
Routing in a single domain

IERG5090 – Jan 16, 2017

Motivation

• How are nodes connected:
• By links and intermediate nodes,

such as switches, routers etc
• Why are intermediate nodes

needed?
• What are the advantages for

different network topologies?
• What do intermediate nodes do to

provide the connection?

Example network topologies

Outline

• We take a systems point of view
• Consider different types of

scenarios, and discuss the suitable
routing mechanism

• Give more details to those widely
used in the internet:

• Bridge spanning tree algorithm
• Distance vector algorithm
• Link state algorithm

Different type of networks

• Connectivity-challenged networks
• Battlefield or post-disaster emergency

networks
• Plug-and-play networks

• Home, campus, SME, sensor networks
• Regular case

• A regular ISP, e.g. Large campus, city
level ISPs, cross university, hospital,
government networks

• Performance critical networks
• Data center, Google’s server network,

special purpose teleconference
network, bank’s or corporate network
with sensitive data

Should we use the same kind of
routing mechanism for all these
scenarios?

Connectivity challenged networks

• Try brute-force methods to get
connected and communicate

• Flooding: send each message to all
nodes in vicinity; each node tries to
forward to other nodes (except up-
streaming node); use scope (TTL)
control.

Broadcast LANs (e.g. Ethernet) reply partly
on flooding
• On-demand routing: in wireless

settings, it is considered too costly to
periodically exchange topological
information among nodes; hence build
routes (forwarding table) on demand

Wireless Ad hoc networks, e.g. AODV
protocol

• In these networks, there is no
background process to set up routes

Flooding

• Advantage?
• Simple
• All paths explored

• Disadvantage?
• “Disturbs” all nodes
• Inefficient, uses all paths
• Uncertain reliability

• If sending multiple copies for each
packet, overhead is high

• Absolute reliability is hard (ack
requires more flooding!

• Maybe okay for scenarios reliability
and efficiency is not that
important, and some amount of
communication is desperately
needed.

On-demand routing

• Path discovery
• Source floods RReq, and get RRep back

• Routing table management
• Routing table stores soft state, timed out

when no activity
• Reverse path not used will be timeout
• Inactive forward path will be timed out with a

different timer

• Path maintenance
• If source moves, re-initiate path discovery
• If intermediate or dest moves, re-send RRep

• Local connectivity management
• If no data, periodically broadcast hellos

(TTL=1)

destination

source

Timeout

forward path formation

Ad hoc wireless networks:
Very hot research for a few years, but few
applications in practice

Plug-and-play networks

• Primary requirement
• Self configuration, plug-and-play, as

much as possible
• Should be like a phone: plug it into

the wall, it works
• Switch connected LANs

• No need to configure IP addresses
(until you need to be connected to
rest of Internet)

• Spanning tree based forwarding, self
configured

• “Switch” is used to be called a
“Bridge”, used to connect LANs
(nowadays, mostly Ethernets)

• The difference is:
• The topology is stable
• Nodes are not moving around

• The switched LAN technology is
widely deployed, but

• It is not part of the network layer of
internet

• It is done in the data link layer

What is a bridge (now called switch)

• Data Link level store-and-forward
device that connects two or more
LAN (Ethernet segments)

• Bridge isolates collision domains
since it buffers packets

• Can connect LANs of different
types

Note: Think of LAN as Ethernet, or
something similar; all nodes hear
each other.

• bridges learn which hosts can be
reached through which interfaces:
maintain filtering tables

• when packet received, bridge “learns”
location of sender: incoming LAN
segment

• records sender location in filtering
table

• filtering table entry:
• (Node LAN Address, Bridge Interface,

Time Stamp)
• stale entries in Filtering Table dropped

(TTL can be 60 minutes)

Bridge filtering table example

Suppose C sends packet to D and D
replies back with packet to C

C sends packet, bridge has no info
about D, so floods to both LANs

• bridge notes that C is on port 1
• packet ignored on upper LAN
• frame received by D

D generates reply to C, sends
• bridge sees packet from D
• bridge notes that D is on interface 2
• bridge knows C on interface 1, so

selectively forwards packet out via
interface 1

Forwarding and filtering procedure

if destination is on LAN on which packet was received
then drop the packet
else { lookup filtering table
 if entry found for destination

then forward the packet on interface indicated;
else flood; /* forward on all but the interface

 on which the packet arrived*/
}

One assumption

• The learning algorithm still works even
when multiple bridges are connecting
many LANs, provided the bridges and
LANs do not form a loop!

• - When h1 sends a packet to h2, C
thinks h1 is to its left

• - When B forwards h1’s packet, C
thinks h1 is to its right

A B

C h1 h2

Bridge spanning tree

• for increased reliability,
desirable to have redundant,
alternate paths from source to
destination

• with multiple simultaneous
paths, cycles result - bridges
may multiply and forward
packets forever

• solution: organize bridges in a
spanning tree by disabling
subset of interfaces

Disabled

Spanning tree algorithm

• A protocol to decide which
interfaces to disable, to ensure

• complete connectivity
• no loops

• Each bridge sends a configuration
msg to a port unless a better one
heard on that LAN

• Configuration message contains
• Root id
• Cost = #hops from Root
• Transmitting bridge’s id

Ranking of configuration msgs:
• If C1’s root id is lower than C2’s
• If root ids equal, then C1’s cost is lower
• If root ids and costs same, then C1’s

transmitter’s id is lower than C2’s
Then C1 ranks higher than C2

A bridge’s own configuration msg:
• Root id is its own id or the lowest heard

so far
• Cost is the number of hops from root id (0

if self)

Example

These are configuration msgs heard on
each port:

 Root Cost Transmitter id
Port 1 12 9 51
Port 2 12 8 47
Port 3 81 0 81
Port 4 15 3 27

The bridge’s own id is 15
So its configuration msg is (12,9,15)
This is transmitted on port 1, 3, and 4
The bridge that wins for each LAN is the

designated bridge for that LAN

Prove result is a tree:
• In steady state:

• A single root is elected
• Each bridge knows its shortest distance to the root
• only one bridge transmits conf msgs on each LAN

(the designated bridge) – this is the bridge that will
forward packets from that LAN towards the root

• Every bridge determines its port that gives its best
path from itself to the root – that port is called a
root port

• Only the root ports, and the ports on which “self”
has been selected as designated bridge are
enabled. All other ports are disabled.

• Result: Each designated bridge is a “parent” and
the other bridges attached to the same LAN are
its children.

• Since each bridge has only one root port, hence a
tree

Example of a bigger spanning tree, and a poem

2 1 62

2 2 12

2 2 5

2 2 17

2 2 78

2 1 7
I think that I shall never see
A graph more lovely than a tree.
A tree whose crucial property
Is loop-free connectivity.
A tree which must be sure to span
So packets can reach every LAN.
First the Root must be selected
By ID it is elected.
Least cost paths from Root are traced
In the tree these paths are placed.
A mesh is made by folks like me.
Then bridges find a spanning tree.

 Radia Perlman
 inventor of the spanning tree alg

Host configuration

• Can it be completely plug-and-
play?

What does a host need in order to
operate?

• IP address (plus network mask)
• Local DNS server
• Router addresses
• Domain name (specially if web server)

• name to address mapping in DNS

Anything else?
• Many other things, e.g. application

settings, security features…
• Most can operate based on default

settings

Auto-configuration

Basic idea: ask the network

• RARP: given one’s MAC address,

return IP (reverse of ARP, which
returns MAC given IP)

• Dynamic Host Configuration
Protocol (DHCP)

• DHCP does not use fixed mapping,
instead “leases” IP addresses

• Configure local name server, router
list as well

• Specially useful for mobile hosts
-- Plug-and-play, zeroconfig (IETF WG)

• DHCP server returns its own address
for future use by client

• Given leased IP address, client may
test it using ARP

• Upon expiry, the client can “renew”
the lease

Recap of “Plug-and-play”

• Plug-and-play is important
• We reviewed auto-configuration

for switched LAN, and end hosts:
• The spanning tree algorithm
• DHCP (browse RFC1531 for details)

• Read [Perlman 11.2] for review

The regular ISP

• Spanning tree is not good enough
• Why?

• The basic routing problem
• Discover the topology of links and

nodes
• Compute a forwarding table for each

(intermediate) node
• Internet’s approach – distributed

routing protocol
• Compute shortest path for each

destination, and use that result for
forwarding table

• Why shortest path is reasonable?
• Is it the only choice?

Other requirements:
• Robust

• Self-stabilize
• No loops, black holes
• Fault tolerant, but avoid oscillation

• Scalable
• Manageable forwarding table size, even

for large nets
• Efficient

• Minimize number/frequency of control
messages

• Performance
• Shortest paths
• Load balanced

Many approaches

• Centralized vs distributed
• Centralized simpler, but requires more

admin, is harder to scale, and less robust
• Source-based vs router-based

• Source-based means routing done by the
source; each packet carries its path in the
header

• Single vs multiple path
• Multipath can help deal with congestion

• State-dependent vs state-independent
• Compute routes based on current network

load (e.g. delay)

• Periodic versus On-demand
• On-demand proposed for wireless

networks

• Internet picked distributed routing,
and router-based, single-path, state-
independent, and periodic

• Two distributed algorithms:
• Distance Vector
• Link State

• Congestion control is not the

responsibility of routing

Distance vector routing, by example

• Each router listens for neighbors’
routing messages

• In this example, R1 has 3 neighbors.
For destination A, the path
advertised by R4 is the shortest

• R1 put that information into its
forwarding table: for A, forward via
interface c, router R4, which costs 3
hops.

• All routers do the same, for all
destinations.

Rest of network

A

R1

R2 R3 R4

a
b

c

3 hops
from A

5 hops
from A 2 hops

from A

A c R4 3

Forwarding table
entry

The “count-to-infinity” problem

• The advantage with distance vector
is simplicity and memory efficiency

• One major disadvantage is slow
convergence, and the count to
infinity problem.

• If the link between R1 and R2 goes
down, R2 and R3 keep thinking R1
reachable via each other

• R3->R2: I can reach R1 in 2 hops

• R2->R3: I can reach R1 in 3 hops

• R3->R2: I can reach R1 in 4 hops

• …

• R2->R3: I can reach R1 in n hops

• When n = infinity, then R2 and R3
know R1 is not reachable

R1 R2 R3

Count to infinity example

Solutions for “count-to-infinity”

Split horizon
• R3’s best route to R1 is via R2, so it

tells R2 its distance to R1 is infinity
• Doesn’t always work: e.g. R4 and

R5 keep thinking D is reachable
Triggered update
• Normally neighbors exchange

updates every n (=30) seconds
• When a link is down, send updates

that triggers immediate updates
• Count to infinity faster
These two implemented in RIP

R4 R5

R6

D

Split horizon fails here

R1 R2 R3

Count to infinity example

Another solution to “count-to-infinity”

Path vector
• Include path information as well as

distance in distance vector
• Can exclude path with loops, or

going through self
This is adopted in BGP

AS1 AS2 AS3

“I can reach AS1 using
path (AS3, AS2, AS1)”

AS is a network, rather than a node

The basic steps of Link State Routing

Each router is responsible for
1. “meeting” its neighbor (end nodes) and learning their Ids
2. constructing a link state packet (LSP), containing

– Id
– Cost
for each neighbor (end node)

3. transmitting the LSP to all other routers
– Each router stores the most recently generated LSP from all other

routers
4. computing the shortest path for each destination and fill forwarding table
5. Periodically, or when link state changes, go back to step 2

• We will discuss the colored parts

Disseminating LSPs

LSP = Link State Packet

Basic requirement:
• for correct route computation,

each LSP must reach all routers

• Idea 1: Use current routing tables - Send
my LSPs to each router one-by-one as
normal data

– Routing tables derived from LSPs:
chicken-and-egg

• Idea 2: Flooding - Each router
sends/forwards an LSP to all neighbors
except “upstream” neighbor

– How to stop generating infinite
number of off-springs?

• Idea 3: Intelligent flooding - If the LSP
received is the same as locally stored
version, don’t forward

– But most recently received may not be
most recently generated, i.e. we need
to do “in order, intelligent flooding”

Disseminating LSPs (cont)

• Idea 4: Use timestamp in LSPs
– An error in using a future timestamp

can cause problems
– Need synchronized clocks to work

• Idea 5: Use Sequence number in LSPs
– Sequence number wraps around.

Given any x, half sequence numbers
greater than x, half smaller than x.

– Sequence number alone not enough
• Network may be partitioned

(sequence number get out of synch)
• Router may crash, and starts with

sequence number 0 after recovery,
old sequence number not meaningful

y > x

x

y < x

Disseminating LSPs (cont)

• Idea 6: Sequence number plus age
• (Each LSP times out after maximum age)
– When LSP is generated, age = MaxAge
– When LSP received, it overwrites current

LSP if seq number of new one is larger;
and it is further propagated;

– Age is decremented as LSP sits in
memory

• LSP with zero age is not propagated
• So a received LSP always has

nonzero age
– If stored LSP has zero age, a received

LSP is always accepted regardless of seq
number

Source

Sequence number

age

List of neighbors

Idea 6 was implemented in the original
ARPAnet
• Age is 3-bit field, unit is 8 seconds
• Max-age = 56 seconds
• New LSP generated every 60 seconds
• A rebooted router must wait 90 seconds

before sending out its new LSP – this is
to let its old LSP age to zero

The ARPAnet “incident”

• One day, ARPAnet stopped
working!

• Difficult to remotely diagnose
when routing is not working

• Rebooting a router, still broken!
• Each router’s queue was full of LSP

packets, all from same source S,
with 3 sequence numbers:

a < b < c < a
 with approx the same timestamp

• It is in a state it cannot get out of!
– The LSPs keep getting forwarded w/o

adjustment to age field
• They did not want to stop all routers
 - Made a patch to ignore all LSPs from faulty source
 - Fixed routers one by one
• True story!

a b

c

The lesson

• Designing distributed algorithms is tricky
• It needs to be self-stabilizing

– No matter how corrupted the
databases become, after faulty or
malicious component is removed,
system should return to normalcy in
reasonable amount of time.

• Need to be efficient
– New LSP every 60 seconds is too

frequent
• Need to be responsive as well

– Should not make a rebooted router to
wait new 90 seconds before sending
out its new LSP

Back to drawing board

The new LSP flooding algorithm

• Stop the sequence number from wrapping
– When seq number from a router S reaches

maximum value, no new LSP from S is
accepted till age of old one reaches 0

– Not responsive at largest seq number, but
this happens rarely since sequence number
space large (32 bits)

– Since sequence number no longer wraps, no
need for rebooted node to wait 90 seconds

• Max age is about 1 hour (improves
efficiency)

– Age is decremented (by at least 1) as LSP is
forwarded

• LSPs are acknowledged
– LSP is persistently forwarded until acked
– Ack assume received

• Self-stabilizing property proved

Consider the failure case before:

a c b a
No
change
in age

a c b a

Each LSP’s age is reduced by at last 1
per link, and further through each node

Coordinating LSPs and ACKs from multiple neighbors

• The sending of LSPs and Acks is not
based on single queue

• Each LSP has k flags, k = number of
router’s interfaces

• When LSP generated, a “send” flag set
for each interface

• When LSP received, store it, an “ack”
flag set for interface received from,
and “send” flag for rest of the
interfaces

• After sending LSP, “send” stays till
receiving ack, “send” reset to “ok”;

• After sending ack, “ack” reset to “ok”

• Each flag has three possible states: “send”, “ack”, “ok”

• This table visited periodically (retransmit timer)

• LSPs are aged, and deleted when (age=0) and (all flags
= “ok”)

Src nbr1 nbr2 nbr3 nbr4 nbr5

A ok ack ok send ack

B ok ok ok ok ok

C ack send send send send

D ok send ok ok ok

E send ok ack ok ok

Computing the shortest path: Dijkstra’s algorithm
explained by example

Compute routes at C:

LSPs:

Pseudo code of Dijkstra’s algorithm

dist[s] ←0 (distance to source vertex is zero)
for all v ∈ V–{s}
 do dist[v] ←∞ (set all other distances to infinity)
S←∅ (S, the set of visited vertices is initially empty)
Q←V (Q, the queue initially contains all vertices)
while Q ≠∅ (while the queue is not empty)
do u ← mindistance(Q,dist) (select the element of Q with the min. distance)
 S←S∪{u} (add u to list of visited vertices)
 for all v ∈ neighbors[u]
 do if dist[v] > dist[u] + w(u, v) (if new shortest path found)
 then d[v] ←d[u] + w(u, v) (set new value of shortest path)
return dist

Recap of Link State routing algorithm

• When a link state is changed (link
down, or up), the information is
quickly put into a LSP and
disseminated to all routers

• Each router has (same) up-to-date
“map” of the network

• Each router will compute new
shortest paths using Dijkstra’s
algorithm

• This results in fast reaction to
network changes

• In internet, there are two different
standards for Link State Routing:

• IS-IS protocol (IS = Intermediate
System; ES = End System)

• OSPF protocol

• IS-IS was first developed as part of
the OSI protocols; it was brought
to IETF for standardization

Comparison of DV and LS routing

• Memory (assume each router has k
neighbors)

• DV: in worse case, each DV is O(n) =>
O(k*n)

• LS: each router keeps n LSPs, each LSP
is O(k), so also O(k*n)

• But due to address aggregation each
DV << O(n)

• Bandwidth used by control
messages

• For LS, each LSP will always traverse
each link once

• For DV, some changes may not affect
distances (hence not propagated
much); other changes (e.g. count-to-
infinity situation) traverse each link
more than once

• Hard to compare

• Computation
• #links ~ O(n*k), #nodes = n
• Dijkstra’s algorithm takes

O(links*log(nodes))=O(n*k*logn)
• Comparing k distance vectors (each

O(n)) takes O(n*k)
• Further savings if each DV << O(n)
• But the algorithm may require several

passes

It is widely agreed

• DV has an edge in memory,
computation and simplicity

• LS converges much faster, which is
probably more important IF you can
afford the resources

Traffic engineering

• What kind of performance
problems ISPs often face?

• What can ISPs do?

• Load balancing
• Provide some performance

guarantee for some applications

Since routing decisions are made by
the routing algorithms, the ISPs can
only try to change the link weights
to influence the decisions
• This is called “traffic engineering”

Traffic engineering example

• Try to balance load on links by
adjusting weights

• Originally, weights are “static”,
representing the delay, or cost of a
link

• Traffic engineering inverts the
problem, by setting link weights to
achieve balanced load, only
performed by large ISPs

• Some challenges:
• Computation complexity
• Load is not static

• By decreasing the weight of indicated
link, some traffic can be moved there

3
2

2

1

1
3

1

4

5

3

3

Traffic engineering as an optimization problem

Traffic engineering can be formulated as
an optimization problem:
Input:

• Topology:
• Connectivity – a graph G=(V,E)
• Capacity – for each edge (i,j), a capacity c(i,j)

• Traffic matrix: offered load between
nodes in the network

• Demand = d(i,j)
• Cost function: for each link of capacity c

and demand d
• Cost = f(c,d)

Problem: setting weights to minimize
total cost

Limitations:
• In practice, traffic is rarely stationary,

but changing all the time
• Hence traffic engineering in practice

is usually ad hoc

Later, we will discuss Software Defined
Networks, and how traffic engineering
can be done more directly

In Inter-domain (inter-ISP) routing,
there are other techniques for traffic
engineering

Summary

• We reviewed different needs for
different network settings

• We explained three mostly
commonly used distributed routing
algorithms used in Internet:

• Spanning tree routing
• Distance vector routing
• Link State routing

• We explained the challenges in
designing these distributed
algorithms

Reading:
Radia Perlman,
Interconnections: Bridges,
Routers, Switches, and
Internetworking Protocols (2nd
Edition) 2nd Edition

	Routing in a single domain
	Motivation
	Outline
	Different type of networks
	Connectivity challenged networks
	Flooding
	On-demand routing
	Plug-and-play networks
	What is a bridge (now called switch)
	Bridge filtering table example
	Forwarding and filtering procedure
	One assumption
	Bridge spanning tree
	Spanning tree algorithm
	Example
	Example of a bigger spanning tree, and a poem
	Host configuration
	Auto-configuration
	Recap of “Plug-and-play”
	The regular ISP
	Many approaches
	Distance vector routing, by example
	The “count-to-infinity” problem
	Solutions for “count-to-infinity”
	Another solution to “count-to-infinity”
	The basic steps of Link State Routing
	Disseminating LSPs
	Disseminating LSPs (cont)
	Disseminating LSPs (cont)
	The ARPAnet “incident”
	The lesson
	The new LSP flooding algorithm
	Coordinating LSPs and ACKs from multiple neighbors
	Computing the shortest path: Dijkstra’s algorithm�explained by example
	Pseudo code of Dijkstra’s algorithm
	Recap of Link State routing algorithm
	Comparison of DV and LS routing
	Traffic engineering
	Traffic engineering example
	Traffic engineering as an optimization problem
	Summary

