The Router (Packet Switch) architectures

Wing C. Lau
IERG5090 Spring 2017

Acknowledgements

- The Slides used in this lecture are mostly adapted (with permission) from a series of talks by:

Prof. Nick Mckeown and his collaborators/ graduate students from Stanford University. Prof. Jim Kurose (UMass) and Prof. Keith Ross (Polytechnic of NY)

- Prof. Isaac Keslassy of Technion

Information about netflow from Cisco and Juniper web site
Copyrights of these materials belong to the original copyright holders and their contributions are hereby acknowledged.

Outline

Background

\& What is a router?

* Why do we need faster routers?
- Why are they hard to build?

Architectures and techniques

- The evolution of router architecture.
* Packet Classification
* IP address lookup
- Packet buffering.
- Switching.

Example Switching Architectures in practice and in theory
Future Directions

What is Routing?

What is Routing?

Points of Presence (POPs)

Where High Performance Routers are Used

Current Generation of Cisco's Carrier-class Routing System (available since 2H2013)

 Cisco CRS-X

 Cisco CRS-X}

Capacity:
400 Gbps per slot ;
16 slots per Chassis
=> 6.4Tbps switching capacity per Chassis
Power Consumption in the order of 10 kw per Chassis

Architecture can interconnect upto 72 chassis together, i.e. 1152 slots in total => 460Tbps aggregated Switching capacity

Competing Product (current Gen.) from Juniper

The Juniper T4000 Core Router

Capacity:
3.84 Tbps switching capacity, and 2.4 billion packets per sec (pps)

Per HALF-RACK Chassis
240 Gbps per slot
Each T4000 supports upto

- 208 ports of 10 GbE or
- 16 ports of 40 GbE Interfaces
- 16 ports of 100 GbE Interfaces ;

Competing Product (current Gen.) from Juniper

T4000 Ports 20810 Gbps 1640 Gbps 16100 Gbps	T1600 Ports 8010 Gbps 1640 Gbps 8100 Gbps		T640 Ports 4010 Gbps 840 Gbps	
TX Matrix Plus Ports 83210 Gbps 6440 Gbps 64100 Gbps		TX Matrix Ports 160 10 Gbps 3240 Gbps		

Table 1: Juniper Networks T Series Single Chassis Scaling Characteristics

Platform	Throughput	Rack Space	10-Gigabit Ethernet Density	Fully Redundant Hardware	Multichassis Capable
T640	640 Gbps	1/2 rack (19 in)	40	Yes	Yes
T1600	1.6 Tbps	1/2 rack (19 in)	80 (line rate) 160 (oversubscribed)	Yes	Yes
T4000	4 Tbps	1/2 rack (19 in)	208 (line rate) 384 (oversubscribed)	Yes	Yes

Competing Product (current Gen.) from Juniper

Competing Product (current Gen.) from Juniper

Table 2: T Series Multichassis Configurations with the Enhanced Switch Fabric Cards

Platform	System Throughput	Rack Space	10GbE Density	Fully Redundant Hardware
(1) TX Matrix Plus with $4 \times$ T4000	16 Tbps	3 racks (1x23 in for TX Matrix Plus, 2×19 in for T4000)	832 (line rate) 1,536 (oversubscribed)	Yes
(2) TX Matrix Plus with $8 \times$ T1600	12.8 Tbps	5 racks (1×23 in for TX Matrix Plus, 4×19 in for T1600)	640 (line rate) 1,280 (oversubscribed)	Yes
3) TX Matrix Plus with $6 \times$ T1600 and $1 \times$ T4000	13.6 Tbps	4.5 racks (1×23 in for TX Matrix Plus, 3×19 in for T1600) and half rack for 1 T4000	688 (line rate) 1,344 (oversubscribed)	Yes
4. TX Matrix Plus with $4 \times \mathrm{Tl} 600$ and $2 \times$ T4000	14.4 Tbps	4 racks (1×23 in for TX Matrix Plus, 3×19 in for T1600 and T4000	736 (line rate) 1,408 (oversubscribed)	Yes
5) TX Matrix Plus with $2 \times$ T1600 and $3 \times$ T4000	15.2 Tbps	3.5 racks (1×23 in for TX Matrix Plus, 2.5×19 in for T1600 and T4000)	784 (line rate) 1,472 (oversubscribed)	Yes

Top-of-the-line (~100 Gigabit) Routers around Year 2000-2002

Cisco GSR 12416

Juniper M160

Two components of a Router

- Control Component
- Decides where the packets will go
- Use a set of routing protocols (e.g. OSPF, BGP) to collect information and produce a "forwarding table"
- "Control plane"
- Forwarding component
- Moving packets from input to output ports according to forwarding table and packet header
"Forwarding plane" to carry out

Per-packet processing in an IP Router

1. Accept packet arriving on an incoming link.
2. Packet Classification
e.g. to enable different QoS/priority treatment of different type of packets ; packet-filtering firewall
3. Lookup packet destination address in the forwarding table, to identify outgoing port(s).
4. Manipulate packet header: e.g., decrement TTL, update header checksum.
5. Send packet to the outgoing port(s).
6. Buffer packet in the queue.
7. Transmit packet onto outgoing link.

Generic Router Architecture

Generic Router Architecture

Why do we Need Faster Routers?

1. To prevent routers becoming the bottleneck in the Internet.
2. To increase POP capacity, and to reduce cost, size and power.

Earlier trends

Earlier Backbone router capacity

Cisco's own Visual Networking Index (VNI) predicts Global IP traffic to grow three-fold (300\%) from 2012 to 2017 $=>$ Still a respectable 25% growth per year

Router Performance Growth

Growth in capacity of commercial routers (1 full-rack space):

- Capacity 1992 ~ 2Gb/s
- Capacity 1995 ~ 10Gb/s
- Capacity 1998 ~ 40Gb/s
- Capacity 2001 ~ 160Gb/s
- Capacity 2003 ~ 640Gb/s
- Capacity 2013 ~ 4 to $6.4 \mathrm{~Tb} / \mathrm{s}$

Average growth rate:
~ 2x / 18 months from 90's to 2002 ;
"only" $10 x$ in the past 1.5 decade (from 2003 - 2013).

Why we Need Faster Routers

2: To reduce cost, power \& complexity of POPs

Why are Fast Routers Difficult to Make? Speed of Commercial DRAM

DRAM then

DRAM as bottleneck

* DRAMs designed to maximize number of bytes d has stayed constant (yield)
* d determines access time (capacitance)
\Rightarrow Access time ("speed") has stayed constant

Why are Fast Routers Difficult to Make?

- It's hard to keep up with Moore's Law:
+ The bottleneck is memory speed. Memory speed is not keeping up with Moore's Law.
- Moore's Law is too slow:

Routers need to improve faster than Moore's Law in order to keep up with Traffic growth demand.

- Packet buffers need to operate above 100Gb/s
- Extra processing on the datapath
$■$
Switch architecture with throughput guarantees

What limits router capacity?

Power density is still a critical limiting factor

Outline

Background

- What is a router?
* Why do we need faster routers?
- Why are they hard to build?

Architectures and techniques
The evolution of router architecture.
Packet Classification

- IP address lookup
* Packet buffering.
- Switching.

Example Switching Architectures in practice and in theory

* Future Directions

First Generation Routers

Typically $<0.5 \mathrm{~Gb} /$ s aggregate capacity

Second Generation Routers

Direct Memory Access (DMA) between the pair of Ingress and Egress Line Cards ; but still bottlenecked by the Single Shared BUS

Typically <5Gb/s aggregate capacity

Third Generation Routers

Built-in Switch Fabric inside a Router to provide PARALLEL packet transfer between different pairs of Ingress/Egress Line Cards

Typically <50Gb/s aggregate capacity

Fourth (Current) Generation (Multi-stage) Routers/ Switches
Optics inside a router for the first time

$0.3-100+\mathrm{Tb} / \mathrm{s}$ routers in the market

Some (early) $4^{\text {th }}$ Generation Commercial Routers

A Typical IP Router Linecard

$40-55 \%$ of power in chip-to-chip serial links

Outline

Background

- What is a router?
* Why do we need faster routers?
- Why are they hard to build?

Architectures and techniques
The evolution of router architecture.
Packet Classification
IP address lookup

* Packet buffering.
- Switching.

Example Switching Architectures in practice and in theory

* Future Directions

Packet Classification

Yesterday's Packet Classification Systems

- A classifier consists of N rules, each with F fields
e.g. Next hop routing using destination IP $(F=1)$
e.g. Filters for typical L3/L4 firewall $(F=5)$

Source IP	Destination IP	Source Port	Destination Port	Protocol	Action	Priority
128.59 .67 .100	128. *	$*$	15	TCP	drop	2
$128 .{ }^{*}$	128.2 .3 .1	$*$	25	TCP	allow	1

- Single-Match Classification:
- Assumption: all the rules are associated with priorities
- Only the highest priority match matters
- E.g., longest prefix match

New Applications

- Intrusion Detection Systems (e.g., SNORT)
- Rule header: a 5-field classification rule for the packet header
- Rule options: specify intrusion patterns for the entire packet scanning.

- Multi-Match Classification: Identify all the matching rule headers
- No priority among filters
- Identify all the related rules
- Also required by accounting applications

New Applications (cont.)

- In some edge networks

- Each box introduces extra delay
- Common functions like classification are repeatedly applied
- Highly inefficient!
- Programmable Network Element
- Support multiple functions in one device
- Each packet may related to different set of functions
- E.g., HTTP packets related to firewall and HTTP load balancer
- E.g., VPN packets related to encryption / decryption
- Multi- Match Classification: identify the all the relevant functions

Multi-field Packet Classification with Range support: Single-Match

	Field 1	Field 2	\ldots	Field k Action	
Rule 1	$152.163 .190 .69 / 21$	$152.163 .80 .11 / 32$	\ldots	UDP	A1
Rule 2	$152.168 .3 .0 / 24$	$152.163 .0 .0 / 16$	\ldots	TCP	A2
\ldots		\ldots	\ldots	\ldots	\ldots
Rule \mathbf{N}	$152.168 .0 .0 / 16$	$152.0 .0 .0 / 8$	\ldots	ANY	An

Given a classifier with \mathbf{N} rules, find the action associated with the highest priority rule matching an incoming packet.

\section*{Geometric Interpretation of Range-support in 2D} | Field \#1 | Field \#2 | Data |
| :--- | :--- | :--- |

Field \#1

Single-Match with Ternary-CAMs (TCAM)

- Fully associative memory compare input string with all the entries in parallel
- If multiple matches, report the index of the first match
- Each cell takes one of three logic states
- ' 0 ', ' 1 ', and '?'(don't care)

Current commercial TCAM technology

- Fast Match Time: $<\mathbf{3}$ nsec
- Size: as large as 2.5 MBytes (as of 2012)
- Width configurable, e.g. a 1MB T-CAM
+ 1024 entries *1024 bytes width OR
+ 2048 entries *512 bytes width
- priced at $\$ 200-\$ 300$
- Can be used to realize longest-prefix match easily !! (for small forwarding table only)
- Can be Power-Hungry
- Not scalable for Large rule sets or very high-speed links.

Generic Router Architecture

IP Router
Lookup

IP Address Lookup

Why it's thought to be hard:
It's not an exact match: it's a longest prefix match.
2. The table is large (for Core Routers): about 500,000 entries as of 2013, and growing.
3. The lookup must be fast: about 6.7 ns for a $100 \mathrm{~Gb} / \mathrm{s}$ Ethernet (assuming 84byte minimum frame-size).

CIDR: Classless IP addressing

■ CIDR: Classless InterDomain Routing
network portion of address of arbitrary length address format: a.b.c. d / x, where x is \# bits in network portion of address

200.23.16.0/23:

A prefix = A contiguous range of IP addresses
= an IP subnetwork

Hierarchical addressing: route aggregation

Hierarchical addressing allows efficient advertisement of routing information:

Hierarchical addressing: more specific routes

ISPs-R-Us has a more specific route to Organization 1
Organization 0

IP Lookups find Longest Prefixes

Routing lookup: Find the longest matching prefix (aka the most specific route) among all prefixes that match the destination address.

IP Address Lookup

Why it's thought to be hard:
It's not an exact match: it's a longest prefix match.
The table is large (for Core Routers): about 650,000 entries as of Jan 2017, and growing.
3. The lookup must be fast: about 6.7 ns for a $100 \mathrm{~Gb} / \mathrm{s}$ Ethernet (assuming 84byte minimum frame-size).

Address (BGP Routing) Tables are Large (> 650K entries by Jan 2017)

IP Address Lookup

Why it's thought to be hard:

> It's not an exact match: it's a longest prefix match. The table is large (for Core Routers): about 500,000 entries as of 2013, and growing.

The lookup must be fast: about 6.7 ns for a $100 \mathrm{~Gb} / \mathrm{s}$ Ethernet (assuming 84byte minimum frame-size).

Lookup Performance Required

Line	Line Rate	Pkt-size=40Byte	Pkt-size=240Byte
T1	1.5 Mbps	4.68 Kpps	0.78 Kpps
OC3	155 Mbps	480 Kpps	80 Kpps
OC12	622 Mbps	1.94 Mpps	323 Kpps
OC48	2.5 Gbps	7.81 Mpps	1.3 Mpps
OC192	10 Gbps	31.25 Mpps	5.21 Mpps

NB: Good Router Performance Requires not only line transmission performance (bps) but ALSO packet processing performance (pps=Packets per Sec)

Lookups Must be Fast

Year	Line	40Byte packets (Mpps)
1997	$622 \mathrm{Mb} / \mathrm{s}$	1.94
1999	$2.5 \mathrm{~Gb} / \mathrm{s}$	7.81
2001	$10 \mathrm{~Gb} / \mathrm{s}$	31.25
2003	$40 \mathrm{~Gb} / \mathrm{s}$	$125(=8 \mathrm{~ns} / \mathrm{pkt})$

Fortunately, for 100 Gbps Ethernet, minimum 100GbE "effective" frame size is: 84 Byte $=$ Preamble (8) + min. Frame length (64) + min.Interframe spacing (12) >40 Byte $=>6.7 \mathrm{~ns} / \mathrm{pkt}$ "only"

IP Routers
 Metrics for Lookups

Prefix	Port
128.9 .16 .14	$65 / 8$
	$128.9 / 16$
	5
	$128.9 .19 / 24$
	$128.9 .25 / 24$
$128.9 .176 / 20$	10
	$142.12 / 19$

- Lookup time
- Storage space
- Update time
- Preprocessing time

Outline

Background

- What is a router?
* Why do we need faster routers?
- Why are they hard to build?

Architectures and techniques
The evolution of router architecture.
Packet Classification
IP address lookup
Packet buffering.
Switching.
Example Switching Architectures in practice and in theory
Future Directions

Generic Router Architecture

Fast Packet Buffers

Example: 40Gb/s packet buffer

Size $=$ RTT*BW $=10 \mathrm{~Gb}$; 40 byte packets

Outline

Background

What is a router?

- Why do we need faster routers?

Why are they hard to build?
Architectures and techniques
The evolution of router architecture.
IP address lookup.
Packet buffering.
Switching.

Generic Router Architecture

Switching Fabric

bus

Switching Fabrics

- Output Queueing
- Input Queueing

Scheduling algorithms for Fabric

- Combined Input and Output Queueing (CIOQ)

What is an Ideal Router?

- Output Queued (OQ) routers are ideal but not practical
\checkmark It minimizes the delay faced by a packet
$\times \quad$ The bandwidth to each output is NR, the total bandwidth is $N^{2} R$
$\times \quad$ The cost and power consumption is prohibitive

A Router without Input Queues

Interconnects

Output Queueing

Individual Output Queues

Memory $b / w=(N+1) R$

Centralized Shared Memory

1

Output Queueing

How fast can we make centralized shared memory-based router?

- 5ns per memory operation
- Two memory operations per packet
- Therefore, up to $160 \mathrm{~Gb} / \mathrm{s}$

Summary of OQ Switches

- Output queued switches are ideal
- Work-conserving.
- Maximize throughput.
- Minimize expected delay (for fixed length packets).
- Permit delay guarantees for constrained traffic.
- Output queued switches don't scale well
- Requires N memory writes per time slot.
- Memory bandwidth (dictated by the random-access time of a memory) is a bottleneck.
- Parallelism is not straightforward.

Interconnects

Two basic techniques

Interconnects

Input Queueing with Crossbar

A Router with Input Queues Head of Line Blocking

Head of Line Blocking

Virtual Output Queues

Input Queueing with virtual output queues

 Scheduling

Question: Maximum weight or maximum size?

Input Queueing with virtual output queues

 Scheduling

Maximum Weight Matching can achieve 100% throughput as the output queueing

"Request" Graph

Bipartite Match

A Router with Virtual Output Queues

CIOQ Router Model

Input Queued Switch

Combined Input-Output Queued Switch

- CIOQ switches offer some advantages over OQ switches, but are still not practical
\checkmark They can give the same delay guarantees as OQ switches
\checkmark They need a switching bandwidth of only 2NR
x They have high computational complexity
x The model does not capture many different architectures

The Evolution of Input Queueing Switching

Theory:		Different weight functions, incomplete information, pipelining
Input Queueing	$\frac{I Q}{}+\mathrm{VOQ}$,	100\% [Various]
(IQ)	Maximum weight matching	Randomized algorithms
58\% [Karol, 1987]	100\% [Mckeown et al., 19	100\% [Tassiulas , 1998]
		$I Q+V O Q$ Maximal size matching, Speedup of two.
Practice:		100\% [Dai \& Prabhakar, 2000]
Input Queueing (IQ)	$I Q+V O Q$ Sub-maximal size matching e.g. PIM, iSLIP.	Various heuristics, distributed algorithms, and amounts of speedup

Input Queueing References

 References- M. Karol et al. "Input vs Output Queueing on a Space-Division Packet Switch", IEEE Trans Comm., Dec 1987, pp. 1347-1356.
- Y. Tamir, "Symmetric Crossbar arbiters for VLSI communication switches", IEEE Trans Parallel and Dist Sys., Jan 1993, pp.13-27.
- T. Anderson et al. "High-Speed Switch Scheduling for Local Area Networks", ACM Trans Comp Sys., Nov 1993, pp. 319-352.
- N. McKeown, "The iSLIP scheduling algorithm for Input-Queued Switches", IEEE Trans Networking, April 1999, pp. 188-201.
- C. Lund et al. "Fair prioritized scheduling in an input-buffered switch", Proc. of IFIP-IEEE Conf., April 1996, pp. 358-69.
- A. Mekkitikul et al. "A Practical Scheduling Algorithm to Achieve 100\% Throughput in Input-Queued Switches", IEEE Infocom 98, April 1998.

Other approaches

[Tassiulas 1998] 100\% throughput possible for simple randomized algorithm with memory.
[Giaccone et al. 2001] "Apsara" algorithms.
[lyer and Mckeown 2000] Parallel switches can achieve 100\% throughput and emulate an output queued switch.
[Chang et al. 2000, Keslassy et al. Sigcomm 2003] A 2-stage switch with no scheduler can give 100\% throughput.
[lyer, Zhang and Mckeown 2002] Distributed shared memory switches can emulate an output queued switch.

An Alternative Single Buffered Router Model

- Single Buffered Routers buffer packets only once
- The interconnects may be
- physically separate or merged
- one of the interconnects may be a simple pass through
+ The memory can be
- centralized or distributed
- one or many
- statically or dynamically allotted amongst all ports

Parallel Packet Switch

The Parallel Shared Memory (PSM) Router

It can be shown that if $k=\#$ of Memory pool > 3N-1 (where $\mathrm{N}=\#$ of linecards), there will be enough Memory pools to avoid conflicts $=>100 \%$ throughput can be achieved.
In this e.g. $\mathrm{N}=3$, so but 8 memories suffice

Why $\mathrm{k}>=3 \mathrm{~N}-1$ suffices ?

- When a packet arrives in a timeslot, it must choose a memory NOT chosen by:

The N-1 other packets that arrive at that timeslot The N other packets that depart at that timeslot The N-1 other packets that can depart at the same time as this packet departs (in the future)

Parallel Shared Memory Router

Distributed Shared Memory Router

Distributed Shared Memory Router

Switch Fabric

- The central memories are moved to distributed line cards and shared.
- Memory and line cards can be added incrementally.
- The bandwidth in \& out of each memory is at the line rate R
- From the PSM theorem, $3 N-1$ memories which can perform one operation per time slot i.e. a total memory bandwidth of ? $3 N R$ suffices for the router to be work-conserving.

A Commercial DSM Router

The Juniper M and T series Routers Capacity per Router: from 10's to 1000's Gbps

Scaling the Cross-Bar switch fabric

- Up until now, we have focused on high performance packet switches with:

A crossbar switching fabric,
Input queues (and possibly output queues as well),
Virtual output queues, and
Centralized arbitration/scheduling algorithm.
Even Distributed Shared Memory Router/Switch needs a Cross-bar fabric

- Now, let's talk about the implementation of the crossbar switch fabric itself.

How are they built ?
How do they scale?
What limits their capacity ?

Crossbar switch

Limiting factors

N^{2} crosspoints per chip, or $N \times N$-to- 1 multiplexers It's not obvious how to build a crossbar from multiple chips, Capacity of "I/O"s per chip.

A Practical Example: About 300 pins each operating at $3.125 \mathrm{~Gb} /$ $\mathrm{s} \sim=1 \mathrm{~Tb} / \mathrm{s}$ per chip.
About $1 / 3$ to $1 / 2$ of this capacity available in practice because of overhead and speedup.
Crossbar chips today are limited by "I/O" capacity.

Scaling number of outputs:

Trying to build a crossbar from multiple chips

Building Block:

Eight inputs and eight outputs required!

16×16 crossbar switch:

Scaling line-rate:

Bit-sliced parallelism

Scaling line-rate:

Time-sliced parallelism
Linecard

Cell
Cell

Scheduler

- Cell carried by one plane; takes k cell times.
- Scheduler is unchanged.
- Scheduler makes decision for each slice in turn.

Scaling a crossbar

- Conclusion: scaling the capacity is relatively straightforward (although the chip count and power may become a problem).
- What if we want to increase the number of ports?
- Can we build a crossbar-equivalent from multiple stages of smaller crossbars?
- If so, what properties should it have?

3-stage Clos Network

With $k=n$, is a Clos network non-blocking like a crossbar?

Consider the example: scheduler chooses to match $(1,1),(2,4),(3,3),(4,2)$

With $k=n$ is a Clos network non-blocking like a crossbar?

Consider the example: scheduler chooses to match

$$
(1,1),(2,2),(4,4),(5,3), \ldots
$$

By rearranging matches, the connections could be added.
It can be shown that $k>=n$ makes the Clos network
"rearrangeably non-blocking"!

Implementation

Pros

- A rearrangeably non-blocking switch can perform any permutation
- A cell switch is time-slotted, so all connections are rearranged every time slot anyway
Cons
- Rearrangement algorithms are complex (in addition to the scheduler)

Can we eliminate the need to rearrange?

Strictly non-blocking Clos Network

Clos' Theorem:
If $k>=2 n-1$, then a new connection can always be added without rearrangement.

Clos Theorem

$$
\begin{aligned}
& n-1 \text { already } \\
& \text { in use at input } \\
& \text { and output. }
\end{aligned}
$$

1. Consider adding the n-th connection between $1^{\text {st }}$ stage I_{a} and $3^{\text {rd }}$ stage O_{b}.
2. We need to ensure that there is always some center-stage M available.
3. If $k>(n-1)+(n-1)$, then there is always an M available. i.e. we need $k>=2 n-1$.

Recall: Multi-stage (Multi-chassis) Core Routers

	T1600 Ports 80 10 Gbps 16 40 Gbps 8 100 Gbps		T640 Ports 4010 Gbps 840 Gbps	
TX Matrix Plus Ports 83210 Gbps 6440 Gbps 64100 Gbps		TX Matrix Ports 16010 Gbps 3240 Gbps		

Table 1: Juniper Networks T Series Single Chassis Scaling Characteristics

Platform	Throughput	Rack Space	10-Gigabit Ethernet Density	Fully Redundant Hardware	Multichassis Capable
T640	640 Gbps	$1 / 2$ rack $(19 \mathrm{in})$	40	Yes	Yes
T1600	1.6 Tbps	$1 / 2$ rack $(19 \mathrm{in})$	80 (line rate) 160 (oversubscribed)	Yes	Yes

Current Generation
 T-series Routers from Juniper

Competing Product (current Gen.) from Juniper

Table 2: T Series Multichassis Configurations with the Enhanced Switch Fabric Cards

Platform	System Throughput	Rack Space	10GbE Density	Fully Redundant Hardware
(1) TX Matrix Plus with $4 \times$ T4000	16 Tbps	3 racks (1x23 in for TX Matrix Plus, 2×19 in for T4000)	832 (line rate) 1,536 (oversubscribed)	Yes
(2) TX Matrix Plus with $8 \times$ T1600	12.8 Tbps	5 racks (1×23 in for TX Matrix Plus, 4×19 in for T1600)	640 (line rate) 1,280 (oversubscribed)	Yes
3) TX Matrix Plus with $6 \times$ T1600 and $1 \times$ T4000	13.6 Tbps	4.5 racks (1×23 in for TX Matrix Plus, 3×19 in for T1600) and half rack for 1 T4000	688 (line rate) 1,344 (oversubscribed)	Yes
4. TX Matrix Plus with $4 \times \mathrm{Tl} 600$ and $2 \times$ T4000	14.4 Tbps	4 racks (1×23 in for TX Matrix Plus, 3×19 in for T1600 and T4000	736 (line rate) 1,408 (oversubscribed)	Yes
5) TX Matrix Plus with $2 \times$ T1600 and $3 \times$ T4000	15.2 Tbps	3.5 racks (1×23 in for TX Matrix Plus, 2.5×19 in for T1600 and T4000)	784 (line rate) 1,472 (oversubscribed)	Yes

3-stage Clos Network

5 Switching Planes for a Juniper T-series Single Chassis Core Router

- Note the Distributed Shared Memory (DSM) Architecture with Buffering in the Line Cards (PIC/PFE)

Source: "T-series Core Router Architecture Overview," Juniper Networks white paper, 2012.

Switch Fabric Implementations

* Maintains data plane connectivity among all of the PFEs.
* Four operationally independent, identical and active switch planes.
* The fifth plane that acting as a hot spare to provide redundancy.

3-stage Clos Network Realization of the Juniper T-series Multi-chassis Core Routers

TX Matrix (Plus) Platform (Maximum of 4 T4000 Routing Nodes)

The Routing Matrix

TX Matrix (Plus):

-Performs Routing Functions
-Stage 2 of CLOS Switch Fabric (F2-stage)
-Single Management Interface
-16 4x4 (5-plane) Switching Fabrics in TX routing matrix

T Routing Nodes:
-Distributed Packet Forwarding
-Stages $1 \& 3$ of CLOS Fabric (F1\&F3-stage)
-REs: local chassis management
-16 PFEs in T640 routing node
$\Rightarrow 16 \times 16$ (5 -plane) Fabrics [single-chassis]

Multi-chassis Realization of 3-stage Clos Network in Juniper T-series Routers

Source: "T-series Routing Platforms: System and Packet Forwarding Architecture," Juniper Networks white paper, 2002.

Switch-Card Chassis to Line-Card Chassis Interconnection

TX MATRIX
Switch-Card
Chassis

RE/CB 0	RE/CB 1
Standby	Main

LCC 00 Fi3sib LCC 01
LCC 02 F33 siB LCC 03
Blank
LCC 00 F3 sib LCC 10
LCC 02 Fl3 sib LCC 03
LCC 00 F33 SIB LCC 01
LCC 02 FI3SIB LCC 03
Blank
LCC 00 F13 sib LCC 01
LCC 02 F33SIB LCC 03
Blank
Blank
Blank
Source: "T-series Routing Platforms: System and Packet Forwarding Architecture," Juniper Networks white paper, 2002.

TX-SIB, T640 Node and Clos Switch Fabric

* The TX Matrix platform contains five SIB cards connected to the T640SIB cards in each T640 routing node by way of inter-chassis fiber-optic array cables.
* Each TX Matrix SIB provides connectivity between the ingress and egress T640 routing nodes delivering high performance switching capacity.
* Each T640 routing node is connected to the TX Matrix platform by a five fiber-optic array cable set [VCSEL].
* A fully populated routing matrix requires a total of 20 VCSEL fibers for switch plane interconnect (four T640 => 20 cables total).

Note: The concept of Clos Network can be generalized to more than 3-stage by replacing each 2nd-stage $\mathrm{m} \times \mathrm{m}$ cross-bar with another 3-stage Clos Network and continue recursively ; e.g. Benes Network ($\mathrm{k}=\mathrm{n}=2$) used by $4^{\text {th }}$ Generation Commercial (Cisco) Routers.

A Sample Benes Network

Note: The concept of Clos Network can be generalized to more than 3-stage by replacing each 2nd-stage $\mathrm{m} \times \mathrm{m}$ cross-bar with another 3-stage Clos Network and continue recursively ; e.g. Benes Network ($\mathrm{k}=\mathrm{n}=2$) used by $4^{\text {th }}$ Generation Commercial (Cisco CRS-X) Routers.

Clos Networks' Reappearance in Data Center Networks (aka the Spine and Leaf Topology, or Folded Clos, or Fat-Trees)

Leaf

The Top of Rack (ToR) switches are the Leaf switches Each ToR is connected to multiple Core switches which represent the Spine. \# of Uplinks (of each ToR) = \# of Spine switches \# of Downlinks (of each Spine switch) = \# of Leaf switches Multiple ECMP exists for every pair of Leaf switches Support Incrementally "Scale-out" by adding more Leaf and Spine switches

Clos Networks' Reappearance in Data Center Networks (aka the Spine and Leaf Topology, or Folded Clos, or Fat-Trees)

 Servers (Processors) are the leafs ; For every non-leaf node (Switch) in the tree, \# of links to its Parent = \# of links to its Children $=>$ Links at "Fatter" towards the top of the tree

Source: http://clusterdesign.org/fat-trees/

Core Example:
All Leaf (Edge) or Spine (Core) switches are identical Edge 36-port switches ;

Scaling Crossbars: Summary

- Scaling capacity through parallelism (bit-slicing and time-slicing) is straightforward.
- Scaling number of ports is harder...

■ Clos network:
Rearrangeably non-blocking with $k=n$, but routing is complicated,

- Strictly non-blocking with $k>=2 n-1$, so routing of circuit is simple BUT requires more bisection bandwidth.
+ become a moot-point with packet-by-packet routing/switching.

	Fabric	\# Mem.	Mem. BW	Total Memory BW	Switch BW	Scheduling Algorithm
Output-Queued	Bus	N	$(\mathrm{N}+1) \mathrm{R}$	$\mathrm{N}(\mathrm{N}+1) \mathrm{R}$	NR	None
Shared Mem.	Bus	1	2NR	2NR	2NR	None
Input Queued	Crossbar	N	2R	2NR	NR	MWM
		2 N	3R	6NR	2NR	Maximal
(Cisco)		2N	3R	6NR	3NR	Time Reserve*
PSM	Bus	k	3NR/k	3NR	3NR	C. Sets
		N	3R	3NR	4NR	Edge Color
(Juniper)	Xbar	N	3R	3NR	6NR	C. Sets
		N	4R	4NR	4NR	C. Sets
PPS - OQ	Clos	Nk	2R(N+1)/k	$2 \mathrm{~N}(\mathrm{~N}+1) \mathrm{R}$	4NR	C. Sets
PPS -Shared Memory	Clos	Nk	4NR/k	4NR	4NR	C. Sets
		Nk	2NR/k	2NR	2NR	None

	Fabric	\# Mem.	Mem. BW	Total Memory BW	Switch BW	Scheduling Algorithm
Output-Queued	Bus	N	$(\mathrm{N}+1) \mathrm{R}$	$\mathrm{N}(\mathrm{N}+1) \mathrm{R}$	NR	None
Shared Mem.	Bus	1	2NR	2NR	2NR	None
CIOQ (Cisco)	Crossbar	2 N	3R	6NR	2NR	Marriage
		2N	3R	6NR	3NR	Time Reserve
PSM	Bus	k	4NR/k	4NR	4NR	C. Sets
$\begin{gathered} \text { DSM } \\ \text { (Juniper) } \end{gathered}$	Xbar	N	4R	4NR	5NR	Edge Color
		N	4R	4NR	8NR	C. Sets
		N	6R	6NR	6NR	C. Sets
PPS - OQ	Clos	Nk	3R(N+1)/k	$3 \mathrm{~N}(\mathrm{~N}+1) \mathrm{R}$	6NR	C. Sets
PPS -Shared Memory	Clos	Nk	6NR/k	6NR	6NR	C. Sets

Future Directions: Two-stage load-balancing switch

100\% throughput for weakly mixing, stochastic traffic.
[C.-S. Chang, Valiant]

Packet Reordering Problem

Re-ordering Problem can be fixed by a simple, fully distributed algorithm

Combining the Two Meshes

Combining the 2 Meshes

Load-balancing 2-stage Switch
[Isaac Keslassy et al, Sigcomm 2003]

Separate Racks for Linecards and

 Optical Core providing Mesh connectivity

Two ways to Realize Load-balanced Switch via a Single Fixed-Rate Uniform Mesh

(a)

(b)

Figure 5: Two ways in which the load-balanced switch can be implemented by a single fixed-rate uniform mesh. In both cases, two stages operating at rate R / N, as shown in (a), are replaced by one stage operating at $2 R / N$, and every packet traverses the mesh twice. In (b), the mesh is implemented by N^{2} fibers. In (c), the mesh is N^{2} WDM channels interconnected by an AWGR. λ_{w}^{i} is transmitted on wavelength λ_{w} from input i and operates at rate $2 R / N$.

A Single Combined Mesh

AWGR: A Mesh of WDM Channels

Hybrid Optical and Electrical Switch Fabric

Hybrid Electro-Optical Switch Fabric

- Thm: There is a polynomial time algorithm that finds a static configuration for each MEMS switch, and a fixed-length sequence of permutations for the electronic crossbars to spread packets over the paths.

100Tb/s Load-Balanced Router

Linecard Rack 1

Linecard Rack $G=4040 \times 40$

$L=16$ 160Gb/s linecards

Switch Rack < 100W

A Pure Optical Switch Fabric

Figure 8: An optical switch fabric for $G=3$ groups with $L=2$ linecards per group.

$5^{\text {th }}$ Generation routers?

Load-balancing over passive optics (in research stage)

Summary of Router Architecture

- Multi-rack routers
- Single router POPs
- No commercial router provides 100\% throughput guarantee.
- Address lookups
- Not a problem to 400Gb/s per linecard.
- Packet buffering

Imperfect; loss of throughput above 10Gb/s.

- Router/ Switch Architecture
- Centralized schedulers up to about $6.4 \mathrm{~Tb} / \mathrm{s}$
+ CIOQ: Combined Input Output Queueing Architecture (Cisco)
+ DSM: Distributed Shared Memory Architecture (Juniper)
- High capacity (Slicing) and High port-count (Multi-stage Clos/Benes Network) Crossbar Fabric can scale the aggregate switch capacity to 100's of Tb/s
- There are experimental research which uses Load-balanced 2-stage optical switches with 100% throughput
- with a statically-configured optical core potentially can scale aggregate switch capacity beyond 100's Tb/s.

Current Internet Router Technology Summary

- Techniques exist today for:
- 100Gbps line-rate IP address lookup
- 400Gb/s (4x 100GE ports) linecards.
- $6.4 \mathrm{~Tb} / \mathrm{s}$ capacity for single-rack (chassis) router
- $100+\mathrm{Tb} / \mathrm{s}$ capacity for multiple-stage architectures, with
- According to Cisco, they have sold more than 10,000 of their Carrier-class Routing Systems (CRS-1 and CRS-3) to 750+ customers world-wide since 2004.

Beware that Routers are only

 a SMALL part of theTelecommunications Infrastructure
(The OLD view of Transport vs. Switching)

How datacom/ networking people think the Internet is

The Network Core:

How the Internet really looks like:

US
\$6Bn

and its access networks

Still many Circuit Switched Transmission $\begin{gathered}\text { Your } \\ \text { ocal }\end{gathered}$ Network, using Optical networking cO technologies e.g. SONET Mux, ADMs, Crossconnects to build SONET rings/meshes; and its acces DWDM : some packet-switched ATM/MPLS Cross-connects/ MetroEthernet Switches/

Today’s (Legacy) Digital Cross-Connect (DCS) and SONET/SDH Architecture

Evolving towards Packet-Optical Network (OTN)

Migration to Optical Transport Network (OTN) with Mesh Restoration

Existing DCS/adjacent SONET ADMs

> Replace DCS/ overlay SONET
> ADMs with
> Ciena solution

Evolution to OTN/Packet-enabled intelligent mesh

Add new links

Evolution to OTN/Packet-enabled intelligent mesh

Reference: http://media.ciena.com/documents/Experts_Guide_to_OTN_ebook.pdf

Netflow: A tool for Network flow/Traffic Measurement

Network Traffic Monitoring tools

- Flow-based solution
- Implemented in routers
- E.g. Netflow
- implemented in Cisco routers
- Available since mid-90s ; Cisco’s version upto ver.9,
- Competing products include Jflow from Juniper and Sflow from HP
- Get standardized by IETF as IPFIX (IP Flow Information Export) ;
- RFCs 5101-5103, 5153,5470-5473
- Packet-based solution
- Implemented in a stand-alone box, listening promiscuously on a multiple access medium (e.g. Ethernet)
- E.g. Wireshark (used to call Ethereal)

What is a flow?

Defined by seven unique keys (according to Netflow):

- Source IP address
- Destination IP address
- Source port
- Destination port
- Layer 3 protocol type
- TOS byte (Type of Service)
- Input logical interface (ifIndex)

Exported Data

What is a flow?

- TCP flows - delineated by special packets SYN, FIN or RST etc
- Could be any sequence of packets (between the same source-destination addr/port)
- Such flows assumed to end after some period of inactivity (default inactive timer= $=15$ seconds)
- Such flows are also terminated after a sufficiently long time of activity, for keeping track of what is going on (default active timer=30 minutes)
- When monitor's cache is full, some flows may also be terminated

1. Create and update flows in NetFlow Cache

Srclf	SrcIPadd	Dstif	DstIPadd	Protocol	TOS	Flgs	Pkts	SrcPort	SrcM	SrcAS	DstPort	DstMsk	DstAS	NextHop	Bytes/Pkt	Active	Idle
Fa1/0	173.100.21.2	$\mathrm{FaO} / 0$	10.0.227.12	11	80	10	11000	00A2	124	5	00A2	124	15	10.0.23.2	1528	1745	4
Fa1/0	173.100.3.2	$\mathrm{FaO} / 0$	10.0.227.12	6	40	0	2491	15	126	196	15	124	15	10.0.23.2	740	41.5	1
Fa1/0	173.100.20.2	FaO/0	10.0.227.12	11	80	10	10000	00A1	124	180	00A1	124	15	10.0.23.2	1428	1145.5	3
Fa1/0	173.100.6.2	$\mathrm{FaO} / 0$	10.0.227.12	6	40	0	2210	19	130	180	19	124	15	10.0.23.2	1040	24.5	14

2. Expiration | - Active timer expired ($30 \mathrm{~min}(1800 \mathrm{sec}$) is default) |
| :---: |
| \cdot NetFlow cache is full (oldest flows are expired) |
| \cdot RST or FIN TCP Flag |

Srclf	SrclPadd	DstIf	DstIPadd	Protocol	TOS	Fgs	Pkts	SrcPort	SrcMsk	SrcAS	DstPort	DstMsk	DstAS	NextHop	Byte	Active	Idle
Fa1/0	173.100.21.2	Fa0/0	10.0.227.12	11	80	10	11000	00A2	124	5	00A2	124	15	10.0.23.2	1528	1800	4

3. Aggregation?

4. Export Version

Non-Aggregated Flows - export Version 5 or 9
e.g. Protocol-Port Aggregation Scheme becomes

Protocol	Pkts	SrcPort DstPort	Bytes/Pkt	
11	11000	00 A 2	00 A 2	1528

5. Transport Protocol Export Packet

Export Packets

NetFlow Versions

NetFlow Version	Comments
1	Original
5	Standard and most common
7	Specific to Cisco Catalyst 6500 and 7600 Series Switches Similar to Version 5, but does not include AS, interface, TCP Flag \& TOS information
8	Choice of eleven aggregation schemes Reduces resource usage
9	Flexible, extensible file export format to enable easier support of additional fields \& technologies; coming out now MPLS, Multicast, \& BGP Next Hop

Version 5 - Flow Format

Usage	- Packet Count - Byte Count	- Source IP Address - Destination IP Address	From/To
Time of Day	- Start sysUpTime - End sysUpTime	- Source TCP/UDP Port - Destination TCP/UDP Port	Application
Port Utilization	- Input ifIndex - Output ifIndex	- Next Hop Address - Source AS Number	Routing
$\xrightarrow{\text { QoS }}$	- Type of Service - TCP Flags - Protocol	- Dest. AS Number - Source Prefix Mask - Dest. Prefix Mask	$\stackrel{\text { Peering }}{ }$

NetFlow Infrastructure

Principle Netflow Benefits

Service Provider

- Peering arrangements
- Network Planning
- Traffic Engineering
- Accounting and billing
- Security Monitoring

Enterprise

- Internet access monitoring (protocol distribution, where traffic is going/coming)
- User Monitoring
- Application Monitoring
- Charge Back billing for departments
- Security Monitoring

Billing

- Flat-rate billing does not necessarily scale
- Competitive pricing models can be created with usage-based billing
- Usage-based billing considerations
- Time of day
- Within or outside of the network
- Application
- Distance-based
- Quality of Service (QoS) / Class of Service (CoS)
- Bandwidth usage
- Transit or peer
- Data transferred
- Traffic class

Tracking Users

- Who are my top N talkers, and what percentage of traffic do they represent?
- How many users are on the network at a given time?
- When will upgrades affect the least number of users?
- How long do users spend connected to the network?
- Which Internet sites do they use?
- What is a typical pattern of usage between sites?
- Are users staying within an Acceptable Usage Policy (AUP)?
- Alarm DOS attacks like smurf, fraggle, and SYN flood

Sampled Netflow

- For high speed interfaces, the processor and the memory cannot keep up with the packet rate, Cisco introduced sampled NetFlow.
- Packet-based (one of every N packets is sampled)

Deterministic or random

- Time-based
uses traffic from the first 64 milliseconds every 4096 milliseconds.

