Brief summary of
TCP, UDP and QUIC

IERGS5090

Outline of today’s topic

« Review main functions of transport * More details can be found in Ross
protocol and Kerose’s PPT, Chapter 3, also

- Briefly explain Internet’s transport posted on course web site.
protocol: TCP and UDP

« How TCP and UDP are used in the
Internet

« HTTP, HTTPZ2, and QUIC

Main functions for transport protocol

« Multiplexing / de-multiplexing * Multiplexing / de-multiplexing is the
e E trol basic function supported by both
S
* Flow
. * There are different ways to do error
» Congestion control control and flow control

* Not supported in UDP, other than
providing a way to check error

« Congestion control concerns
network-wide resource allocation —
will be discussed in next lecture

* Not supported in UDP

Multiplexing / de-multiplexing

» IP delivers packets from host to host ¢ Socket interface

o Transport delivers packet(s) from a https//enW|k|ped|aorg/W|k|/

process at source node to a process Network_socket
at destination node

* When creating a socket, the process
gets a port number

e Servers can create sockets with well-
known port:
 E.g. 80 =web, 443 = SSL
* Transport delivers packet from

source (IP, port) to destination (IP,
port)

Error control

 ARQ = Automatic Repeat Request + But ARQ protocol working on one

Based on: packet at a time has poor
performance

* One round trip time per packet in
steady state, even with no error/

 Error (or loss) detection
 Receiver feedback

* Retransmission loss
» Given these ability, you can always » For high bandwidth but large RRT,
program source and destination to throughput limited by RRT

figure out if you need a
transmission to correct error (even
If sometimes you have duplicates)

Go-back-N (or sliding window)

« ARQ protocol with pipelining, « A performance issue:
allowing N packets to be in transit - When a packet is lost, all
at a time subsequent packets are

» The window of N slides forward, as retransmitted

ACKSs are received

* The windowing mechanism is also
used for flow control and
congestion control

Selective Repeat

Sender:
- Given data from application:

if next available seq # in window,
send packet

- Timeout (n)

resend packet n, restart timer
- Receive ACK(n)

If in [sendbase,sendbase+N]:

mark packet n as received

If n smallest unACKed pkt, advance
window base to next unACKed seq #

Receiver:

- packet n in [rcvbase, rcvbase+N-1]
send ACK(n)
out-of-order: buffer

in-order: deliver (also deliver
buffered, in-order packets),
advance window to next not-yet-
received packet

- packet n in [rcvbase-N,revbase-1]
ACK(n)

- otherwise:
ignore

TCP SACK

* Known as Selective Acknowledgement
option of TCP

 |tis an option, not used often

The use of TCP and UDP

« UDP used for: e TCP used for:
 DNS * File transfer (FTP)
« RIP (routing protocol) * E-mall
« SNMP (network management) Remote terminal
« Multimedia (but not any more) « HTTP/WWW (but QUIC is

proposed to use UDP)

* Most videos are either streamed _
over HTTP, or transferred as files * What is QUIC - later
 Why?

» Firewalls restrict UDP, for (a)
avoiding DDOS attacks, and (b)
using TCP for congestion control

HTTP

« Perhaps the most important Internet « Each web page typically
protocol for applications contains lots of objects (pictures,

« HTTP 1.0 (1999) is a simple protocol, ~ Video etc), sometimes up to 100

with each request-response creating objects
a separate TCP connection * The idea here is similar to the
+ HTTP 1.1 allows the TCP connection ~ PiPelining in Go-Back-N
to be shared by multiple requests « HTTP 1.1 is more efficient than
« Known as persistent connection opening multiple TCP
connections in parallel
* Furthermore, requests can be _ _
pipelined, i.e. multiple outstanding » But the results still come back in
requests sequence, can suffer head-of-

line blocking to some extent

HTTP 2.0

« HTTP 2.0 became standard in
2015, 16 years after version 1.1

« Google’s SPDY was used as a
starting point

« Google was able to experiment
because it has large user base for
browser and server

Multiplexing and concurrency: Several
requests can be sent in rapid succession
on the same TCP connection, and
responses can be received out of order -
eliminating the need for multiple
connections between the client and the
server

Stream dependencies: the client can
indicate to the server which of the
resources are more important

than the others

Header compression: HTTP header size
Is drastically reduced

Server push: The server can send
resources the client has not yet requested

QUIC — Quick UDP Internet Connection

» According to our visitor Anthony
Chan (from Huawei/US) last week,
the hot topic in IETF now is QUIC

- It is another effort from Google, to HTTP/2 Quic
make HTTP 2.0 faster HTTR/2 HTTP/2

* |t is layered on top of UDP, TLS QUIC
redesigning the way TCP’s
connection setup, multiplexing of
multiple request streams, some IP
error control based on FEC,
modified congestion control(?)

TCP

Can it pass through firewalls?

« Since HTTP/QUIC uses UDP as « Google thinks this is easier than

transport, will it have problem changing TCP
getting through firewalls? - Existing TCP and UDP are
* Preliminary trials by Google in their implemented in kernels, and will
browser-server connections have take a long time to evolve
93% success
 Reason:

« Server side under Google’s control

* Most firewalls allow UDP at client
side

Summary

« We give a brief review of transport ¢ Next lecture: congestion control
protocol functions and network resource allocation

» Reviewed the use of UDP and TCP
by internet applications

* Discussed what QUIC is — a new
transport protocol in development?

