Top-tier iPaaS ✓ 70K Companies þ ✓ Publish + Share ✓

Virtual
Assistants E,C

A leading LLM platform ✓✓ 180M WAU þ ✓ Share, Publish
ByteDance Coze ✓✓ 2M MAU þ ✓ Share, Publish ✓
Google Assistant ✓ 500M MAU þ N/A 1 Share, Publish
Amazon Alexa ✓ 100M þ ✓ Share, Publish ✓
Samsung Bixby ✓ 200M þ N/A Publish
Xiaomi XiaoAI ✓ 115M þ ✓ Publish ✓
Baidu Xiaodu ✓ 40M þ ✓ Publish ✓
Alibaba AliGenie ✓ 40M þ ✓ Publish

Smart
Homes C

Google Home ✓ 500M Installs þ N/A Share, Publish
Samsung SmartThings ✓ 285M þ ✓ Share, Publish ✓
Xiaomi Mi Home ✓ 83M þ ✓ Publish
Yandex Smart Home ✓ 45M þ ✓ Share, Publish ✓

Total 18 16 7 7 5 5 15 9

C: Consumer-facing platform; þ: Vulnerable platform. 1 Vulnerability fixed before COVScan came into being.
E: Enterprise-facing platform, also referred to as iPaaS (Integration Platform as a Service) by workflow automation platforms.
COATU : COAT with universal redirect_uri for multiple apps; COATD: COAT with distinct (per-app) redirect_uris.
Detectable: Platform’s (in)security detectable by COVScan. Single-Click: Feasibility of Single-click attack w/o malicious app distribution.
Share: Share a custom app individually w/o vetting; Publish: Go through vetting process and publish in marketplace.

Table 4: Evaluation of Open-source Workflow Automation
Platforms

Platform # Stars redirect_uri COAT/CORF Defense
n8n 50.1K Universal Missing, COATU
Activepieces 10.1K Universal Missing, COATU
Automatisch 6.4K Distinct Missing, COATD
Nango 4.8K Universal Missing, COATU

app distribution, even stealthier, an attacker can directly dis-
tribute the hyperlink that initiates OAuth with their non-
distributed malicious app. The link will still work in the vic-
tim’s user-agent, redirecting to the app’s authorization end-
point (R3 in §4.3.1, same below) given no CSRF protection
(R1) and isolation between environments (R2) in place. 2) The
platform not only hosts third-party apps, but also Microsoft
first-party services. First-parties are implicitly trusted by de-
sign, where authorization consent is never needed (even more
severe than R*). 3) For first-party apps, the only required user
interaction—a confirmation page to select the Microsoft ac-
count being used in account linking—can be circumvented
following the strategy in §4.3.2. 4) The platform issues dis-
tinct redirect_uris for first-party apps and universal ones
for third-parties, tracking the active app solely by the state
parameter. This enables COATD and COATU attacks.

Alarmingly, a victim does not need to be using or even
registered at the platform. Merely having a non-expired Mi-
crosoft account session at the user-agent suffices to get com-
promised in single click. This puts any Microsoft user with a
365 or Azure subscription at risk. In addition to first-parties,
the broader ecosystem, namely all OAuth-enabled third-party

apps (e.g., GitHub and Dropbox) are also impacted.
In response, Microsoft “ripped apart, rearchitected the

whole connectors ecosystem” [35]. They also deprecated the
universal redirect_uri and instructed app developers to mi-
grate to distinct ones in order to enforce the robust fix (§5.2.1),
while putting up an extra consent screen during the transition
period (§5.2.2).
A Leading LLM Platform. An emerging LLM-
empowered assistant platform tracks the active app (i.e.,
plugin) via distinct redirect_uris, without even issuing
a state parameter. This omission renders it susceptible to
regular login CSRF in the first place. Following our initial
communication, their engineering team applied a fix to
generate and mandate the state parameter. However, the
platform remained exposed to CORF, which was ultimately
addressed after another round of contact.

9 Related Work

Security of Integration Platforms. Existing research in-
vestigates the unique security challenges in each type of inte-
gration platform (e.g., exploiting automation rules [36], voice
squatting [37], LLM prompt injections [38] and flawed smart
home control protocols [39]). Notably, there is a consistent
line of research on the threat model of malicious or compro-
mised platforms [13, 14] that re-architect the platforms to
achieve certain security guarantees. In this work, we adopt
the threat model of malicious apps, while assuming a trusted
platform. We inspect intrinsic issues in the use of OAuth pro-
tocol across different types of integration platforms to fulfill

14

OSW
&

IE
TF Prev

iew
Only

https://github.com/n8n-io/n8n
https://github.com/activepieces/activepieces
https://github.com/automatisch/automatisch
https://github.com/NangoHQ/nango

account linking.

OAuth Security. The security of OAuth protocol [1] has
undergone scrutiny through various aspects, including formal
analysis [7], penetration testing [40], and (semi-)automated
evaluations [41–43]. Nevertheless, most existing literature
and industrial efforts focus on examining ordinary websites,
OAuth libraries, or emerging use cases like mobile [11,44] and
dual-window SSOs [45]. Yet, integration platforms, which in-
troduce a larger-scale OAuth architecture with more complex
trust relationships, have been largely overlooked.

IdP Mix-up Attack. Prior work [7, 23, 46] discusses the
feasibility of OAuth attacks when a victim is tricked into in-
teracting with a malicious IdP, if there are multiple IdPs con-
figured for an RP. However, these studies lack discoveries of
concrete exploits in real-world deployments, since the assump-
tions under their contrived threat model are too demanding
(e.g., compromising an IdP). In contrast, as open ecosystems,
the inherent risk of hosting apps in integration platforms re-
laxes the attack assumptions. While the OAuth community
further standardized mix-up attack mitigation in [2, 3], the
suggested defenses are not tailored for integration platforms.

Towards identifying IdP mix-up attacks, PrOfESSOS [23]
detects vulnerabilities by registering as malicious and be-
nign IdPs and simulating an actual attack. WPSE [26] and
Bulwark [27] identify active attacks through real-time mon-
itoring with browser add-ons, blocking deviations from the
intended protocol flow. By contrast, COVScan conducts de-
cision tree-driven black-box testing in integration platforms
as an external entity. Our approach requires no knowledge of
platform internals or app development and proves effective in
identifying cross-app OAuth vulnerabilities.

10 Conclusion

Integration platforms offer an all-in-one solution that seam-
lessly connects various apps for aggregated control, stream-
lining our digital lives. In this paper, we dissect the secu-
rity threat posed by untrusted apps in OAuth-based account
linking within integration platforms, revealing the first cross-
app OAuth attacks with real-world exploits. We design a
semi-automated vulnerability scanner to facilitate scalable
detection. Our study shows that 16 out of 18 integration plat-
forms are susceptible to these attacks, with the worst cases
enabling single-click account takeovers. The prevalence and
severity motivate our robust defense to fully mitigate the
vulnerabilities. Our research underscores the importance of
re-inspecting OAuth under the multi-app architecture and role
reversal paradigm of integration platforms.

Ethical Concerns and Responsible Disclosure

All testing on live systems is conducted with our test accounts.
The malicious apps in PoCs are all test apps we developed

ourselves and we never attempted to publish the apps in mar-
ketplace. For decision tree-based testing, although real-world
apps are involved, we never attempted to penetrate or send
large amounts of traffic to their services. Moreover, all errors
produced by our testing methodology are already covered by
standard error handling in OAuth specifications.

As of November 2024, we have informed all 16 vulnerable
closed-source platforms, and more than 120 days have passed
since our reports. Of these, 11 platforms have responded,
with 9 having already patched the vulnerabilities and 2 still
working on it. Among the fixed platforms, 6 applied the robust
fix (§5.2.1), while 3 implemented an extra consent screen
(§5.2.2). We are also working with developers of open-source
platforms to help them understand the implications.

This research was initiated at Samsung Bixby, where the
attack vector was internally identified and fixed at early stage.
Following our bug reports, we have received $35K bug bounty
rewards as well as acknowledgments from multiple vendors.
For example, Google acknowledged and fixed their issue
within two weeks upon our report; Microsoft invited us to
a collaboration meeting and issued CVE-2023-36019 [4], a
critical-severity CVE with a 9.6 CVSS score.

We have contacted the IETF OAuth Working Group to
seek incorporation of our findings as normative changes into
specifications such as the OAuth 2.0 Security Best Current
Practice [2] or the OAuth 2.1 [47] draft. We will also present
our research at the OAuth Security Workshop [48] to commu-
nicate with the broader OAuth community.

Acknowledgments

We sincerely thank the reviewers for their valuable feed-
back. In particular, we thank our shepherd for the construc-
tive suggestions and guidance throughout the revision pro-
cess, which helped enhance the paper considerably. This re-
search is supported in part by the CUHK MobiTeC Fund
(project# 6901539) and the CUHK Strategic Impact Enhance-
ment Fund (project# 399857576).

References

[1] Dick Hardt. The OAuth 2.0 Authorization Framework. RFC
6749, October 2012.

[2] Torsten Lodderstedt, John Bradley, Andrey Labunets, and
Daniel Fett. OAuth 2.0 Security Best Current Practice. Internet-
Draft draft-ietf-oauth-security-topics-29, Internet Engineering
Task Force, June 2024. Work in Progress.

[3] Karsten Meyer zu Selhausen and Daniel Fett. OAuth 2.0 Au-
thorization Server Issuer Identification. RFC 9207, March
2022.

[4] Security Update Guide - Microsoft. CVE-2023-36019
- Microsoft Power Platform Connector Spoofing Vulner-
ability. https://msrc.microsoft.com/update-guide/
vulnerability/CVE-2023-36019.

15

OSW
&

IE
TF Prev

iew
Only

https://msrc.microsoft.com/update-guide/vulnerability/CVE-2023-36019
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2023-36019

[5] Hui Wang, Yuanyuan Zhang, Juanru Li, and Dawu Gu. The
achilles heel of oauth: a multi-platform study of oauth-based
authentication. In Proceedings of the 32nd Annual Conference
on Computer Security Applications, pages 167–176, 2016.

[6] Louis Jannett, Christian Mainka, Maximilian Westers, An-
dreas Mayer, Tobias Wich, and Vladislav Mladenov. Sok:
Sso-monitor-the current state and future research directions in
single sign-on security measurements. In 2024 IEEE 9th Euro-
pean Symposium on Security and Privacy (EuroS&P), pages
173–192. IEEE, 2024.

[7] Daniel Fett, Ralf Küsters, and Guido Schmitz. A comprehen-
sive formal security analysis of oauth 2.0. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 1204–1215, 2016.

[8] Nat Sakimura, John Bradley, Mike Jones, Breno De Medeiros,
and Chuck Mortimore. Openid connect core 1.0 incorporating
errata set 2. OpenID Connect WG, Specification, 2023.

[9] Michael B. Jones, John Bradley, and Nat Sakimura. JSON
Web Token (JWT). RFC 7519, May 2015.

[10] John Bradley, Torsten Lodderstedt, and Hans Zandbelt. En-
coding claims in the OAuth 2 state parameter using a JWT.
Internet-Draft draft-bradley-oauth-jwt-encoded-state-09, In-
ternet Engineering Task Force, November 2018. Work in
Progress.

[11] William Denniss and John Bradley. OAuth 2.0 for Native Apps.
RFC 8252, October 2017.

[12] Microsoft Learn. Investigate and remediate risky
oauth apps - microsoft defender for cloud apps.
https://learn.microsoft.com/en-us/defender-cloud-
apps/investigate-risky-oauth.

[13] Earlence Fernandes, Amir Rahmati, Jaeyeon Jung, and Atul
Prakash. Decentralized action integrity for trigger-action iot
platforms. In Proceedings 2018 Network and Distributed Sys-
tem Security Symposium, 2018.

[14] Yunang Chen, Amrita Roy Chowdhury, Ruizhe Wang, Andrei
Sabelfeld, Rahul Chatterjee, and Earlence Fernandes. Data
privacy in trigger-action systems. In 2021 IEEE Symposium
on Security and Privacy (SP), pages 501–518. IEEE, 2021.

[15] Devdatta Akhawe, Adam Barth, Peifung E Lam, John Mitchell,
and Dawn Song. Towards a formal foundation of web se-
curity. In 2010 23rd IEEE Computer Security Foundations
Symposium, pages 290–304. IEEE, 2010.

[16] Torsten Lodderstedt, Mark McGloin, and Phil Hunt. OAuth
2.0 Threat Model and Security Considerations. RFC 6819,
January 2013.

[17] OAuth Community Site. OAuth 2.0 Implicit Grant Type.
https://oauth.net/2/grant-types/implicit/.

[18] MDN Web Docs. Set-cookie - http | mdn. https:
//developer.mozilla.org/en-US/docs/Web/HTTP/
Headers/Set-Cookie#browser_compatibility.

[19] San-Tsai Sun and Konstantin Beznosov. The devil is in the
(implementation) details: an empirical analysis of OAuth SSO
systems. In Proceedings of the 2012 ACM conference on
Computer and communications security, pages 378–390, 2012.

[20] Auth0 Docs. Configure silent authentication. https:
//auth0.com/docs/authenticate/login/configure-
silent-authentication.

[21] Nat Sakimura, John Bradley, and Naveen Agarwal. Proof
Key for Code Exchange by OAuth Public Clients. RFC 7636,
September 2015.

[22] IETF 105. PKCE chosen challenge attack. https:
//datatracker.ietf.org/meeting/105/materials/
slides-105-oauth-sessa-oauth-security-topics-00.

[23] Christian Mainka, Vladislav Mladenov, Jörg Schwenk, and
Tobias Wich. Sok: single sign-on security—an evaluation
of openid connect. In 2017 IEEE European Symposium on
Security and Privacy (EuroS&P), pages 251–266. IEEE, 2017.

[24] Michael B. Jones, Nat Sakimura, and John Bradley. OAuth 2.0
Authorization Server Metadata. RFC 8414, June 2018.

[25] Justin Richer, Michael B. Jones, John Bradley, Maciej Machu-
lak, and Phil Hunt. OAuth 2.0 Dynamic Client Registration
Protocol. RFC 7591, July 2015.

[26] Stefano Calzavara, Riccardo Focardi, Matteo Maffei, Clara
Schneidewind, Marco Squarcina, and Mauro Tempesta. WPSE:
Fortifying web protocols via Browser-Side security monitor-
ing. In 27th USENIX Security Symposium (USENIX Security
18), pages 1493–1510, Baltimore, MD, August 2018. USENIX
Association.

[27] Lorenzo Veronese, Stefano Calzavara, and Luca Compagna.
Bulwark: Holistic and verified security monitoring of web pro-
tocols. In Computer Security–ESORICS 2020: 25th European
Symposium on Research in Computer Security, ESORICS 2020,
Guildford, UK, September 14–18, 2020, Proceedings, Part I
25, pages 23–41. Springer, 2020.

[28] Integrations - ticktick. https://ticktick.com/
integrations.

[29] wkeeling. selenium-wire: Extends selenium’s python bindings
to give you the ability to inspect requests made by the browser.
https://github.com/wkeeling/selenium-wire.

[30] ultrafunkamsterdam. undetected-chromedriver: Cus-
tom selenium chromedriver. https://github.com/
ultrafunkamsterdam/undetected-chromedriver.

[31] Aldo Cortesi, Maximilian Hils, Thomas Kriechbaumer, and
contributors. mitmproxy: A free and open source interactive
HTTPS proxy, 2010–. https://mitmproxy.org/.

[32] 20 million+ ready automations for 1100+ apps | integrately.
https://integrately.com/.

[33] Trigger.dev | the open source background jobs framework.
https://trigger.dev/.

[34] Microsoft. Microsoft power automate – process automa-
tion platform. https://www.microsoft.com/en-us/power-
platform/products/power-automate.

[35] Scott Gorlick. Q&A Session of “Security Research in Copilot
Studio”. https://youtu.be/0Bw2YCDypUY?t=2743.

[36] Qi Wang, Pubali Datta, Wei Yang, Si Liu, Adam Bates, and
Carl A Gunter. Charting the attack surface of trigger-action iot
platforms. In Proceedings of the 2019 ACM SIGSAC confer-
ence on computer and communications security, pages 1439–
1453, 2019.

16

OSW
&

IE
TF Prev

iew
Only

https://learn.microsoft.com/en-us/defender-cloud-apps/investigate-risky-oauth
https://learn.microsoft.com/en-us/defender-cloud-apps/investigate-risky-oauth
https://oauth.net/2/grant-types/implicit/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#browser_compatibility
https://auth0.com/docs/authenticate/login/configure-silent-authentication
https://auth0.com/docs/authenticate/login/configure-silent-authentication
https://auth0.com/docs/authenticate/login/configure-silent-authentication
https://datatracker.ietf.org/meeting/105/materials/slides-105-oauth-sessa-oauth-security-topics-00
https://datatracker.ietf.org/meeting/105/materials/slides-105-oauth-sessa-oauth-security-topics-00
https://datatracker.ietf.org/meeting/105/materials/slides-105-oauth-sessa-oauth-security-topics-00
https://ticktick.com/integrations
https://ticktick.com/integrations
https://github.com/wkeeling/selenium-wire
https://github.com/ultrafunkamsterdam/undetected-chromedriver
https://github.com/ultrafunkamsterdam/undetected-chromedriver
https://mitmproxy.org/
https://integrately.com/
https://trigger.dev/
https://www.microsoft.com/en-us/power-platform/products/power-automate
https://www.microsoft.com/en-us/power-platform/products/power-automate
https://youtu.be/0Bw2YCDypUY?t=2743

[37] Nan Zhang, Xianghang Mi, Xuan Feng, XiaoFeng Wang, Yuan
Tian, and Feng Qian. Dangerous skills: Understanding and mit-
igating security risks of voice-controlled third-party functions
on virtual personal assistant systems. In 2019 IEEE Sympo-
sium on Security and Privacy (SP), pages 1381–1396. IEEE,
2019.

[38] OWASP Foundation. Owasp top 10 for large language model
applications. https://owasp.org/www-project-top-10-
for-large-language-model-applications/.

[39] Wei Zhou, Yan Jia, Yao Yao, Lipeng Zhu, Le Guan, Yuhang
Mao, Peng Liu, and Yuqing Zhang. Discovering and under-
standing the security hazards in the interactions between IoT
devices, mobile apps, and clouds on smart home platforms.
In 28th USENIX security symposium (USENIX security 19),
pages 1133–1150, 2019.

[40] PortSwigger. Oauth 2.0 authentication vulnerabilities |
web security academy. https://portswigger.net/web-
security/oauth.

[41] Ronghai Yang, Wing Cheong Lau, Jiongyi Chen, and Kehuan
Zhang. Vetting single Sign-On SDK implementations via
symbolic reasoning. In 27th USENIX Security Symposium
(USENIX Security 18), pages 1459–1474, Baltimore, MD, Au-
gust 2018. USENIX Association.

[42] Pieter Philippaerts, Davy Preuveneers, and Wouter Joosen.
Oauch: Exploring security compliance in the oauth 2.0 ecosys-
tem. In Proceedings of the 25th International Symposium on
Research in Attacks, Intrusions and Defenses, pages 460–481,
2022.

[43] Tamjid Al Rahat, Yu Feng, and Yuan Tian. Cerberus: Query-
driven scalable vulnerability detection in oauth service provider
implementations. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, pages
2459–2473, 2022.

[44] Eric Y. Chen, Yutong Pei, Shuo Chen, Yuan Tian, Robert
Kotcher, and Patrick Tague. Oauth demystified for mobile ap-
plication developers. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, pages
892–903, 2014.

[45] Louis Jannett, Vladislav Mladenov, Christian Mainka, and Jörg
Schwenk. Distinct: Identity theft using in-browser communi-
cations in dual-window single sign-on. In Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 1553–1567, 2022.

[46] Daniel Fett. Mix-up, revisited - danielfett.de. https://
danielfett.de/2020/05/04/mix-up-revisited/.

[47] Dick Hardt, Aaron Parecki, and Torsten Lodderstedt. The
OAuth 2.1 Authorization Framework. Internet-Draft draft-ietf-
oauth-v2-1-12, Internet Engineering Task Force, November
2024. Work in Progress.

[48] OAuth Security Workshop - OSW 2025. https://oauth.
secworkshop.events/osw2025.

[49] Chetan Bansal, Karthikeyan Bhargavan, Antoine Delignat-
Lavaud, and Sergio Maffeis. Discovering concrete attacks on
website authorization by formal analysis. Journal of Computer
Security, 22(4):601–657, 2014.

[50] Alexa Skills Kit. Configure an implicit grant. https:
//developer.amazon.com/en-US/docs/alexa/account-
linking/configure-implicit-grant.html.

[51] Google for Developers. Account linking with oauth | actions on
google account linking. https://developers.google.com/
assistant/identity/oauth2?oauth=implicit#flow.

[52] Zapier Docs. Use code mode to refine your api call. https:
//platform.zapier.com/build/code-mode.

[53] Workato Docs. How-to guides - authentication - authorization
code grant. https://docs.workato.com/developing-
connectors/sdk/guides/authentication/oauth/auth-
code.html#auth-code-grant-variations.

[54] Bixby Developer Center. token-endpoint. https:
//bixbydevelopers.com/dev/docs/reference/type/
authorization.user.oauth2-custom.token-endpoint.

A Limitations of issuer Defense for Integra-
tion Platform

The defense against IdP mix-up attack requires each AS to re-
turn a unique ID that identifies itself (the OAuth AS metadata-
dependent issuer or its fallback option). However, this per-
AS isolation boundary is not well-suited for multi-app inte-
gration settings for the following reasons:
Misaligned Preconditions.

1. The “duplicate issuer” problem: According to IETF
specifications [2, §4.4.1], the OAuth client should track
“the authorization server chosen by the user” as a pre-
condition to fall within the scope of IdP mix-up attacks.
However, this conflicts with the requirement of integra-
tion platforms, where multiple apps can legitimately
share the same issuer (e.g., an official Dropbox app and
a custom Dropbox app with different OAuth scopes, both
using the same AS). As a result, an integration platform
MUST track by a per-app ID as a functional require-
ment (§4.1). On the other hand, tracking by a per-AS ID
(issuer) is an inappropriate isolation boundary, as it is
no longer a unique identifier. Platforms cannot determine
which app’s AS to send the auth code to if multiple apps
share the same issuer. Consequently, platforms blindly
following the specification would be forced to break or
expel existing issuer-sharing apps.

2. Lack of CORF coverage: The precondition, attack and
targeted defense of CORF (as well as the correspond-
ing Naïve RP session integrity attack [7] in traditional
OAuth scenarios) are never covered by any IETF spec-
ifications. For example, the specification [2, §4.4.1] re-
quires OAuth clients to track by “a session bound to
the user’s browser” (or by session-bound state as we
put it) as the mix-up attack precondition. However, as a
functional requirement, CORF-affected platforms track
by distinct redirect_uris instead (§4.2.2).8 Therefore,

8The specification does mention that tracking by “Per-AS Redirect

17

OSW
&

IE
TF Prev

iew
Only

https://owasp.org/www-project-top-10-for-large-language-model-applications/
https://owasp.org/www-project-top-10-for-large-language-model-applications/
https://portswigger.net/web-security/oauth
https://portswigger.net/web-security/oauth
https://danielfett.de/2020/05/04/mix-up-revisited/
https://danielfett.de/2020/05/04/mix-up-revisited/
https://oauth.secworkshop.events/osw2025
https://oauth.secworkshop.events/osw2025
https://developer.amazon.com/en-US/docs/alexa/account-linking/configure-implicit-grant.html
https://developer.amazon.com/en-US/docs/alexa/account-linking/configure-implicit-grant.html
https://developer.amazon.com/en-US/docs/alexa/account-linking/configure-implicit-grant.html
https://developers.google.com/assistant/identity/oauth2?oauth=implicit#flow
https://developers.google.com/assistant/identity/oauth2?oauth=implicit#flow
https://platform.zapier.com/build/code-mode
https://platform.zapier.com/build/code-mode
https://docs.workato.com/developing-connectors/sdk/guides/authentication/oauth/auth-code.html#auth-code-grant-variations
https://docs.workato.com/developing-connectors/sdk/guides/authentication/oauth/auth-code.html#auth-code-grant-variations
https://docs.workato.com/developing-connectors/sdk/guides/authentication/oauth/auth-code.html#auth-code-grant-variations
https://bixbydevelopers.com/dev/docs/reference/type/authorization.user.oauth2-custom.token-endpoint
https://bixbydevelopers.com/dev/docs/reference/type/authorization.user.oauth2-custom.token-endpoint
https://bixbydevelopers.com/dev/docs/reference/type/authorization.user.oauth2-custom.token-endpoint

platforms that initially adopt the latter design (e.g., the
leading LLM vendor discussed in §8.2 as a case study)
would not be aware that they are affected, because they
do not meet the specified preconditions.

Impractical Defense.
1. Lack of OAuth AS metadata support: Typically, the

issuer value is sourced from the OAuth AS meta-
data [24] to ensure its authenticity (i.e., ensuring that
issuer cannot be forged by verifying domain owner-
ship). However, in the platforms we surveyed, none sup-
port metadata, and this feature is also rarely supported
by existing integrated apps. Instead, all platforms require
app developers to manually register their ASes (as well
as API endpoints) at the platform’s developer console.

2. Supporting implicit grant: Alternatively, according
to [2, §4.4.2], a unique identifier for the <authoriza-
tion endpoint, token endpoint> tuple can be used as an
issuer equivalent. However, some integration platforms
(e.g., Amazon Alexa [50], Google Assistant [51]) sup-
port apps with OAuth implicit grant, which does not in-
volve a token endpoint, rendering this fallback solution
inapplicable.9 Despite that implicit grant is no longer
recommended [2, §2.1.2], the necessity for maximizing
backward compatibility makes it challenging for integra-
tion platforms to adopt this solution.

3. Customizable access token request: At least 3 integra-
tion platforms we surveyed—Zapier [52], Workato [53]
and Bixby [54]—offer greater flexibilities by allowing
app developers to write custom code (e.g., JavaScript)
to fulfill access token requests (previously discussed
in §2.2). Thus the token endpoint is no longer a pre-
registered static URL, landing OAuth AS metadata or
the <authorization endpoint, token endpoint> tuple ill-
suited for this use case.

4. Developer overhead: The standardized IdP mix-up de-
fense in RFC9207 [3] requires the issuer to be returned
as a new URL parameter iss in the authorization re-
sponse, which requires extra implementation efforts from
every AS developer, causing considerable overhead for
adoption.

5. (In)convenience: From the standpoint of integration
platforms, maintaining an app ID is essential for the
multi-app system design, regardless of OAuth support.
Repurposing the app ID as a defense mechanism for
cross-app attacks is thus highly convenient, where ex-
tracting and comparing the same identifier from both
state and redirect_uri suffices.

URIs” are susceptible to a mix-up variant (“Cross Social-Network Request
Forgery” [49]). Note that this attack is distinct from CORF as it abuses
redirect_uri matching flaw at AS, which CORF does not assume.

9If only the authorization endpoint is used as issuer for implicit grant,
an attacker could specify a benign app’s authorization endpoint and the
malicious app’s own API endpoint(s) during the registration and development
of malicious app. The attack still works.

From the analysis above, we conclude that a per-app ID is
the most practical remedy for cross-app OAuth attacks in in-
tegration platforms. Additionally, we derive two key insights:

Insight 1: App-centric Architecture. In integration plat-
forms, the layer of apps should play a central role in defense:
• In traditional OAuth scenarios, considering the “OAuth

client – AS” relationship is sufficient.
• However, in integration platforms, since OAuth regis-

trations are conducted on a per-app basis, this forms a
paradigm of “OAuth client – App – AS”, representing
an app-based isolation boundary. Since multiple apps can
share the same issuer, a per-app ID is more granular than
a per-AS ID (i.e., issuer), and should be used for fulfill-
ing both the functional requirement (deciding where to
send the auth code) and security requirement (defending
against cross-app OAuth attacks).

Insight 2: Integration Platform Perspective. Based on
common functional requirements, an integration platform is
designed to support ASes from hundreds or thousands of in-
tegrated apps, a scale not considered by IETF specifications.
Given fragmented OAuth support across the numerous ASes,
platforms cannot feasibly require all ASes to (1) offer OAuth
AS Metadata (RFC8414 [24]); and/or (2) return the issuer as
a response parameter iss (RFC9207 [3]). Otherwise, plat-
forms would have to expel the majority of existing apps.
Therefore, we opt for a countermeasure over which the plat-
form has the most control, driven by platform-generated
per-app IDs. In contrast, in traditional OAuth, since only a
handful of IdPs (or ASes) need to be dealt with per OAuth
client, IETF specifications for mitigating mix-up attacks rely
on defenses dependent on the AS (i.e., the issuer).

B Practical Impact of CORF

CORF generally has less impact than COAT, as CORF pas-
sively logs information while COAT actively acquires privi-
leges. This aligns with the typical severity difference between
Account Takeover and Login CSRF vulnerabilities.

However, CORF can still have significant practical impli-
cations: 1) In scenarios where the integrated app is used for
data synchronization purposes (e.g., syncing calendars, notes,
or to-dos), a successful CORF attack could enable wholesale
exfiltration of end-user’s data. 2) In smart homes, while there
may not be an obvious impact from controlling an IoT device
not belonging to the victim, CORF can cause a Denial of
Service (DoS) of IoT device control by forcefully logging
the victim out of their own account at the IoT provider, a
side effect of forced account linking. 3) Additionally, CORF
can remain largely undetected because most platforms do not
notify end-users or display such account replacements in their
user interface (UI).

18

OSW
&

IE
TF Prev

iew
Only

	Introduction
	Background
	When OAuth Meets Integration Platforms
	App Integration Process
	Paradigm Shift with OAuth Role Reversal

	Threat Model
	Platform-wide Cross-app OAuth Attacks
	New Attack Surface in Integration Platform
	Attack Details
	Cross-app OAuth Account Takeover (COAT)
	Cross-app OAuth Request Forgery (CORF)

	Additional Impact
	Platform-side Design Enabling Practical Attacks
	Circumventing Consent at Authorization Server

	Root Cause Analysis and Defense
	Root Cause
	Defenses
	Robust Countermeasure: App-specific Bindings
	Temporary Mitigations
	Invalid Defense: PKCE

	Comparison with IdP Mix-up Attack
	IdP Mix-up Attacks in Traditional OAuth
	Comparison of Trust Relationship
	Defense: per-app vs. per-AS ID

	Black-box Testing
	Detection Logic
	Vulnerability Detection Pipeline
	Platforms Collection
	Semi-automated Vulnerability Detection
	Attack Verification and Impact Evaluation

	Evaluation
	Empirical Results
	Case Studies

	Related Work
	Conclusion
	Limitations of issuer Defense for Integration Platform
	Practical Impact of CORF

