
Routing in a single domain 

IERG5090 – Jan 16, 2017 



Motivation 

• How are nodes connected: 
• By links and intermediate nodes, 

such as switches, routers etc 
• Why are intermediate nodes 

needed? 
• What are the advantages for 

different network topologies? 
• What do intermediate nodes do to 

provide the connection? 

Example network topologies 



Outline 

• We take a systems point of view 
• Consider different types of 

scenarios, and discuss the suitable 
routing mechanism 

• Give more details to those widely 
used in the internet: 

• Bridge spanning tree algorithm 
• Distance vector algorithm 
• Link state algorithm 

 



Different type of networks 

• Connectivity-challenged networks 
• Battlefield or post-disaster emergency 

networks 
• Plug-and-play networks 

• Home, campus, SME, sensor networks 
• Regular case 

• A regular ISP, e.g. Large campus, city 
level ISPs, cross university, hospital, 
government networks 

• Performance critical networks 
• Data center, Google’s server network, 

special purpose teleconference 
network, bank’s or corporate network 
with sensitive data 

 
Should we use the same kind of 
routing mechanism for all these 
scenarios? 



Connectivity challenged networks 

• Try brute-force methods to get 
connected and communicate 

• Flooding: send each message to all 
nodes in vicinity; each node tries to 
forward to other nodes (except up-
streaming node); use scope (TTL) 
control. 

Broadcast LANs (e.g. Ethernet) reply partly 
on flooding 
• On-demand routing: in wireless 

settings, it is considered too costly to 
periodically exchange topological 
information among nodes; hence build 
routes (forwarding table) on demand 

Wireless Ad hoc networks, e.g. AODV 
protocol 

 

• In these networks, there is no 
background process to set up routes 



Flooding 

• Advantage? 
• Simple 
• All paths explored 

• Disadvantage? 
• “Disturbs” all nodes 
• Inefficient, uses all paths 
• Uncertain reliability 

• If sending multiple copies for each 
packet, overhead is high 

• Absolute reliability is hard (ack 
requires more flooding! 

 

• Maybe okay for scenarios reliability 
and efficiency is not that 
important, and some amount of 
communication is desperately 
needed. 



On-demand routing 

• Path discovery 
• Source floods RReq, and get RRep back  

• Routing table management 
• Routing table stores soft state, timed out 

when no activity 
• Reverse path not used will be timeout 
• Inactive forward path will be timed out with a 

different timer 

• Path maintenance 
• If source moves, re-initiate path discovery 
• If intermediate or dest moves, re-send RRep 

• Local connectivity management 
• If no data, periodically broadcast hellos 

(TTL=1) 
 

 

destination 

source 

Timeout 

forward path formation 

Ad hoc wireless networks: 
Very hot research for a few years, but few 
applications in practice 

 



Plug-and-play networks 

• Primary requirement 
• Self configuration, plug-and-play, as 

much as possible 
• Should be like a phone: plug it into 

the wall, it works 
• Switch connected LANs 

• No need to configure IP addresses 
(until you need to be connected to 
rest of Internet) 

• Spanning tree based forwarding, self 
configured 

• “Switch” is used to be called a 
“Bridge”, used to connect LANs 
(nowadays, mostly Ethernets) 

 

• The difference is: 
• The topology is stable 
• Nodes are not moving around 

• The switched LAN technology is 
widely deployed, but 

• It is not part of the network layer of 
internet 

• It is done in the data link layer 



What is a bridge (now called switch) 

• Data Link level store-and-forward 
device that connects two or more 
LAN (Ethernet segments) 

• Bridge isolates collision domains 
since it buffers packets 

• Can connect LANs of different 
types 

 
Note: Think of LAN as Ethernet, or 
something similar; all nodes hear 
each other. 

 

• bridges learn which hosts can be 
reached through which interfaces: 
maintain filtering tables 

• when packet received, bridge “learns”  
location of sender: incoming LAN 
segment 

• records sender location in filtering 
table 

• filtering table entry:  
• (Node LAN Address, Bridge Interface, 

Time Stamp) 
• stale entries in Filtering Table dropped 

(TTL can be 60 minutes) 



Bridge filtering table example 

Suppose C sends packet to D and D 
replies back with packet to C 
 

C sends packet, bridge has no info 
about D, so floods to both LANs  

• bridge notes that C is on port 1  
• packet ignored on upper LAN  
• frame received by D  

D generates reply to C, sends  
• bridge sees packet from D  
• bridge notes that D is on interface 2  
• bridge knows C on interface 1, so 

selectively forwards packet out via 
interface 1  



Forwarding and filtering procedure 

if destination is on LAN on which packet was received 
then drop the packet 
else { lookup filtering table 
          if entry found for destination 

then forward the packet on interface indicated; 
else flood;    /* forward on all but the interface  

 on which the packet arrived*/ 
} 

 

 



One assumption 

• The learning algorithm still works even 
when multiple bridges are connecting 
many LANs, provided the bridges and 
LANs do not form a loop! 
 

• - When h1 sends a packet to h2, C 
thinks h1 is to its left 

• - When B forwards h1’s packet, C 
thinks h1 is to its right 

A B 

C h1 h2 



Bridge spanning tree 

• for increased reliability, 
desirable to have redundant, 
alternate paths from source to 
destination 

• with multiple simultaneous 
paths, cycles result - bridges 
may multiply and forward 
packets forever 

• solution: organize bridges in a 
spanning tree by disabling 
subset of interfaces 

Disabled 
 



Spanning tree algorithm 

• A protocol to decide which 
interfaces to disable, to ensure 

• complete connectivity 
• no loops 

• Each bridge sends a configuration 
msg to a port unless a better one 
heard on that LAN  

• Configuration message contains 
• Root id 
• Cost = #hops from Root 
• Transmitting bridge’s id 

Ranking of configuration msgs: 
• If C1’s root id is lower than C2’s 
• If root ids equal, then C1’s cost is lower 
• If root ids and costs same, then C1’s 

transmitter’s id is lower than C2’s 
Then C1 ranks higher than C2 
 
A bridge’s own configuration msg: 
• Root id is its own id or the lowest heard 

so far 
• Cost is the number of hops from root id (0 

if self) 
 

 



Example 

These are configuration msgs heard on 
each port: 

               Root      Cost        Transmitter id 
Port 1       12           9                51 
Port 2       12          8                 47 
Port 3       81          0                 81 
Port 4       15          3                 27 

 

The bridge’s own id is 15 
So its configuration msg is (12,9,15) 
This is transmitted on port 1, 3, and 4 
The bridge that wins for each LAN is the 

designated bridge for that LAN 
 

Prove result is a tree: 
• In steady state: 

• A single root is elected 
• Each bridge knows its shortest distance to the root 
• only one bridge transmits conf msgs on each LAN 

(the designated bridge) – this is the bridge that will 
forward packets from that LAN towards the root 

• Every bridge determines its port that gives its best 
path from itself to the root – that port is called a 
root port 

• Only the root ports, and the ports on which “self” 
has been selected as designated bridge are 
enabled.  All other ports are disabled. 

• Result: Each designated bridge is a “parent” and 
the other bridges attached to the same LAN are 
its children. 

• Since each bridge has only one root port, hence a 
tree 
 



Example of a bigger spanning tree, and a poem 

2  1  62 

2  2  12 

2  2  5 

2  2  17 

2  2 78 

2  1  7 
I think that I shall never see 
A graph more lovely than a tree. 
A tree whose crucial property 
Is loop-free connectivity. 
A tree which must be sure to span 
So packets can reach every LAN. 
First the Root must be selected 
By ID it is elected. 
Least cost paths from Root are traced 
In the tree these paths are placed. 
A mesh is made by folks like me. 
Then bridges find a spanning tree. 
 
                     Radia Perlman 
                     inventor of the spanning tree alg 



Host configuration 

• Can it be completely plug-and-
play? 

What does a host need in order to 
operate? 

• IP address (plus network mask) 
• Local DNS server 
• Router addresses 
• Domain name (specially if web server) 

• name to address mapping in DNS 
 

Anything else? 
• Many other things, e.g. application 

settings, security features… 
• Most can operate based on default 

settings 



Auto-configuration 

Basic idea: ask the network 
 
• RARP: given one’s MAC address, 

return IP (reverse of ARP, which 
returns MAC given IP) 

• Dynamic Host Configuration 
Protocol (DHCP) 

• DHCP does not use fixed mapping, 
instead “leases” IP addresses  

• Configure local name server, router 
list as well 

• Specially useful for mobile hosts 
-- Plug-and-play, zeroconfig (IETF WG) 

 
 

 
 

• DHCP server returns its own address 
for future use by client 

• Given leased IP address, client may 
test it using ARP 

• Upon expiry, the client can “renew” 
the lease 
 



Recap of “Plug-and-play” 

• Plug-and-play is important 
• We reviewed auto-configuration 

for switched LAN, and end hosts: 
• The spanning tree algorithm 
• DHCP (browse RFC1531 for details) 

• Read [Perlman 11.2] for review 
 

 



The regular ISP 

• Spanning tree is not good enough 
• Why? 

• The basic routing problem 
• Discover the topology of links and 

nodes 
• Compute a forwarding table for each 

(intermediate) node 
• Internet’s approach – distributed 

routing protocol 
• Compute shortest path for each 

destination, and use that result for 
forwarding table 

• Why shortest path is reasonable? 
• Is it the only choice? 

 

Other requirements: 
• Robust 

• Self-stabilize 
• No loops, black holes 
• Fault tolerant, but avoid oscillation 

• Scalable 
• Manageable forwarding table size, even 

for large nets 
• Efficient 

• Minimize number/frequency of control 
messages 

• Performance 
• Shortest paths 
• Load balanced 



Many approaches 

• Centralized vs distributed 
• Centralized simpler, but requires more 

admin, is harder to scale, and less robust 
• Source-based vs router-based 

• Source-based means routing done by the 
source; each packet  carries its path in the 
header 

• Single vs multiple path 
• Multipath can help deal with congestion 

• State-dependent vs state-independent 
• Compute routes based on current network 

load (e.g. delay) 

• Periodic versus On-demand 
• On-demand proposed for wireless 

networks 
 

• Internet picked distributed routing, 
and router-based, single-path, state-
independent, and periodic 
 

• Two distributed algorithms: 
• Distance Vector 
• Link State 

 
• Congestion control is not the 

responsibility of routing 



Distance vector routing, by example 

• Each router listens for neighbors’ 
routing messages 

• In this example, R1 has 3 neighbors. 
For destination A, the path 
advertised by R4 is the shortest 

• R1 put that information into its 
forwarding table: for A, forward via 
interface c, router R4, which costs 3 
hops. 

• All routers do the same, for all 
destinations. 

 

Rest of network 

A 

R1 

R2 R3 R4 

a 
b 

c 

3 hops 
from A 

5 hops 
from A 2 hops 

from A 

A        c       R4        3 

Forwarding table 
entry 

 



The “count-to-infinity” problem 

• The advantage with distance vector 
is simplicity and memory efficiency 

• One major disadvantage is slow 
convergence, and the count to 
infinity problem. 

• If the link between R1 and R2 goes 
down, R2 and R3 keep thinking R1 
reachable via each other 
 

• R3->R2: I can reach R1 in 2 hops 

• R2->R3: I can reach R1 in 3 hops 

• R3->R2: I can reach R1 in 4 hops 

• … 

• R2->R3: I can reach R1 in n hops 

 

• When n = infinity, then R2 and R3 
know R1 is not reachable 
 

R1 R2 R3 

Count to infinity example 



Solutions for “count-to-infinity” 

Split horizon  
• R3’s best route to R1 is via R2, so it 

tells R2 its distance to R1 is infinity 
• Doesn’t always work: e.g. R4 and 

R5 keep thinking D is reachable 
Triggered update 
• Normally neighbors exchange 

updates every n (=30) seconds 
• When a link is down, send updates 

that triggers immediate updates 
• Count to infinity faster 
These two implemented in RIP 

 

R4 R5 

R6 

D 

Split horizon fails here 

R1 R2 R3 

Count to infinity example 

 



Another solution to “count-to-infinity” 

Path vector 
• Include path information as well as 

distance in distance vector 
• Can exclude path with loops, or 

going through self 
This is adopted in BGP 

 

AS1 AS2 AS3 

“I can reach AS1 using 
path (AS3, AS2, AS1)” 

AS is a network, rather than a node 

 



The basic steps of Link State Routing 

Each router is responsible for 
1. “meeting” its neighbor (end nodes) and learning their Ids  
2. constructing a link state packet (LSP), containing 

– Id 
– Cost 
for each neighbor (end node) 

3. transmitting the LSP to all other routers 
– Each router stores the most recently generated LSP from all other 

routers 
4. computing the shortest path for each destination and fill forwarding table 
5. Periodically, or when link state changes, go back to step 2 

 
• We will discuss the colored parts 

 



Disseminating LSPs 

LSP = Link State Packet 
 
Basic requirement:  
• for correct route computation, 

each LSP must reach all routers 
 

• Idea 1: Use current routing tables - Send 
my LSPs to each router one-by-one as 
normal data 

– Routing tables derived from LSPs: 
chicken-and-egg 

• Idea 2: Flooding - Each router 
sends/forwards an LSP to all neighbors 
except “upstream” neighbor 

– How to stop generating infinite 
number of off-springs? 

• Idea 3: Intelligent flooding - If the LSP 
received is the same as locally stored 
version, don’t forward 

– But most recently received may not be 
most recently generated, i.e. we need 
to do “in order, intelligent flooding” 



Disseminating LSPs (cont) 

• Idea 4: Use timestamp in LSPs 
– An error in using a future timestamp 

can cause problems 
– Need synchronized clocks to work 

• Idea 5: Use Sequence number in LSPs 
– Sequence number wraps around.  

Given any x, half sequence numbers 
greater than x, half smaller than x. 

– Sequence number alone not enough 
• Network may be partitioned 

(sequence number get out of synch) 
• Router may crash, and starts with 

sequence number 0 after recovery, 
old sequence number not meaningful 

y > x 

x 

y < x 

 



Disseminating LSPs (cont) 

• Idea 6: Sequence number plus age 
• (Each LSP times out after maximum age) 
– When LSP is generated, age = MaxAge 
– When LSP received, it overwrites current 

LSP if seq number of new one is larger; 
and it is further propagated; 

– Age is decremented as LSP sits in 
memory 

• LSP with zero age is not propagated 
• So a received LSP always has 

nonzero age 
– If stored LSP has zero age, a received 

LSP is always accepted regardless of seq 
number 

 

Source 

Sequence number 

age 

List of neighbors 

Idea 6 was implemented in the original 
ARPAnet 
• Age is 3-bit field, unit is 8 seconds 
• Max-age = 56 seconds 
• New LSP generated every 60 seconds 
• A rebooted router must wait 90 seconds 

before sending out its new LSP – this is 
to let its old LSP age to zero 



The ARPAnet “incident” 

• One day, ARPAnet stopped 
working! 

• Difficult to remotely diagnose 
when routing is not working 

• Rebooting a router, still broken! 
• Each router’s queue was full of LSP 

packets, all from same source S, 
with 3 sequence numbers:  

a < b < c < a 
   with approx the same timestamp 

 

• It is in a state it cannot get out of! 
– The LSPs keep getting forwarded w/o 

adjustment to age field 
• They did not want to stop all routers 
  -  Made a patch to ignore all LSPs from faulty source 
   -   Fixed routers one by one 
• True story! 

a b 

c 



The lesson 

• Designing distributed algorithms is tricky 
• It needs to be self-stabilizing 

– No matter how corrupted the 
databases become, after faulty or 
malicious component is removed, 
system should return to normalcy in 
reasonable amount of time. 

• Need to be efficient 
– New LSP every 60 seconds is too 

frequent 
• Need to be responsive as well 

– Should not make a rebooted router to 
wait new 90 seconds before sending 
out its new LSP 

Back to drawing board 



The new LSP flooding algorithm 

• Stop the sequence number from wrapping 
– When seq number from a router S reaches 

maximum value, no new LSP from S is 
accepted till age of old one reaches 0 

– Not responsive at largest seq number, but 
this happens rarely since sequence number 
space large (32 bits) 

– Since sequence number no longer wraps, no 
need for rebooted node to wait 90 seconds 

• Max age is about 1 hour (improves 
efficiency) 

– Age is decremented (by at least 1) as LSP is 
forwarded 

• LSPs are acknowledged 
– LSP is persistently forwarded until acked 
– Ack assume received 

• Self-stabilizing property proved 

Consider the failure case before: 

a c b a 
No 
change 
in age 

a c b a 

Each LSP’s age is reduced by at last 1 
per link, and further through each node 



Coordinating LSPs and ACKs from multiple neighbors 

• The sending of LSPs and Acks is not 
based on single queue 

• Each LSP has k flags, k = number of 
router’s interfaces 

• When LSP generated, a “send” flag set 
for each interface 

• When LSP received, store it, an “ack” 
flag set for interface received from, 
and “send” flag for rest of the 
interfaces 

• After sending LSP, “send” stays till 
receiving ack, “send” reset to “ok”; 

• After sending ack, “ack” reset to “ok” 
 

• Each flag has three possible states: “send”, “ack”, “ok” 

• This table visited periodically (retransmit timer) 

• LSPs are aged, and deleted when (age=0) and (all flags 
= “ok”) 

Src    nbr1   nbr2   nbr3   nbr4   nbr5 

A         ok      ack     ok    send    ack 

B         ok      ok       ok      ok       ok 

C        ack    send   send  send   send 

D        ok      send     ok     ok        ok 

E       send     ok       ack    ok       ok 



Computing the shortest path: Dijkstra’s algorithm 
explained by example 

Compute routes at C: 

LSPs: 



Pseudo code of Dijkstra’s algorithm 

dist[s] ←0   (distance to source vertex is zero) 
for all v ∈ V–{s} 
    do dist[v] ←∞   (set all other distances to infinity) 
S←∅     (S, the set of visited vertices is initially empty)  
Q←V    (Q, the queue initially contains all vertices) 
while Q ≠∅   (while the queue is not empty) 
do  u ← mindistance(Q,dist)  (select the element of Q with the min. distance) 
    S←S∪{u}   (add u to list of visited vertices) 
    for all v ∈ neighbors[u] 
        do if dist[v] > dist[u] + w(u, v) (if new shortest path found) 
            then d[v] ←d[u] + w(u, v)  (set new value of shortest path) 
return dist 



Recap of Link State routing algorithm 

• When a link state is changed (link 
down, or up), the information is 
quickly put into a LSP and 
disseminated to all routers 

• Each router has (same) up-to-date 
“map” of the network 

• Each router will compute new 
shortest paths using Dijkstra’s 
algorithm 

• This results in fast reaction to 
network changes 
 

• In internet, there are two different 
standards for Link State Routing: 

• IS-IS protocol (IS = Intermediate 
System; ES = End System) 

• OSPF protocol 
 

• IS-IS was first developed as part of 
the OSI protocols; it was brought 
to IETF for standardization 



Comparison of DV and LS routing 

• Memory (assume each router has k 
neighbors) 

• DV: in worse case, each DV is O(n) => 
O(k*n) 

• LS: each router keeps n LSPs, each LSP 
is O(k), so also O(k*n) 

• But due to address aggregation each 
DV << O(n) 

• Bandwidth used by control 
messages 

• For LS, each LSP will always traverse 
each link once 

• For DV, some changes may not affect 
distances (hence not propagated 
much); other changes (e.g. count-to-
infinity situation) traverse each link 
more than once 

• Hard to compare 

• Computation 
• #links ~ O(n*k), #nodes = n 
• Dijkstra’s algorithm takes 

O(links*log(nodes))=O(n*k*logn) 
• Comparing k distance vectors (each 

O(n)) takes O(n*k) 
• Further savings if each DV << O(n) 
• But the algorithm may require several 

passes 
 
It is widely agreed 

• DV has an edge in memory, 
computation and simplicity 

• LS converges much faster, which is 
probably more important IF you can 
afford the resources 

 



Traffic engineering 

• What kind of performance 
problems ISPs often face? 

• What can ISPs do? 

• Load balancing 
• Provide some performance 

guarantee for some applications 
 

Since routing decisions are made by 
the routing algorithms, the ISPs can 
only try to change the link weights 
to influence the decisions 
• This is called “traffic engineering” 

 



Traffic engineering example 

• Try to balance load on links by 
adjusting weights 

• Originally, weights are “static”, 
representing the delay, or cost of a 
link 

• Traffic engineering inverts the 
problem, by setting link weights to 
achieve balanced load, only 
performed by large ISPs 

• Some challenges: 
• Computation complexity 
• Load is not static 

 

• By decreasing the weight of indicated 
link, some traffic can be moved there 

3 
2 

2 

1 

1 
3 

1 

4 

5 

3 

3 



Traffic engineering as an optimization problem 

Traffic engineering can be formulated as 
an optimization problem: 
Input: 

• Topology:  
• Connectivity – a graph G=(V,E) 
• Capacity – for each edge (i,j), a capacity c(i,j) 

• Traffic matrix: offered load between 
nodes in the network 

• Demand = d(i,j) 
• Cost function: for each link of capacity c 

and demand d 
• Cost = f(c,d) 

Problem: setting weights to minimize 
total cost 

 

Limitations: 
• In practice, traffic is rarely stationary, 

but changing all the time 
• Hence traffic engineering in practice 

is usually ad hoc 
 
Later, we will discuss Software Defined 
Networks, and how traffic engineering 
can be done more directly 
 
In Inter-domain (inter-ISP) routing, 
there are other techniques for traffic 
engineering 



Summary 

• We reviewed different needs for 
different network settings 

• We explained three mostly 
commonly used distributed routing 
algorithms used in Internet: 

• Spanning tree routing 
• Distance vector routing 
• Link State routing 

• We explained the challenges in 
designing these distributed 
algorithms 

Reading: 
Radia Perlman, 
Interconnections: Bridges, 
Routers, Switches, and 
Internetworking Protocols (2nd 
Edition) 2nd Edition 
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