
Internet of Things (IoT): 
Protocols, Architectures and Standards 

 
 
 
 
 

Prof. Wing C. Lau
Spring 2017

2

Acknowledgements
Many of the slides in this presentation are adapted from various sources including:
■  Zach Shelby and Carsten Bormann, Companion Lecture Slides for the book titled: 6LowPAN: The Wireless Emdedded Internet,

Published by Wiley, 2009.

■  A. Brandt et al, “RPL: Routing Protocol for Low Power and Lossy Network,” Roll Design Team status report, IETF-75, July 2009.
■  David E. Culler, Jonathan Hui and Zach Shelby, “6LowPAN”, IPSO Alliance Webinar, Nov. 2010.
■  Jurgen Schonwalder, “Internet of Things: 802.15.4, 6LowPAN, RPL, CoAP,” Oct 2010
■  Robert Cragie, “The ZigBee IP Stack,” IPv6-based stack for 802.15.4 networks, ZigBee Alliance 2011
■  JP Vasseur, “RPL Tutorial”, IoT Workshop, Apr 2011
■  JP Vasseur, “IP e2e in Smart Grid Networks/ Standardization Update”, Apr 2011
■  Zach Shelby, “CoAP: The Internet of Things Protocol,” May 2013
■  Kwok Wu, “Freescale Internet of Things Gateway Platform – Future Generations,” Sept 2013
■  Zach Shelby, “OMA Lightweight M2M tutorial,” ARM IoT Tutorial, May 2014
■  Bill Curtis, “IoT Device Standards,” ARM, 2014
■  Michael Koster, “CoAP, OMA LWM2M and IPSO Smart Objects: Service and Application level Interoperability for IoT,” Tutorial

in IETF-91, Nov 2014.
■  Pratul Sharma, “Key requirements for Interoperable IoT systems,” Internet of Things Developers Conference, May 2014
■  Julien Vermillard, “M2M, IoT, Device Management, CoAP and Lightweight M2M to rule them ALL ?”, Eclipse Day, Florence

2014
■  Paolo Patierno, “Smart Home & Smart Factory systems: MQTT & IoT comparison,” Microsoft Embedded Conference, Feb 2014
■  Paolo Patierno, “IoT protocols landscape,” 2014
■  Vidhya Gholkar, “An Introduction to IoT Protocols,” O’Reilly Open Source Convention, July 2014.
■  Hauke Petersen, “Application Layer Protocols and Data Encoding for Constrained Devices,” W3C Web of Things Workshop,

Jun 2014
■  Peter Egli, “Introduction to MQTT (MQ Telemetry Transport), A Protocol for M2M and IoT Applications,” 2015

The copyright of the adapted slides belong to the original owner of the material
and are hereby acknowledged.

Figures on slides with book symbol from 6LoWPAN: The Wireless Embedded Internet, Shelby & Bormann, ISBN:
978-0-470-74799-5, (c) 2009 John Wiley & Sons Ltd

This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a

letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA

3

IoT: Not a new Idea

■  IoT: Things around us become smart and connected
◆  This has been going on for decades
◆  By 2010, # of Connected Things > World Population (6.8 Billion)

4

Accelerating Development of IoT

5

Accelerating Development of IoT

6

IoT System-on-Chip (SoC) Platform Evolution

7

IoT Ecosystem Evolution

8

> 120 relevant IoT/ M2M Standards  
and counting…

9

A Glimpse of some IoT Standards

10

A Glimpse of some IoT Standards

11

Constrained Networks for IoT

12

Wish List for IoT Consumer/Residential  
Low-bandwidth Networks

■  Mesh-based Architecture for Consumer/ Residential IoT applications
 Why ?

◆  Whole-home coverage
◆  Enable very-low power radios
◆  Coverage increases as Devices are added

■  “Open-standard” Protocol
■  IP-based (IPv6)

◆  Allow End-to-end addressable architecture
■  Low Power (sub-10 mW roadmap)

◆  e.g. Typical Power consumption of IEEE 802.15.4 ~ 1% of WiFi ;
Sleep 99% of the time

■  Resilient
◆  No Single-Point-of-Failure

■  Multi-vendor silicon
■  Multi-vendor interoperability
■  Secure, Consumer-Friendly, Easy to Install

13

Current/ Emerging Options for  
IoT Networks

■  WiFi (upcoming IEEE 802.11ah expected to be completed by mid 2016)
■  ZigBee Pro
■  Z-Wave
■  Insteon
■  Bluetooth / Bluetooth Low Energy (BLE)
■  5G/ LTE M2M
■  Thread - yet another IoT-related standards consortium formed in mid

2014
and others …

One of the Emerging  
Internet/Web Protocol Stacks for IoT Networks

Application Software

IPSO Objects

OMA LWM2M

IETF CoAP HTTP

IETF
6LowPAN IPV4/IPV6

MCU – 16KB
RAM MPU

IEEE
802.15.4 WiFi, Ethernet

Hardware

HW Network

Routing

Application Protocol

API and Services

Data Models

Application

15

Why taking the Internet + Web approach  
to the Network Edge for IoT ?

■  Expect to have “Web-scale” growth for IoT by including Constrained
Networks and Devices

■  Give every device a Unique address
◆  IPv6 is IoT-friendly* thanks to its support of:

✦  Huge address space, Auto-configuration, Secure, Mobile, Globally
unique end-to-end routing

◆  Legacy IPv4 via tunneling
■  Enable Web-scale Software/Application/Service development

◆  Client/ Server computing paradigm with 100% end-to-end reach
◆  Use Web-scale, e.g. W3C Standards, Design Patterns and Tools
◆  RESTful, Application/Media-Independent
◆  Device and Resource Discovery ; Automated Provisioning

16

BUT… Can Internet and Web protocols scale down
to Constrained IoT networks ?

17

Internet and Web protocols for  
Constrained IoT networks ?

18

Deploying Constrained Internet / Web protocols for
IoT: Little Data to Big Data

 Layer-by-layer Overview of  
an Emerging IoT Stack

Application Software

IPSO Objects

OMA LWM2M

IETF CoAP HTTP

IETF
6LowPAN IPV4/IPV6

MCU – 16KB
RAM MPU

IEEE
802.15.4 WiFi, Ethernet

Hardware

HW Network

Routing

Application Protocol

API and Services

Data Models

Application

20

Wireless Links for IoT

21

Positioning of  
Different Wireless Link Technologies

Range

Pe
ak

 D
at

a
R

at
e

Closer Farther

Sl
ow

er

Fa
st

er

UWB
Wireless Data
Applications

Sources: WRH + Co

Wireless Video
Applications

IrDA

802.11g

802.11b

802.11a

2.5G/3G/4G

Bluetooth™

ZigBee™

Wireless
Sensors

Wireless
Networking

Wi-Fi®

22

IEEE 802.* Wireless Link Standards

23

IEEE 802.* Standards and their Application Focus
■  802.11* (WiFi): Wireless Ethernet

◆  802.11b:
✦  Adequate for highly-compressed video. Non-isochronous MAC requires buffering,

network congestion interrupts. Rapidly increasing adoption by IT staff including
use in factories & even hospitals. Very long range pt-2-pt links (Wi-Bridges) using
outdoor high-gain antennas.

◆  802.11a:
✦  Up to 5x rate @ 5.2/5.7 GHz, typically shorter range in practice.

◆  802.11g:
✦  11b vendors competing with 11a data rate at 2.4 GHz.

◆  802.11n:
✦  High-throughput extension using MIMO, used in AppleTV etc.

■  802.15.1 (Bluetooth): Short Range Streaming Data & Voice
◆  Isochronous support for a range of devices, PC peripherals & headsets.

■  802.15.3 (WiMedia): Streaming Multimedia, Consumer electronics, multiple HDTV
channels ; (e.g. may be relevant to Video Surveillance)
◆  802.15.3a: Task group developing alt. UWB PHY, 100-480 Mbps @ 3.1-10.6 GHz ;

Players include Intel, Motorola, etc
◆  802.15.3c: 1Gbps range at Microwave frequency ; overlap with 802.11VHT ?

■  802.15.4: Sensor Networks, Home/Industrial Automation, Toys.
◆  Low Duty Cycle, Long Battery Life, Highly Scalable Networks

24

Other Related Standards
■  IEEE P1451

◆  Industrial Control applications to support both Monitoring and Actuation
using
✦  Smart (Networked) Transducers (i.e. Sensors) and Actuators
✦  Network Capable Application Processors (NCAP)
✦  Transducer Electronic Data Sheet (TEDS) to realize Self-describing

“smart” transducers (Sensors)/actuators
◆  Overlap is likely between IEEE P1451.5, ZigBee and Bluetooth which have

already defined their full 7-layer protocol stack
■  RFIDs are another important class of sensors

◆  EPCglobal network Standards: Electronic Product Code (EPC): for RFID
applications (www.epcglobalinc.org)
✦  Different Classes of RFID tags

•  Passive tags derive energy from RF radiation from Readers
•  Active tags has their own battery ; may carry sensors on-board.

✦  EPC network components
•  Infrastructure including Readers, Middleware

✦  So far not using multi-hop relay between tags yet

25

Wireless Personal Area Network (WPAN) Standards
for IoT

■  IEEE 802.15.* Wireless Personal Area Network (WPAN) Standards:
◆  802.15.1 (Bluetooth) (go beyond PHY/MAC)
◆  802.15.3 (UWB=UltraWideband, WiMedia, Wireless USB)

◆  802.15.4: PHY/MAC layer for ZigBee, ISA100.11a, WirelessHART and MiWi
✦  Each of the latter specifies additional upper layers for 802.15.4
✦  e.g. ZigBee Alliance: Sensor Networking Standard

•  ZigBee also cover Networking layer, Application Framework layer
•  use IEEE 802.15.4 as physical (PHY) and MAC/ data-link layers

26

IEEE 802.15.4 WPAN Standard

27

IEEE 802.15.4 Basics
■  Simple packet data protocol for lightweight wireless networks

◆  First released in May 2003
◆  Channel Access is via Carrier Sense Multiple Access with collision

avoidance and optional time slotting
◆  Message acknowledgement and an optional beacon structure
◆  Multi-level security
◆  Works well for

✦  Long battery life, selectable latency for controllers, sensors, remote
monitoring and portable electronics

◆  Configured for maximum battery life, has the potential to last as long as the
shelf life of most batteries

28

IEEE 802.15.4 Standards
■  802.15.4-2003

◆  Original version using Direct Sequence Spread Spectrum (DSSS) with
data transfer rates of 20-40 kbps

■  802.15.4-2006
◆  Revised version using DSSS with higher data rates and adding

Parallel Sequence Spread Spectrum (PSSS)
✦  PSSS uses CDMA-principle to send in parallel a superposition of

orthogonal sequences with M-ary modulation
◆  Up to 250 kbps at a range of 10m

■  802.15.4a-2007
◆  Adding Direct Sequence Ultra-wideband (UWB) and Chirp Spread

Spectrum (CSS) physical layers to the 2006 version of the standard
with ranging support

◆ 

29

Radio Characteristics of IEEE 802.15.4

30

IEEE 802.15.4 Device Classes and Terminologies
■  Full Function Device (FFD)

◆  Any topology
◆  PAN coordinator capable
◆  Talks to any other device
◆  Implements complete protocol set

■  Reduced Function Device (RFD)
◆  Reduced protocol set
◆  Very simple implementation
◆  Cannot become a PAN coordinator
◆  Limited to act as a leaf in more complex topologies
◆  Expected to sleep most of the time to conserve energy

■  Network Device
◆  An RFD or FFD implementation containing an IEEE802.15.4 MAC and PHY

interface to the wireless medium
■  Coordinator

◆  An FFD with Network Device functionality that provides coordination and other
services to the network

■  PAN Coordinator
◆  A Coordinator that is the principal controller of the PAN. Each network has

exactly ONE PAN coordinator

31

IEEE 802.15.4 Topologies
■  Star Topology

◆  All nodes communicate via the central PAN
Coordinator

◆  Leafs may be any combination of FFD or RFD
◆  PAN coordinator is usually having a reliable

power source

■  Peer-to-Peer Topology
◆  Extension of the pure star topology
◆  Nodes can communicate via the central PAN

Coordinator and via additional point-to-point
links

■  Cluster Tree Topology
◆  Leafs connect to the network of Coordinators

(FFDs)
◆  One of the coordinators serves as the PAN

Coordinator
◆  Clustered star topologies are an important

case, e.g. each hotel room forms a star in a
HVAC system

32

Network Topology Models

PAN Coordinator (PANC)

Full Function Device (FFD,Router)

Reduced Function Device (RFD)

Star

Mesh

Cluster Tree

33

IEEE 802.15.4 Network Model

End Device (RFD or FFD)

Router (FFD)

PAN Coordinator (FFD)

Mesh Link

■  Star networks support a single (PAN) Coordinator with
one or more End Devices (up to 65,536 in theory)

■  Mesh network routing permits path formation from any
source device to any destination device

34

Network Pieces –PAN Coordinator

■  PAN Coordinator
◆  “owns” the network

✦  Starts it
✦  Allows other devices to

join it
✦  Provides binding and

address-table services
✦  Saves messages until

they can be delivered
✦  And more… could also

have i/o capability
◆  A “full-function device” – FFD
◆  Mains powered

35

Network Pieces - Router

■  Router
◆  Routes messages
◆  Does not own or start network

✦  Scans to find a network to
join

•  Given a block of
addresses to assign

◆  A “full-function device” – FFD
◆  Mains powered depending on

topology
◆  Could also have i/o capability

36

Network Pieces – End Device
■  End Device

◆  Communicates with a
single device

◆  Does not own or start
network
✦  Scans to find a network

to join

◆  Can be an FFD or RFD
(reduced function device)

◆  Usually battery powered

37

IEEE 802.15.4 Frame Formats

■  IEEE 64-bit extended addresses
■  16-bit “short” addresses (unique within a PAN)
■  Optional 16-bit source/destination PAN identifiers
■  Max. frame size = 127 octets ; Max. frame headers = 25 octets

38

IEEE 802.15.4 Frame Formats (cont’d)

■  Beacon Frames
◆  Broadcasted by the Coordinator to organize the network

■  Command Frames
◆  Used for Association, Disassociation, Data and Beacon Requests,

Conflict Notification

■  Data Frames
◆  Carrying User Data

■  Acknowledgement Frames
◆  Acknowledges successful Data Transmission (if requested)

39

IEEE 802.15.4 MAC

■  Carrier Sense Multiple Access / Collision Avoidance
◆  First wait until the Channel is Idle
◆  Once the Channel is free, start sending the data frame after some

random backoff interval
◆  Receiver acknowledges the correct reception of a data frame
◆  If the sender does not receive an acknowledgement, retry the data

transmission

■  Unslotted Mode:
◆  Node -> PAN ; Node -> Node

✦  The sender uses CSMA/CA and the receiver sends an ACK if
requested by the sender

✦  Receiver needs to listen continuously and CANNOT sleep

◆  PAN -> Node
✦  The receiver polls the PAN whether data is available
✦  The PAN sends an ACK followed by a Data Frame
✦  Receiving nodes sends an ACK if requested by the sender
✦  Coordinator needs to listen continuously and CANNOT sleep

40

IEEE 802.15.4 MAC Slotted Mode

■  A superframe consists of 3 periods:

1.  During the Contention-Access-Period (CAP), the channel can be
accessed using normal CSMA/CD

2.  The Contention-Free-Period (CFP) has Guaranteed Time Slots (GTS)
assigned by the PAN to each node

3.  During the Inactive-Period (IP), the channel is not used and all nodes
including the Coordinator can sleep

■  The PAN delimits superfames using Beacons

41

IEEE 802.15.4 Security Services

■  Key Management must be provided by Higher Layers

■  Implementations must support AES-CCM-64 and Null

42

802.15.4 Radio Example from Freescale

■  Key Features
◆  IEEE® 802.15.4 Compliant

✦  2.4GHz
✦  16 selectable channels
✦  250Kbps Data Rate
✦  250Kbps 0-QPSK DSSS

◆  Multiple Power Saving Modes
✦  Hibernate 2.3uA
✦  Doze 35uA
✦  Idle 500uA

◆  RF Data Modem
◆  Up to 7 GPIO
◆  SPI Interface to Micro
◆  Internal Timer comparators

(reduce MCU resources)
◆  -16.6dBm to +3.6dBm output

power
✦  Software selectable
✦  On-chip regulator

◆  Up to -92dB Rx sensitivity at
1% PER

◆  2V to 3.4 operating voltage
◆  -40˚C to +85˚C operating

temperature
◆  Low external component count

✦  Requires single 16Mhz crystal
◆  5mmx5mm QFN-32

✦  Lead-Free

Power
Management

MC13191/2/3

Analog
Receiver

Internal
Clock

Generator

8-ch
10-Bit
ADC

BDM HCS08 CPU

2xSCI

4-ch 16-bit
Timer

Flash
Memory

RAM

COP

IIC

Up to
36 GPIO

SPI

LVI

MC9S08GT Family

Sensors

MMA Series
Accelerometers

MPX Series

Pressure Sensors

MC Series
Ion and

Smoke Photo
Sensors

Voltage
Regulators

Frequency
Generator

Analog
Transmitter

D
ig

ita
l T

ra
ns

ce
iv

er
 GPIO

SPI

Timers

IRQ
Arbiter RAM Arbiter

Buffer RAM

Control
Logic

43

Reading List for IEEE 802.15.4

44

Recall: Some Mainstream IoT Standard Protocol
Stacks

45

IPv6 over IEEE 802.15.4 (6LoWPAN)

46

Motivation/Benefits of IPv6 over 802.15.4

■  Let IoT leverage pervasive nature of IP networks
■  Open and Freely Available Specifications vs. Proprietary Solutions (i.e.

ZigBee)
■  Tools for Diagnostics, Management for IP networks already exist
■  IP-based devices can be connected readily to other IP-based networks

without the need for intermediate entities like Translation Gateways or
Proxies (as in the case of the ZigBee approach – at least before ZigBee
IP was introduced)

■  Due to the expected huge volume of IoT devices, IPv6 is a MUST

47

6LoWPAN (RFC4919): An Adaptation Layer
(Layer 2.5)

48

6LoWPAN Adaptation Needs

■  IPv6 MTU (1280 octets) >> 802.15.4 MTU (127 octets)
■  48+ bytes UDP+IPv6 Header => Need Header Compression

49

Challenges for 6LoWPAN

High per-packet IPv6/UDP overhead
■  40-octet IPv6 header and 8-octet UDP header
■  802.15.4 MAC header can be up to 25 octets (Null security)

or 25+21 = 46 octets (AES-CCM-128)
■  With the 802.15.4 frame size of 127 octets, we ONLY have:

◆  127-25-40-8 = 54 octets (Null security) or
◆  127-46-40-8 = 33 octets (AES-CCM-128)
of space per packet left for payload, i.e. application data

=> IPv6/UDP Header Compression is needed

IPv6 MTU Requirements
■  IPv6 requires that links support a Min. MTU of 1280 octets
 >> MTU of 802.15.4
■  Link-layer fragmentation / Reassembly is needed

50

Overview of 6LowPAN (RFC4944,6282)

■  6LoWPAN protocol is an adaptation layer allowing to transport
IPv6 packets over 802.15.4 networks

■  Uses 802.15.4 in Unslotted CSMA/CA mode
◆  Strongly suggests Beacons for Link-layer Device Discovery

■  Based on IEEE standard 802.15.4-2003/2006
■  Fragmentation / Reassembly of IPv6 packets
■  Mostly Stateless Compression of IPv6 and UDP/ICMP

headers
■  Mesh Routing Support (mesh under the multi-hop Layer 2

802.15.4 networks)

51

6LoWPAN Dispatch Codes
■  All 6LowPAN encapsulated datagrams are prefixed by an

encapsulation header stack
■  Each header in the stack starts with a header type field

followed by zero or more header fields
◆  Similar to IPv6 “Next-Header” chaining approach

52

6LowPAN Frame Formats

■  This shows the max. compression achievable for link-local addresses ;
Does not work for Global addresses

■  Any non-compressable header fields are carried after HC1 or HC1/HC2
tags (partial compression)

53

6LoWPAN Fragmentation/Reassembly

54

6LoWPAN Fragmentation/Reassembly

■  dgram_size: Size of datagram in bytes
◆  Included in all fragments to simplify buffer allocation

■  dgram_tag: Identifies all fragments of a datagram
■  dgram_offset: Location of fragments in 8-byte units

◆  Omitted in the 1st fragment

55

6LoWPAN Header Compression

■  Omit any header field that can be calculated from the context, send the
remaining fields unmodified

■  Nodes do not need to (or only maintain very little) compression state (i.e.
stateless compression)

■  Support (almost) arbitrary combinations of compressed/ uncompressed
header fields.

■  Common values for IPv6 header fields:
◆  Version is always 6
◆  Traffic Class and Flow Label are all zeros
◆  Payload Length always derived from Layer 2 header
◆  Source and Destination Address are link-local ones and derived from

L2 addresses

56

6LoWPAN Header Compression for
IPv6 Unicast Address

■  Prefix
◆  Addresses within 6LoWPAN typically contain common prefix
◆  Nodes typically communicate with one or few central devices
◆  Establish State (i.e. Context) for such prefixes

✦  This is the ONLY State Maintenance
✦  Support up to 16 contexts

■  Interface Identifier
◆  Typically derived from Layer 2 address during IPv6 address auto-

configuration
◆  Omit when Interface Identifier can be derived from L2 address

57

6LoWPAN Header Compression for
IPv6 Unicast Address

■  Source/Destination Address Mode (SAM/DAM)

58

6LoWPAN Header Compression for
Prefix of IPv6 Unicast Address

Compression for Link-local or Global IPv6 Prefixes:

■  Stateless Mode (SAC/DAC=0)
◆  Prefix is link-local (FE80::/10)

■  Context-based Mode (SAC/DAC=1)
◆  Prefix taken from stored contexts (Up to 16 contexts)
◆  CID = 0, use ContextID = 0
◆  CID = 1, include 4-bit ContextID for source and destination

59

6LoWPAN Header Compression
■  Each compressed header indicates if the next header is also

compressed
■  Following control byte(s) include next header identifier
=> Provide a framework for defining arbitrary Next Header
compression methods

60

Example: 6LoWPAN Header Compression
for Link-Local Unicast Packet

61

Example: 6LoWPAN Header Compression
for Global Unicast Packet

62

Example: 6LoWPAN Header Compression
for Link-Local Multicast Packet

63

Additional Link-Layers (other than 802.15.4) for
6LoWPAN

■  Sub-GHz Industrial, Scientific and Medical band radios
◆  Typically 10-50 kbps data rates, longer range than 2.4 GHz
◆  Usually use CSMA-style medium access control
◆  Example: CC1110 from Texas Instruments

■  Power-Line Communications
◆  Some PLC solutions behave like an 802.15.4 channel
◆  Example: A technology from Watteco provides an 802.15.4

emulation mode, allowing the use of 6LoWPAN

■  Z-Wave
◆  A home-automation low-power radio technology

64

Architecture with 6LoWPAN Networks

65

6LoWPAN Architecture

■  LoWPANs are stub networks
■  Simple LoWPAN

◆  Single Edge Router
■  Extended LoWPAN

◆  Multiple Edge Routers with common backbone link
■  Ad-hoc LoWPAN

◆  No route outside the LoWPAN
■  Internet Integration issues

◆  Maximum transmission unit
◆  Application protocols
◆  IPv4 interconnectivity
◆  Firewalls and NATs
◆  Security

IPv6-LoWPAN Router Stack

66

6LoWPAN Addressing Example

67

6LoWPAN Setup & Operation
■  Auto-configuration is important in embedded networks
■  In order for a 6LoWPAN network to start functioning:

◆  1. Link-layer connectivity between nodes
(commissioning)

◆  2. Network layer address configuration, discovery of
neighbors, registrations (bootstrapping)

◆  3. Routing algorithm sets up paths (route initialization)
◆  4. Continuous maintenance of 1-3

68

Link-layer Commissioning
■  In order for nodes to communicate with each other, they need to

have compatible physical and link-layer settings.
■  Example IEEE 802.15.4 settings:

◆  Channel, modulation, data-rate (Channels 11-26 at 2.4 GHz)
✦  Usually a default channel is used, and channels are scanned

to find a router for use by Neighbor Discovery
◆  Addressing mode (64-bit or 16-bit)

✦  Typically 64-bit is a default, and 16-bit used if address
available

◆  MAC mode (beaconless or super-frame)
✦  Beaconless mode is easiest for commissioning (no settings

needed)
◆  Security (on or off, encryption key)

✦  In order to perform secure commissioning a default key
should already be installed in the nodes

69

Neighbor Discovery (ND) in 6LoWPAN
■  IPv6 Neighbor Discovery (RFC4862) defines:

◆  How hosts discover Routers and Prefixes
◆  How nodes resolve L2 addresses from IP addresses
◆  How nodes perform unreachability detection

■  But ND was originally designed for
◆  LAN (e.g. Ethernet) connected interfaces
◆  Always-on equipment such as PCs

■  6LoWPAN has unique requirements:
◆  Need to support BOTH single-hop mesh and multi-hop IP

routed networks
◆  Lossy and Asymmetric radio environment
◆  Frequent multicast traffic is expensive (energy-wise)
◆  Address resolution is not required
◆  Unique EUI-64 addresses
◆  Hosts may be sleeping to preserve energy

70

6LoWPAN Neighbor Discovery Call-Flow

Prefix Dissemination
■  In normal IPv6 networks RAs are sent to a link based

on the information (prefix etc.) configured for that
router interface

■  In ND for 6LoWPAN RAs are also used to
automatically disseminate router information across
multiple hops

6LoWPAN Routing

■  Here we consider IP routing (at Layer 3)
■  Routing in a LoWPAN

◆  Single-interface routing
◆  Flat address space (exact-match)
◆  Stub network (no transit routing)

73

Routing Protocols for 6LoWPAN
■  IP is agnostic to the routing protocol used

◆  It forwards based on route table entries
■  Thus 6LoWPAN is routing protocol agnostic
■  Special consideration for routing over LoWPANs

◆  Single interface routing, flat topology
◆  Low-power and Lossy wireless technologies
◆  Specific data flows for embedded applications

■  MANET protocols useful in some ad-hoc cases
◆  e.g. AODV, DYMO

■  New IETF Working Group formed
◆  Routing over low-power and lossy networks

(ROLL)
◆  Developed specifically for embedded applications

74

IETF ROLL Working Group (WG)
■  Routing Over Low power and Lossy networks (ROLL)

◆  Working group at the IETF
■  Standardizing a routing algorithm for embedded apps
■  Application specific requirements

◆  Home automation
◆  Commercial building automation
◆  Industrial automation
◆  Urban environments

■  Analyzed all existing protocols
■  Solution must work over IPv6 and 6LoWPAN
■  The work results in RFC6550-6553: RPL (pronounced as

“Ripple”)

75

RPL from IETF ROLL
RPL (pronounced as “Ripple”) RFC6550-6553:

■  Proactive Distance-Vector approach

■  Approach is to build a Colored Destination-Oriented
Directed Acyclic Graph (DODAG) comprised of 6LoWPAN
routers to a Border Router (DODAG root)
◆  Data flow implicitly to the Root
◆  Use DAG instead of Trees for route redundancy/

resiliency
◆  Multiple logical (colored) DAGs can co-exist in/ share

the same physical network => Even more choices of
paths for Traffic Engineering

76

IETF ROLL RPL “Ripple”

Recall: One of the IoT Standards “Stack”

Application Software

IPSO Objects

OMA LWM2M

CoAP HTTP

6LoWPAN IPV4/IPV6

MCU – 16KiB
RAM MPU

802.15.4 WiFi, Ethernet

Hardware

HW Network

Routing

Application Protocol

API and Services

Data Models

Application

78

CoAP, OMA LWM2M, and IPSO Smart Objects

Service and Application level
Interoperability for IoT

CoAP-> OMA LWM2M->IPSO

The Constrained Application Protocol  
(CoAP)

Constrained Environment and Device Classes
Constrained Environment:
■  Low Cost
■  Limited Processing
■  Battery to last many years
■  Varying Network Availability
■  Often Low Data Rate
e.g. 10KB RAM, 100KB Flash, 40MHz MCU

CoAP Design Requirements

CoAP Architecture

The RESTful design for Web Applications 
REST: Representational State Transfer

It is the HTTP Client-Server programming style:
■  W3C Technical Architecture Group – It’s how the Web works
■  Roy Fielding’s UC Irvine dissertation, 2000
■  Simple Methods:

◆  Get, Put, Post, Delete (and a few others)

Key Concepts
■  Resources – Anything that can be named

◆  Transparent connections – Applications just need the URI
■  Interfaces – Simple basic Client-Server communications

◆  Nothing App-specific: It’s just Get, Put, Post, Delete, etc
■  Representational – Current or Intended state of the Resource

◆  Standard formats: HTML, JSON, EXI (Efficient XML Interchange), XML
■  Hypermedia-driven Applications

◆  REST applications can discover how to interact with Resources

REST for IoT: CoAP

CoAP vs. HTTP

CoAP Feature Highlights

■  Embedded web transfer protocol (coap://)
■  Support both Synchronous and Asynchronous Transaction models
■  UDP binding with reliability and multicast support
■  GET, POST, PUT, DELETE methods
■  URI support
■  Small, simple 4-byte binary header
■  DTLS-based PSK, Public key and Certificate security
■  Subset of MIME types and HTTP response codes
■  Built-in Discovery
■  Optional Observation and Block Transfer support

The Transaction model for CoAP

■  Transport
◆  UDP binding with DTLS security
◆  CoAP over SMS or TCP possible

■  Base Messaging
◆  Simple message exchange between

endpoints
◆  Confirmable or Non-Confirmable Messages
◆  Acknowledgement or Reset Message

■  REST Semantics
◆  REST Request/Response piggybacked on

CoAP Messages
◆  Method, Response Code and Options (URI,

content-type, etc)

CoAP Message

CoAP Protocol

§  Makes each IoT device a
lightweight server that exposes
a REST API

§  A CoAP endpoint can be both
client and server

§  Roles can be reversed and the
sensor, as a client, can also
interact with a REST API at
another endpoint or server
node

§  Peer to Peer interaction is
based on a duplex client-
server pattern

CoAP URI

CoAP Request/ Response

CoAP Dealing with Packet Loss

CoAP Separate Response

CoAP Proxy and Caching

CoAP Caching Support

CoAP includes a simple caching model
◆  Cacheability determined by response code
◆  An option number mask determines if it is a cache key

■  Freshness model
◆  Max-Age option indicates Cache Lifetime

■  Validation model
◆  Validty checked using the Etag Option

■  A Proxy often supports caching
◆  Usually on behalf of a constrained node, or
◆  A Sleeping node, or
◆  To reduce network load

Support of “Observation” mode

Support of Block Transfer

CoAP Resource Discovery

•  RFC 6690 CoRE Link Format defines
–  The link format media type
–  Peer-to-peer discovery

•  A Directory approach is also useful
–  Supports sleeping nodes
–  No multicast traffic, longer battery life
–  Remote lookup, hierarchical and federated

distribution

•  CoRE Link Format is used in
Resource Directories

–  Nodes register their resource links to an
RD

–  Nodes refresh the RD periodically
–  Nodes may unregister (remove) their RD

entry

Application

GET /rd-lookup/ep </nodea/sensor/temp>
</nodeb/actuator/led>

CoAP Resource Discovery

Application

GET /rd-lookup/ep </nodea/sensor/temp>
</nodeb/actuator/led>

Resource Discovery Example Flow

core.rd
service

REGISTRATION
POST /rd?ep=“235598376”<=19999
</3303/0/5700>;rt=“urn:X-ipso:temp-C”

Endpoint

2.01 Created Location:/rd/235598376

DISCOVERY
GET /rd-lookup?ep&rt=“urn:X-ipso:temp-C”

2.05 Content
</235598376/3303/0/5700>;rt=“urn:X-ipso:temp-C”

Endpoint

Realization/ Implementation of CoAP in Practice

■  Many Open Source Implementation available:
◆  Java CoAP Library Californium
◆  C CoAP Library Erbium
◆  libCoAP C Library
◆  jCoAP Java Library
◆  OpenCoAP C Library
◆  UCB TinyOS and Contiki include CoAP support

■  Some commercial products/ systems:
◆  Sensinode NanoService (acquired by ARM in 2013)
◆  RTX 4100 WiFi module

■  Firefox has a CoAP plugin called Copper
■  Wireshark has CoAP dissector support

Alternatives to CoAP ?

Standardization Activities

■  HTTP
◆  IETF standard (RFC 2616 is HTTP/1.1)

■  CoAP
◆  IETF standard (RFC 7252), June 2014

■  Message Queuing Telemetry Transport (MQTT)
◆  MQTT v3.1.1, OASIS standard, Nov. 2014

■  Advanced Message Queuing Protocol (AMQP)
◆  AMQP v1.0, OASIS and ISO 19464 standard, Oct 2012

MQTT Overview
■  Background

◆  Previously Message Queuing Telemetry Transport
✦  Created by IBM & Eurotech

◆  Now: MQ Telemetry Transport … no Queue
✦  Donated to Eclipse Foundation and OASIS standard

■  Key Features
◆  Lightweight – smallest packet size = 2 bytes (header)
◆  TCP-based – socket connection oriented

✦  Use SSL/TLS to encrypt payload
◆  Reliable

✦  Three QoS levels: “At Most Once”, “At Least Once”, “Exactly Once”
✦  Avoid packet loss on Client disconnection

◆  Publish/ Subscribe model – Decouple Producers and Consumers
◆  Payload Agnostic:

✦  No data types
✦  No metadata
✦  Any data format (Text, Binary, JSON, XML, BSON, ProtoBuf, etc)

MQTT Publish/Subscribe model
■  Broker and Connected Clients

◆  Broker receives subscriptions from Clients on Topics
◆  Broker receives messages and forward them
◆  Clients subscrbe/ publish on Topics

MQTT Hierarchical Topics
■  Topics for Publish and Subscribe

◆  Hierarchical
◆  Supporting Wildcards (# and +)

✦  e.g., building1/+/room1, building1/floor1/room1/#

MQTT Quality of Service (QoS)

QoS 0: “At Most Once” (Fire and Forget)

QoS 1: “At Least Once” QoS 2: “Exactly Once”

MQTT Additional Key Features
■  Keep-Alive message

◆  PINGREQ/PINGRESP message
◆  Broker can detect Client Disconnection

■  Will & Testament
◆  Make a “Will” message with QoS and Topic on connection
◆  Broker sends on unexpected Client disconnection

■  Retain message
◆  Published message is kept on the Broker ;
◆  A new subscriber on Topic receives the “last known” good message

■  Clean session
◆  On Client Disconnection, all subscriptions are kept
◆  No need to re-subscribe on client re-connection
◆  Receive all messages published during Offline

 Advanced Message Queuing Protocol (AMQP) 

■  Also follows the Publish-Subscribe model
■  An Exchange module to receive messages and apply routing
■  Support Binding to define rules to bind exchange to Queue
■  Queue for storing messages
■  Binary connection-oriented
■  Support credit-based Flow Control
■  SSL/TLS and SASL for security
■  Heavier weight than MQTT: Packet Size ~ 60 bytes

 Sample Deployment Scenario for MQTT/AMQP

IoT protocols Trend

The Need of Standard Web Object Definition for  
Service/Device Interoperability

Device Management (DM) for IoT  
via  

The Open Mobile Alliance Light-Weight Machine-to-Machine Protocol  
(OMA LWM2M)

Light Weight Device Management

OMA LWM2M Reference Architecture
§  Web (M2M) Applications

§  Application abstraction through
HTTP/RESTful API

§  Resource Discovery and Linking

§  LWM2M Clients are Devices
§  Device abstraction through CoAP
§  LWM2M Clients are CoAP

Servers
§  Any IP network connection

§  LWM2M Server
§  CoAP Protocol
§  Supports HTTP Caching

Proxy
§  Resource Directory
§  Gateway and Cloud

deployable OMA Protocol Stack for DM

LWM2M DM Deployment Scenario

LWM2M Interfaces
•  Bootstrap Interface

–  Configure Servers & Keying
–  Pre-Configured, Smart Card, or

Server Initiated Bootstrap
–  CoAP REST API

•  Registration Interface
–  RFC6690 and Resource

Directory

•  Management Interface Using
Objects

–  Management Objects and
Resources

–  CoAP REST API

•  Reporting Interface
–  Object Instances and

Resources Report
–  Asynchronous notification

using CoAP Observe

LWM2M Interface Call-Flow

LWM2M Object Model
•  A Client has one or more Object

Instances
•  An Object is a collection of Resources
•  A Resource is an atomic piece of

information that can be
–  Read, Written or Executed

•  Objects can have multiple instances
•  Objects and Resources are identified

by a 16-bit Integer, Instances by an 8-
bit Integer

•  Objects/Resources are accessed with
simple URIs:
 /{Object ID}/{Object Instance}/
{Resource ID}

 Example:
 /3/0/1 - Object Type=3 (Device),
Instance=0, Resource Type = 1
(Device Mfg.)

LWM2M Management Objects

Object Object ID

LWM2M Security 0

LWM2M Server 1

Access Control 2

Device 3

Connectivity Monitoring 4

Firmware 5

Location 6

Connectivity Statistics 7

LWM2M Position Object Example, OMA
Template

LWM2M Registration

LWM2M Object Access

LWM2M Notification

LWM2M Bootstrapping

LWM2M Queue Mode (Sleeping Devices)

LWM2M Application Server

Web
App

LWM2M
Server

Soft Endpoints

IP
Device

IP
Device

LWM2M Clients

/3303/0/5700

/domain/endpoints/3303/0/5700

LWM2M Application Server

Web App

LWM2M
Server

IP
Device

IP
Device

LWM2M Clients

/domain/endpoints/3303/0/5700

/3303/0/5700

LWM2M Application Server

Web
App

LWM2M
Server

IP
Device

IP
Device

LWM2M Clients

1.
 N

O
TI

FY

LWM2M Supports Sleeping Endpoints “b=UQ”

■  Client uses the
registration refresh to
inform LWM2M server
that it is awake, and
listens for any queued
operations

LWM2M support Parameter Observations

■  LWM2M provides a mechanism to control Observation
■  “Write Attributes” Interface using query parameters to set observe

attributes:
◆  Pmin – minimum observation quiet period, to limit notification frequency
◆  Pmax – maximum observation quiet period, to guarantee notifications
◆  Lt – low limit measurement notification, like low alarm, in engineering units
◆  Gt – high limit measurement notification, like a high alarm, in engineering

units
◆  Step – Minimum delta change required to notify, in engineering units

LWM2M Bulk Read

■  Returns TLV or JSON
based on requested
content-format

■  Linked Objects are
supported

{“e”:[
 {"n":"0","sv":"Open Mobile Alliance"},
 {"n":"1","sv":"Lightweight M2M Client"},
 {"n":"2","sv":"345000123"},
{"n":"3","sv":"1.0"},
{"n":"6/0","v":"1"},
 {"n":"6/1","v":"5"},
 {"n":"7/0","v":"3800"},
 {"n":"7/1","v":"5000"},
 {"n":"8/0","v":"125"},
 {"n":"8/1","v":"900"},
 {"n":"9","v":"100"},
 {"n":"10","v":"15"},
 {"n":"11/0","v":"0"},
 {"n":"13","v":"1367491215"},
 {"n":"14","sv":"+02:00"},
{"n":"15","sv":"U"}]
}

IPSO Smart Objects

The Need of Standard Web Object Definition for  
Service/Device Interoperability

IPSO Web Objects

■  The IPSO Alliance promotes the Internet Protocol for Smart Objects
■  We need semantics to build Web of Things
■  Web Objects exposes the STATE and BEHAVIOR of a device
■  IPSO defines Web Object guidelines

IPSO Smart Object Example: Temperature Sensor

Object with
Internal Resources

IPSO Smart Objects Use the  
OMA LWM2M Object Model

■  REST API with a URI template
◆  Objects
◆  Object Instances
◆  Resources
◆  (Resource Instances)

■  Reusable resource and object IDs
◆  Common definitions for concepts
◆  Map to semantic terms e.g.

temperature, currentValue
◆  IDs are registered with the OMNA

■  Can be embedded in a path hierarchy
on the server
◆  /home/weather/3303/0/5700

3303/0/5700

Object ID, defines object type

Object Instance, one or more

Resource ID, defines
resource type

IPSO Smart Object Starter Pack

Ad-Hoc IPSO Smart Object Example: 
BLE Heart Rate Sensor Profile

Ad-Hoc IPSO Smart Object Example - 
A Smart Thermostat

Composite IPSO Smart Objects

IPSO Smart Object Development

■  Smart Objects are Easy to Modify and Customize
◆  Based on Consistent Design Patterns and Reusable

Resource Definitions
◆  Object Sets can be Forked and Modified
◆  Expecting Domain-Specific Object Sets to be Created by

Collaborative Vertical Working Groups
◆  New Object Sets can be Released as new Smart Object

Guidelines
◆  Objects in Released Smart Object Guidelines are

Registered with the OMA, Use Standard OMA DDF (XML)
File Format Object Descriptors

IPSO Smart Objects Future Work Examples

Linked Composite Objects
■  Gateway Management Objects – Mapping of TR-069 to REST

■  Behavioral Objects – Smart Objects to represent embedded

Timers, Sequencers, Controllers and bindings to resources

■  Mapping and Binding of Smart Objects to Zigbee Application

Clusters (OnOff Cluster Example)

■  Mapping and Binding of Smart Objects to Bluetooth

Application Profiles (Heart Monitor Example)

■  Advanced Lighting Objects

IPSO/LWM2M Uses CoRE RD Resource Links
(RFC 6690)

■  Links are uploaded during registration to inform the LWM2M server
about resources on the endpoint

■  Links are discovered using GET with content type “application/link-
format”

■  JSON representation using content type “application/link-format+json”

<4001/0/9002>;rt=“oma.lwm2m”;ct=50;obs=1

Resource Type
Content Type

Observable

Summary

Application Software

IPSO Smart Objects

OMA LWM2M

CoAP
•  REST protocol for constrained devices
•  IETF Standard (RFC 7252)
•  Uses TCP or UDP, any IP connection
•  Discovery using IP Multicast or Directory

•  Service Layer Specification
•  Device Management over CoAP
•  Object Model for DM and Applications

•  Application Level Interoperability
•  Reusable Device to Application API
•  Not tied to any specific protocol

•  Not tied to specific device or protocol
•  Any Programming Language
•  Runs on devices, gateways & services

References

•  IPSO Smart Object Guideline
http://www.ipso-alliance.org/smart-object-guidelines

•  OMA LWM2M Specification
http://openmobilealliance.hs-sites.com/lightweight-m2m-
specification-from-oma

•  IETF CoAP and Related Specifications
CoAP (RFC 7252):
http://tools.ietf.org/html/rfc7252
CoRE Link-Format (RFC 6690):
http://tools.ietf.org/html/rfc6690
CoRE Resource Directory:
http://tools.ietf.org/html/draft-ietf-core-resource-
directory-01

•  CoAP Community Site
http://coap.technology/

148

Recall: Other mainstream IoT Protocol Stacks

149

Overview of ZigBee:  
An Alternative Protocol Stack for IoT

150

ZigBee Protocol Stack

■  ZigBee
◆  Based upon the

international IEEE 802.15.4
standard for PHY/MAC

■  IEEE STD 802.15.4®

◆  Designed by Motorola,
Philips and other companies
to supply the radio and
protocol, allowing the
designer to concentrate on
the application and their
customers’ needs

PHY LAYER

MAC LAYER

NETWORK/SECURTIY
 LAYERS

APPLICATION FRAMEWORK

APPLICATION/PROFILES

IEEE

ZigBee
Alliance
Platform

Application
ZigBee Platform Stack
Silicon

ZigBee

151

The ZigBee Protocol Stack

■  ZigBee aims to address the
needs of most remote
monitoring/ control and sensor
network applications

■  Relationship between ZigBee
and IEEE 802.15.4
◆  ZigBee takes full advantage

of a powerful physical radio
specified by IEEE 802.15.4

◆  ZigBee adds logical network
(NWK), security and
application framework and
profiles

PHY LAYER

MAC LAYER

NETWORK/SECURTIY
 LAYERS

APPLICATION FRAMEWORK

APPLICATION/PROFILES

IEEE

ZigBee
Alliance
Platform

Application
ZigBee Platform Stack
Silicon

ZigBee

152

ZigBee Features
■  ZigBee is designed to be a low power, low cost, low data rate, wireless

solution.
■  ZigBee relies upon the robust IEEE 802.15.4 PHY/MAC to provide

reliable data transfer in noisy, interference-rich environments
■  ZigBee layers on top of 15.4 with Mesh Networking, Security, and

Applications control
■  ZigBee Value Propositions

◆  Addresses the unique needs of most remote monitoring and control
network applications
✦  Infrequent, low rate and small packet data

◆  Enables the broad-based deployment of wireless networks with low
cost & low power solutions
✦  Example: Lighting, security, HVAC,
✦  Supports peer-to-peer, star and mesh networks

◆  Monitor and sensor applications that need to have a battery life of
years on alkaline batteries
✦  Example – security systems, smoke alarms

153

ZigBee Wireless Markets and
Applications

BUILDING
AUTOMATION

Security, HVAC,

AMR,
Lighting Control,
Access Control

CONSUMER
ELECTRONICS

Remote Control

PERSONAL HEALTH
CARE

Patient monitoring

INDUSTRIAL
CONTROL

Asset Mgt,

Process Control,
Energy Mgt

RESIDENTIAL/
LIGHT COMMERCIAL

CONTROL

Security, HVAC,
Lighting Control,
Access Control

PC & PERIPHERALS

Mouse, Keyboard,
Joystick

154

ZigBee Feature Set
■  ZigBee V1.0

◆  Ad-hoc self forming networks
✦  Mesh, Cluster Tree and Star

◆  Logical Device Types
✦  Coordinator, Router and End Device

◆  Applications
✦  Device and Service Discovery
✦  Messaging with optional responses
✦  Home Controls Lighting Profile
✦  General mechanism to define private Profiles

◆  Security
✦  Symmetric Key with AES-128
✦  Authentication and Encryption at MAC, NWK and Application

levels
✦  Master Keys, Network Keys and Link Keys

◆  Qualification
✦  Conformance Certification (Platform and Profile)
✦  Interoperability Events

155

ZigBee Network Model

ZigBee End Device (RFD or FFD)

ZigBee Router (FFD)

ZigBee Coordinator (FFD)

Mesh Link

■  Star networks support a single ZigBee coordinator with one
or more ZigBee End Devices (up to 65,536 in theory)

■  Mesh network routing permits path formation from any
source device to any destination device

156

ZigBee Stack Architecture Basics
■  Addressing

◆  Every device has a unique 64 bit MAC address
◆  Upon association, every device receives a unique 16 bit network address

✦  A ZigBee Network DOES NOT use IP-addressing !!
◆  Only the 16 bit network address is used to route packets within the

network
◆  Devices retain their 16 bit address if they disconnect from the network,

however, if the LEAVE the network, the 16 bit address is re-assigned
◆  Network-wide (NWK), i.e. multi-hop broadcast implemented above the

MAC:
✦  Network (NWK) address 0xFFFF is the broadcast address
✦  Special algorithm in ZigBee Network Layer to propagate the

message
✦  “Best Effort” or “Guaranteed Delivery” options
✦  Radius Limited Broadcast feature

157

 How A ZigBee Network Forms

■  Devices are pre-programmed for their network function
◆  Coordinator scans to find an unused channel to start a network
◆  Router (mesh device within a network) scans to find an active

channel to join, then permits other devices to join
◆  End Device will always try to join an existing network

■  Devices discover other devices in the network providing
complementary services
◆  Service Discovery can be initiated from any device within the

network
■  Devices can be bound to other devices offering complementary

services
◆  Binding provides a command and control feature for specially

identified sets of devices

158

 Detail Steps to form a ZigBee Network

■  Network Scan
◆  Device scans the 16 channels to determine the best channel to

occupy.
■  Creating/Joining a PAN

◆  Device can create a network (coordinator) on a free channel or
join an existing network

■  Device Discovery
◆  Device queries the network to discover the identity of devices on

active channels
■  Service Discovery

◆  Device scans for supported services on devices within the
network

■  Binding
◆  Devices communicate via command/control messaging

159

Comparing ZigBee with other Technologies
(source: Freescale)

160

ZigBee Stack Evolution

■  The ZigBee stack specification is defined in a document with ZigBee
reference base 053474

■  ZigBee 2004
◆  053474r06

■  ZigBee 2006
◆  053474r13

■  ZigBee PRO (aka ZigBee 2007)
◆  Released in 2007
◆  053474r18
◆  Basis for ZigBee SE (Smart Energy) v1.0

■  ZigBee IP (under the effort of ZigBee SE v2.0)
◆  A Completely DIFFERENT Stack !!
◆  More later …

161

Why a new, different ZigBee stack ?
■  Enable to use multiple MAC/PHYs

=> Split into SE (Smart Energy) 2.0 Application Layer and Underlying
stack
◆  SE 2.0 Application Layer is Stack Agnostic as it is based on TCP

■  ZigBee IP stack is aimed at 802.15.4 networks
◆  Leveraging IETF 6loWPAN adaptation layer for IPv6 over 802.15.4

■  ZigBee is also developing guidelines for interfacing SE2.0 to
HomePlug powerline and other IEEE-based stacks, e.g. Ethernet,
802.11

802.15.4 MAC

IPv6

TCP UDP Network
Management
(ND, RPL)

6loWPAN adaptation

802.15.4 PHY

Application
Security

ZigBee SE 2.0

ZigBee
IP stack

Stack
Security

What is the ZigBee IP stack ?

■  A collection of independent standard specifications, e.g. RFCs, does
not produce a standards-based stack which is interoperable across
products from different manufacturers

■  ZigBee IP specification is a “super-specification” which
◆  Uses other standard specifications as its basis
◆  Identifies required standard specifications
◆  Clarifies modes of Operation to enhance:

✦  Interoperability and Streamlining

163

ZigBee IP stack Highlights
■  IEEE 802.15.4-2006 MAC/PHY
■  IETF RFC4944, 6282: 6LowPAN Header Compression Adaptation layer
■  IETF RF6775: 6LowPAN Neighbor Discovery
■  IPv6 Network Layer

◆  RH4 Routing Header
◆  Hop-by-hop Header RPL option

■  TCP/UDP Transport Layer
■  IETF ROLL (Routing Over Low power and Lossy links) Working Group

RPL routing protocol RFC6550
◆  Non-storing mode

■  IETF PANA (RFC5191) /EAP/EAP-TTLSv0/TLS security
◆  Public key (ECC and RSA) and PSK cipher suites

■  IETF RFC6762 Multicast DNS (mDNS) / DNS-SD Service Discovery
support

164

Outlook for IoT “Standards”
Many key players are in the running to create THE IoT Standard Architecture/Protocol
■  IPSO Alliance, founded 2008

◆  ARM, Ericsson, Atmel, Cisco, Google
■  The AllSeen Alliance, founded by Qualcomm, Cisco, Microsoft in 2011

◆  Released the AllJoyn Open-Source Software Framework with Linux Foundation since
Dec 2013, latest stable release in Dec 2016 ;

◆  Announced to merge AllJoyn with IoTivity in Oct 2016 (now Apache licensed).
■  The Industrial Internet Consortium (IIC), founded March 2014

◆  IBM, Intel, Microsoft, Cisco, AT&T
■  The Open Interconnect Consortium (OIC), announced July 2014

◆  Broadcom, Intel, Atmel, Samsung
◆  Renamed to Open Connectivity Foundation (OCF) in Feb 2016 and added Microsoft,

Qualcomm, Cisco, GE etc to its membership.
◆  Produce IoTivity –an open source reference implementation for OCF specification

■  The Thread Group, announced July 2014 to standard a secure wireless mesh protocol stack
◆  Nest Labs (Google), ARM, Freescale, Samsung
◆  Announced collaboration agreement with ZigBee Alliance, Apr 2015
◆  Released OpenThread, an open-source implementation in May 2016
◆  Thread announced a Liaison Agreement with OCF in July 2016

See: State of IoT Standards (circa Sept 2016):
https://www.cloudtp.com/doppler/state-iot-standards-2016/

