
Brief summary of
TCP, UDP and QUIC

IERG5090

Outline of today’s topic

•  Review main functions of transport
protocol

•  Briefly explain Internet’s transport
protocol: TCP and UDP

•  How TCP and UDP are used in the
Internet

•  HTTP, HTTP2, and QUIC

•  More details can be found in Ross
and Kerose’s PPT, Chapter 3, also
posted on course web site.

Main functions for transport protocol

•  Multiplexing / de-multiplexing
•  Error control
•  Flow control
•  Congestion control

•  Multiplexing / de-multiplexing is the
basic function supported by both
UDP and TCP

•  There are different ways to do error
control and flow control

•  Not supported in UDP, other than
providing a way to check error

•  Congestion control concerns
network-wide resource allocation –
will be discussed in next lecture

•  Not supported in UDP

Multiplexing / de-multiplexing

•  IP delivers packets from host to host
•  Transport delivers packet(s) from a

process at source node to a process
at destination node

•  When creating a socket, the process
gets a port number

•  Servers can create sockets with well-
known port:

•  E.g. 80 = web, 443 = SSL
•  Transport delivers packet from

source (IP, port) to destination (IP,
port)

•  Socket interface
https://en.wikipedia.org/wiki/
Network_socket

Error control

•  ARQ = Automatic Repeat Request
Based on:

•  Error (or loss) detection
•  Receiver feedback
•  Retransmission

•  Given these ability, you can always
program source and destination to
figure out if you need a
transmission to correct error (even
if sometimes you have duplicates)

•  But ARQ protocol working on one
packet at a time has poor
performance

•  One round trip time per packet in
steady state, even with no error/
loss

•  For high bandwidth but large RRT,
throughput limited by RRT

Go-back-N (or sliding window)

•  ARQ protocol with pipelining,
allowing N packets to be in transit
at a time

•  The window of N slides forward, as
ACKs are received

•  The windowing mechanism is also
used for flow control and
congestion control

•  A performance issue:
•  When a packet is lost, all

subsequent packets are
retransmitted

Selective Repeat

Sender:
- Given data from application:
if next available seq # in window,
send packet
-  Timeout (n)
resend packet n, restart timer
-  Receive ACK(n)
If in [sendbase,sendbase+N]:
mark packet n as received
if n smallest unACKed pkt, advance
window base to next unACKed seq #

Receiver:
- packet n in [rcvbase, rcvbase+N-1]
 send ACK(n)
 out-of-order: buffer

in-order: deliver (also deliver
buffered, in-order packets),
advance window to next not-yet-
received packet

- packet n in [rcvbase-N,rcvbase-1]

 ACK(n)
- otherwise:
 ignore

TCP SACK

•  Known as Selective Acknowledgement
option of TCP

•  It is an option, not used often

The use of TCP and UDP

•  UDP used for:
•  DNS
•  RIP (routing protocol)
•  SNMP (network management)
•  Multimedia (but not any more)

•  Most videos are either streamed
over HTTP, or transferred as files

•  Why?
•  Firewalls restrict UDP, for (a)

avoiding DDOS attacks, and (b)
using TCP for congestion control

•  TCP used for:
•  File transfer (FTP)
•  E-mail
•  Remote terminal
•  HTTP/WWW (but QUIC is

proposed to use UDP)

•  What is QUIC - later

HTTP

•  Perhaps the most important Internet
protocol for applications

•  HTTP 1.0 (1999) is a simple protocol,
with each request-response creating
a separate TCP connection

•  HTTP 1.1 allows the TCP connection
to be shared by multiple requests

•  Known as persistent connection
•  Furthermore, requests can be

pipelined, i.e. multiple outstanding
requests

•  Each web page typically
contains lots of objects (pictures,
video etc), sometimes up to 100
objects

•  The idea here is similar to the
pipelining in Go-Back-N

•  HTTP 1.1 is more efficient than
opening multiple TCP
connections in parallel

•  But the results still come back in
sequence, can suffer head-of-
line blocking to some extent

HTTP 2.0

•  HTTP 2.0 became standard in
2015, 16 years after version 1.1

•  Google’s SPDY was used as a
starting point

•  Google was able to experiment
because it has large user base for
browser and server

•  Multiplexing and concurrency: Several
requests can be sent in rapid succession
on the same TCP connection, and
responses can be received out of order -
eliminating the need for multiple
connections between the client and the
server

•  Stream dependencies: the client can
indicate to the server which of the
resources are more important
than the others

•  Header compression: HTTP header size
is drastically reduced

•  Server push: The server can send
resources the client has not yet requested

QUIC – Quick UDP Internet Connection

•  According to our visitor Anthony
Chan (from Huawei/US) last week,
the hot topic in IETF now is QUIC

•  It is another effort from Google, to
make HTTP 2.0 faster

•  It is layered on top of UDP,
redesigning the way TCP’s
connection setup, multiplexing of
multiple request streams, some
error control based on FEC,
modified congestion control(?)

Can it pass through firewalls?

•  Since HTTP/QUIC uses UDP as
transport, will it have problem
getting through firewalls?

•  Preliminary trials by Google in their
browser-server connections have
93% success

•  Reason:
•  Server side under Google’s control
•  Most firewalls allow UDP at client

side

•  Google thinks this is easier than
changing TCP

•  Existing TCP and UDP are
implemented in kernels, and will
take a long time to evolve

Summary

•  We give a brief review of transport
protocol functions

•  Reviewed the use of UDP and TCP
by internet applications

•  Discussed what QUIC is – a new
transport protocol in development?

•  Next lecture: congestion control
and network resource allocation

