
 
Towards the Real-Time Web: 
SPDY, HTTP/2, WebSocket 

QUIC and WebRTC  
 
 
 

Prof. Wing C. Lau
IERG5090

Spring 2017
 

Real-Time Web 1

2

Acknowledgements 
The following Lecture Slides are adapted from various sources
including those shown below. The copyright of the materials belongs
to the original authors:
■  http://www.html5rocks.com/en/tutorials/websockets/basics/
■  http://www.codeproject.com/Articles/531698/Introduction-to-HTML5-

WebSocket
■  http://www.slideshare.net/mobile/MarceloJabali/html5-websocket-

introduction
■  http://www.slideshare.net/peterlubbers/html5-realtime-and-connectivity
■  http://www.infoq.com/presentations/Real-time-Web-WebSocket-SPDY
■  http://html5videoguide.net/presentations/WebDirCode2012
■  http://www.chromium.org/spdy/
■  http://en.wikipedia.org/wiki/SPDY
■  IERG3090 Lecture Notes of Prof. Jack Lee
■  Presentation slides of Lien Gao and Tujia Chen of CMSC5709
■  Ilya Grigorik, “HTTP/2 (RFC7540) is here, let’s optimize” O’Reilly Velocity

Conference, May 2015
■  Jana Iyengar, “QUIC – Redefining the Internet,” IETF93 BarBOF.

HTTP: hypertext transfer protocol

■  WWW’s application layer
protocol

■  client/server model
◆  client: browser that

requests, receives,
“displays” WWW objects

◆  server: WWW server
sends objects in
response to requests

◆  Stateless
■  Protocol Encoding: text-

based in readable English

PC running
Explorer

Server
running

NCSA Web
server

Mac running
Navigator

Real-Time Web 3

4

Evolution of  
Hyper-Text Transfer Protocol (HTTP)

■  1991 – Version 0.9 (first
specification as W3C Notes
written by Tim Berners-Lee and
his team)
◆  http://www.w3.org/Protocols/

HTTP/AsImplemented.html
■  1996 – Version 1.0 (RFC1945)

◆  http://tools.ietf.org/html/
rfc1945

■  1999 – Version 1.1 (RFC2616)
◆  and the formalization of

REST-style architecture of
the Web by W3C, with major
contributions made by Roy
T. Fielding.

◆  Current standard used by
most web servers/browsers REST = REpresentational State Transfer

Shortcomings of HTTP/1.0
■  non-persistent connection: New connection for each request puts

burden on server:
◆  Each TCP connection must be established and managed
◆  Each TCP connection allocates send and receive buffers and

maintains state variables
■  Each object suffers 2 round-trip times of delay

◆  partially alleviated by using multiple parallel connections
■  Each object suffers TCP slow-start delay

◆  also partially alleviated by using multiple parallel connections
■  Limited cache control

Real-Time Web 5

Non-persistent Vs. Persistent Vs. Pipelined

Real-Time Web 6

Improvements in HTTP/1.1

■  Persistent connections: allows connections to remain open over
several requests

■  Request pipelining (default for HTTP/1.1)
■  Introduces a variety of directives to control caching on proxies

and in clients
■  new protocol tracing feature for debugging proxy chains

Real-Time Web 7

Persistent HTTP

Nonpersistent HTTP issues:
■  requires 2 RTTs per object
■  OS must work and allocate host

resources for each TCP
connection

■  but browsers often open parallel
TCP connections to fetch
referenced objects

Persistent HTTP
■  server leaves connection open

after sending response
■  subsequent HTTP messages

between same client/server are
sent over connection

Persistent without pipelining:
■  client issues new request only

when previous response has
been received

■  one RTT for each referenced
object

Persistent with pipelining:
■  default in HTTP/1.1
■  client sends requests as soon

as it encounters a referenced
object

■  as little as one RTT for all the
referenced objects

Real-Time Web 8

9

Challenges of Pipelined HTTP 
■  HTTP is supposed to be stateless but some web sites

implement stateful web sessions anyway using techniques such
as cookies or URL rewrite.

■  If a web session is stateful then the sequence of requests
generation and execution may become inter-dependent (i.e.,
non-idempotent).

■  How to determine if a web session is stateful, and if it is safe to
send the subsequent requests before prior request is
completed?

■  Not all servers/proxies implement pipelining correctly.
■  Head-of-line blocking

◆  A request loading a large object (e.g., large image) may
block the delivery of subsequent objects.

◆  All subsequent pipelined requests will be blocked by the
head-of-line request as requests are processed in FIFO
manner.

◆  This can be circumvented using HTTP Range request.

10

Concurrent HTTP Sessions 
■  Implemented by most browsers
■  After the initial HTTP connection which retrieves the HTML

body, initiate multiple (4~6) HTTP sessions (per domain) to
retrieve multiple objects (e.g., images) in parallel.

■  Purposes
◆  Effectively multiplies the congestion window size by the

number of HTTP connections
◆  Potentially overlaps the server-side processing time of

multiple HTTP requests

11

What is SPDY ?
■  SPDY (pronounced speedy) was an experimental networking

protocol developed primarily at Google for transporting web
content.

■  Although not a standard protocol, the group developing SPDY
submitted it to IETF as the initial basis of HTTP/2
standardization.

■  SPDY had reference implementations early on in both Google
Chrome and Mozilla Firefox.

■  SPDY is similar to HTTP, with particular goals to reduce web
page load latency and improve web security.

■  SPDY achieves reduced latency through compression,
multiplexing, and prioritization.

■  In lab tests, SPDY was shown to achieve up to 64% reductions
in page load times compared to HTTP.

Source: Wikipedia and SPDY’s official whitepaper and protocol specification,
available at http://www.chromium.org/spdy/

12

Design Goals for SPDY
■  To target a 50% reduction in page load time.
■  To minimize deployment complexity. SPDY uses TCP as the

underlying transport layer, so requires no changes to existing
networking infrastructure.

■  To avoid the need for any changes to content by website authors.
The only changes required to support SPDY are in the client user
agent and web server applications.

■  To bring together like-minded parties interested in exploring protocols
as a way of solving the latency problem. The SPDY team hopes to
develop this new protocol in partnership with the open-source
community and industry specialists.

13

Recap: Limitations of HTTP over TCP 
= SPDY’s Design Focus

■  Single HTTP request per TCP connection. Even Pipelined HTTP is
FIFO only.

■  Allow only client-initiated request. Server cannot push an data object
to the client.

■  No compression of HTTP request and response headers (various
from hundreds to several KBs, depending on cookies and user agent
strings).

■  Redundant HTTP header fields across multiple requests on the
same session (e.g., User-Agent seldom changes for the same
client).

■  Content compression is optional rather than mandatory.

14

Specific Technical Goals for SPDY
■  To allow many concurrent HTTP requests to run across a single TCP

session.
■  To reduce the bandwidth currently used by HTTP by compressing

headers and eliminating unnecessary headers.
■  To define a protocol that is easy to implement and server-efficient.

The SPDY team hopes to reduce the complexity of HTTP by cutting
down on edge cases and defining easily parsed message formats.

■  To enable the server to initiate communications with the client and
push data to the client whenever possible.

■  To make SSL the underlying transport protocol, for better security and
compatibility with existing network infrastructure.
◆  Mandatory Use of SSL by SPDY has been a quite Controversial

Decision !
◆  Although SSL does introduce a latency penalty, the SPDY team

believes that the long-term future of the web depends on a secure
network connection.

◆  The use of SSL is necessary to ensure that communication across
existing proxies is not broken.

15

Architecture of SPDY

■  SPDY acts as a session layer between HTTP and SSL/TCP

■  SPDY sessions are bi-directional and can be initiated by both the
client and the server.

Multiplexing HTTP Streams over SPDY

Real-Time Web 16

17

Architecture of SPDY (cont’d)
■  The SPDY Specification is split into two parts:

◆  A Framing layer, which multiplexes independent, length-
prefixed frames into a SSL/TCP connection, and

◆  an HTTP layer, which specifies the mechanism for overlaying
HTTP request/response pairs on top of the framing layer.

HTTP Layering over SPDY	

■  The features of HTTP are mostly unchanged.

■  All of the application request and response header
semantics are preserved, although the syntax of
conveying those semantics has changed.

■  The rules from the HTTP/1.1 specification in RFC2616
apply with some changes.
◆  Connection Management	
◆  HTTP Request/Response	
◆  Server Push Transactions	

Real-Time Web 18

Key Features of SPDY vs. HTTP	
■  Multiplexed requests

◆  There is no limit to the number of requests that can be issued
concurrently over a single SPDY connection.	

■  Prioritized requests
◆  Clients can request certain resources to be delivered first. This avoids

the problem of congesting the network channel with non-critical
resources when a high-priority request is pending.	

■  Compressed headers
◆  Clients today send a significant amount of redundant data in the form

of HTTP headers. Because a single web page may require 50 or 100
sub-requests, this data is significant.	

■  Server pushed streams
◆  Server Push enables content to be pushed from servers to clients

without a request.	

Real-Time Web 19

DSL 2 Mbps downlink,
375 kbps uplink

Cable 4 Mbps downlink,
1 Mbps uplink

 
	

Average ms Speedup Average ms Speedup

HTTP 3111.916  
	

2348.188  
	

SPDY basic multi-domain* connection / TCP  2242.756   27.93%   1325.46   43.55%  

SPDY basic single-domain* connection / TCP  1695.72 45.51% 933.836 60.23%

SPDY single-domain + server push / TCP  1671.28 46.29% 950.764 59.51%

SPDY single-domain + server hint / TCP  1608.928 48.30% 856.356 63.53%

SPDY basic single-domain / SSL   1899.744   38.95%   1099.444   53.18  

SPDY single-domain + client prefetch / SSL   1781.864   42.74%   1047.308   55.40%

Average page load times for top 25 websites

Performance of SPDY vs. HTTP/1.x	

Real-Time Web 20

Support and Usage of SPDY 	
■  Browsers supporting SPDY:

◆  Google Chrome/Chromium,
◆  Firefox (version 11+, below 13 disabled by default)

✦  It can be turned on through the network.http.spdy.enabled
preference in about:config.

◆  Opera browser (version 12.10+)
◆  Amazon's Silk browser for the Kindle Fire uses the SPDY

protocol to communicate with their EC2 service for Web page
rendering.

■  Services support SPDY
◆  Many Google services (e.g. Google search, Gmail, Chrome-

sync, Google-Ad-servers and other SSL-enabled services) use
SPDY when available.

◆  Twitter, Facebook, Jetty Web Server, F5 Networks, NGINX,
Wordpress.com	

Ever wonder how come Chrome is faster accessing certain web sites?
Real-Time Web 21

From SPDY to HTTP/2	
■  So should we all praise Google and switch to SPDY ? Not Really !
■  Real-world performance gain of SPDY vs. https or http may not be as

impressive as the lab-tests indicated:
◆  http://www.guypo.com/technical/not-as-spdy-as-you-thought/

■  SPDY will hit server and client CPUs much harder than traditional HTTP.
■  Making SSL mandatory is a strange move.

◆  Some argues that it would pave the way for more man-in-the-middle
attacks.

■  1st Draft of HTTP/2 was published by the IETF httpbis working group on
November 28, 2012, which is a direct copy of SPDY
◆  Changes in the protocol were made during the subsequent IETF

standardization process which introduced various differences
between HTTP/2 and SPDY.

■  In Feb 2015, Google announced plans to remove support for SPDY in
Chrome in favor of support for HTTP/2

■  RFC7540 (HTTP/2) and RFC7541 (HPACK), both IETF proposed
standards, were published in May 2015.

■  HTTP/2 had already surpassed SPDY in adoption by May 2015.
Real-Time Web 22

 *bis = Encore (in Latin)

“9% of all Firefox (M36) HTTP
transactions are happening over HTTP/2.
There are actually more HTTP/2
connections made than SPDY ones. This
is well exercised technology.”
Feb 18, 2015 - Patrick McManus, Mozilla

New TLS + NPN/ALPN connections in
Chrome:
~27% negotiate HTTP/1
~28% negotiate SPDY/3.1
~45% negotiate HTTP/2
May 26, 2015 - Chrome telemetry

http://caniuse.com/#feat=spdy

http://caniuse.com/#feat=spdy

http://caniuse.com/#feat=HTTP%2F2

Differences b/w SPDY and HTTP/2	

Real-Time Web 28

1.  One TCP connection

2.  Request → Stream
o  Streams are multiplexed
o  Streams are prioritized

3.  Binary framing layer
o  Prioritization
o  Flow control
o  Server push

4.  Header compression
(HPACK)

HTTP/2 Architecture Overview

HTTP/2 binary framing 101

●  HTTP messages are
decomposed into one or
more frames
o  HEADERS for meta-data
o  DATA for payload
o  RST_STREAM to cancel
o  ...

●  Each frame has a common

header
o  9-byte, length prefixed
o  Easy and efficient to

parse

Basic data flow in HTTP/2

Streams are multiplexed because frames
can be interleaved
●  All frames (e.g. HEADERS, DATA, etc) are sent over single

TCP connection
●  Frame delivery is prioritized based on stream dependencies

and weights
●  DATA frames are subject to per-stream and connection flow

control

HPACK header compression

●  Literal values are (optionally) encoded with a static
Huffman code

●  Previously sent values are (optionally) indexed
o  e.g. “2” in above example expands to “method: GET”

HPACK header compression (more)

For a deep(er) dive on
HTTP/2 protocol, grab
the free book at the
O’Reilly booth, or…

Read it online (free):
hpbn.co/http2

WebSocket

Real-Time Web 35

Recalling the original Socket
■  process sends/receives

messages to/from its socket
■  socket analogous to door

◆  sending process shoves
message out door

◆  sending process relies on
transport infrastructure on other
side of door which brings
message to socket at receiving
process

■  Support both blocking and non-
blocking calls

=> Support both synchronous and
Asynchronous mode of operations

process

TCP with
buffers,
variables

socket

host or
server

process

TCP with
buffers,
variables

socket

host or
server

Internet

controlled
by OS

controlled by
app developer

Can we provide similar abstraction of Network Service to a Web Application directly ?

WebSocket (ws:// or wss://)
■  Part of the original HTML5 effort to enhance REAL-TIME, asynchronous, bi-

directional communications between the browser and the web-server
■  Provide full-duplex communications channels over a single TCP connection

by carrying sub-protocols, e.g. SOAP, XMPP, JSON-RPC
■  Over-the-wire protocol standardized by the IETF as RFC 6455
■  WebSocket APIs available for Javascripts & other programming languages

◆  Some Server-side Implementations:
✦  Node.js – Socket.IO, WebSocket.Node, ws
✦  Java – jetty
✦  Python – pywebsocket, Tornado
✦  C++ - libwebsockets
✦  .NET - SuperWebSocket

◆  Browser-side Implementation:

Real-Time Web 37

Overhead/Latency Comparison: 
AJAX long-polling vs. WebSocket

Source: http://www.codeproject.com/Articles/531698/Introduction-to-HTML5-WebSocket
Real-Time Web 38

WebSocket is triggered using the HTTP-Upgrade
Mechanism during Opening handshake

HTTP
Client

HTTP
Server 1

TCP

GET /chat HTTP/1.1
Host: example.com
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
Sec-WebSocket-Origin: http://example.com
Sec-WebSocket-Version: 6

HTTP Upgrade Request

Real-Time Web 39

Opening handshake

HTTP
Client

HTTP
Server

HTTP
Client

HTTP
Server HTTP Switching Protocols Response

1

2

TCP

TCP

HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=

HTTP Upgrade Request

Real-Time Web 40

Opening handshake

HTTP
Client

HTTP
Server

HTTP Upgrade Request

HTTP
Client

HTTP
Server HTTP Switching Protocols Response

1

2

Web
Socket

Web
Socket 3

WebSocket Messages

WebSocket Messages

TCP

TCP

TCP

Binary or UTF8
Messages or streams

Real-Time Web 41

WebSocket Client-Server Communication Pattern

Real-Time Web 42

Similarities b/w  
SPDY and WebSocket

■  Support Asynchronous mode of communications
◆  eliminates the overhead of “polling” generally used to

simulate “real time” updates
■  Use only a single TCP connection

◆  reduces overhead on servers (and infrastructure) which can
translate into better performance for the end-user.

■  Make use of compression
◆  reduces size of data transferred, better performance,

particularly over more constrained mobile networks.

Real-Time Web 43

Data Framing in WebSocket

■  Messages are segmented as frames.
■  Why frames?

◆  No need to wait until the whole message is completed
◆  Multiplexing, better share the output channel

Real-Time Web 44

Origin-based security Model  
for WebSocket

■  Verify the “Origin” field. If the origin indicated is unacceptable to the
server, reject.
◆  Recall: Same Origin Policy (SOP) in Javascript

■  Restrict which web pages can contact a WebSocket server.
■  Don’t work when the connection is initiated by Non-Browser

Clients
■  Assume trusted origin is always secure

◆  May not be a good assumption
◆  Actually, some early versions of WebSocket has been disabled

by some browser by default due to Security concern !

Real-Time Web 45

Differences b/w SPDY and WebSocket

Web
Socket

Web
Socket

WebSocket Messages

WebSocket Messages

TCP

■  Key Difference in their relationship with HTTP
◆  SPDY: does not replace HTTP message/header ; HTTP simply nested within SPDY
◆  WebSocket: almost independent, without HTTP header

✦  Less overhead
✦  Lack of HTTP header can blind the infrastructure. IDS, IPS, Load-balancer,

Accelerator, Firewalls, anti-virus scanners – any service which relies upon HTTP
headers to determine specific content type or location (URI) of the object being
requested – is unable to inspect or validate requests due to its lack of HTTP headers.

■  There is even a serious draft specification for running WebSocket over SPDY !
◆  https://docs.google.com/document/d/

1zUEFzz7NCls3Yms8hXxY4wGXJ3EEvoZc3GihrqPQcM0/edit
■  When to use what (SPDY or WebSocket) ? Some advice from:

https://blogs.akamai.com/2012/07/spdy-and-websocket-support-at-akamai.html
https://www.infoq.com/news/2012/06/spdy-websockets Real-Time Web 46

QUIC
 Redefining Internet Transport

QUIC
 Redefining Internet Transport

Latency vs Bandwidth Impact on Page Load Time

“To speed up the Internet at large, we should look for more ways to bring down RTT. What if we
could reduce cross-atlantic RTTs from 150 ms to 100 ms? This would have a larger effect on the
speed of the internet than increasing a user’s bandwidth from 3.9 Mbps to 10 Mbps or even 1 Gbps.” -
Mike Belshe

Single digit %
perf
improvement
after
5 Mbps

Linear
improvement
in page load
time!

How do you make the web faster?

$BROWSER

HTTP/1.1

TLS 1.2

TCP

IP

Physical Network

google.com

U
se

r-
pe

rc
ei

ve
d

la
te

nc
y

How do you make the web faster?

$BROWSER

HTTP/1.1

TLS 1.2

TCP

IP

Physical Network

google.com

Google
CDN

U
se

r-
pe

rc
ei

ve
d

la
te

nc
y

Build a
carrier-

grade
network

google.com

How do you make the web faster?

$BROWSER

HTTP/1.1

TLS 1.2

TCP

IP

Physical Network

Chrome

HTTP/2

google.com

Google
CDN

U
se

r-
pe

rc
ei

ve
d

la
te

nc
y

Launch
your own
browser

Update

HTTP

Build a
carrier-

grade
network

google.com

How do you make the web faster?

$BROWSER

HTTP/1.1

TLS 1.2

TCP

IP

Physical Network

Chrome

HTTP/2

???

google.com

Google
CDN

U
se

r-
pe

rc
ei

ve
d

la
te

nc
y

Launch
your own
browser

Update

HTTP

Build a
carrier-

grade
network

Update
transport

google.com

§  A reliable, multiplexed transport over UDP

 Always encrypted

 Reduces latency

 Runs in user-space

 Open sourced in Chromium

What is QUIC ?
Quick UDP Internet Connections

New transport designed to reduce web latency
•  TCP + TLS + SPDY over UDP
•  Faster connection establishment than TLS/TCP

•  0-RTT usually, 1-RTT sometimes
•  Deals better with packet loss than TCP
•  Has Stream-level and Connection-level Flow Control
•  FEC recovery
•  Multipath

What is QUIC?

Where does QUIC fit?

TLS 1.2

HTTP/2

TCP

IP

QUIC

UDP

HTTP/2 API

Comparable to TLS
 Perfect forward secrecy, with more efficient
handshake

IP spoofing protection
 Signed proof of address

Inspired TLS 1.3’s 0-RTT handshake
 Plan to adopt TLS 1.3 when complete

Always encrypted

Connection identified by Connection ID
● As opposed to common 5-tuple
●  64 bits
● Chosen randomly by the client
● Enables connection mobility across IP,

port

Connection establishment

Zero RTT connection establishment

First-ever connection - 1 RTT

No cached information available
First CHLO is inchoate (empty)

Simply includes version and server
name

Server responds with REJ
Includes server config, certs, etc
Allows client to make forward progress

Second CHLO is complete
Followed by initially encrypted request
data

Server responds with SHLO
Followed immediately by forward-
secure encrypted response data

Subsequent connections - 0 RTT

First CHLO is complete
Based on information from
previous connection
Followed by initially
encrypted data.

Server responds with SHLO
Followed immediately by
forward-secure encrypted
data

QUIC builds on decades of experience with TCP

Incorporates TCP best practices
 TCP Cubic - fair with TCP
 FACK, TLP, F-RTO, Early Retransmit...

More flexibility going forward
 Improved congestion feedback, control over
acking

Better signaling than TCP

Congestion control & reliability

Retransmitted packets consume new sequence
number

No retransmission ambiguity
Prevents loss of retransmission from causing RTO

More verbose ACK
TCP supports up to 3 SACK ranges
QUIC supports up to 256 NACK ranges
Per-packet receive times, even with delayed ACKs

ACK packets consume a sequence number

Better signaling than TCP

Controlled Experiments

Client Side
 Latency, Bandwidth, Quality of Experience,
Errors

Server Side
 Latency, Bandwidth, QUIC Success Rate

Fine Grained Analysis
 By ASN, Server, OS, Version

Measuring performance of QUIC

Initial Deployment timeline of QUIC
Tested at scale, with millions of users

n  Chrome Canary: June, 2013
n  Chrome Stable: April, 2014
n  Ramped up for Google traffic in 2015

Infrastructure Compatibility of QUIC

QUIC handshakes fail when RTTs are greater than 2.5 seconds
or
when UDP is blocked

Performance of QUIC on
Google properties

Faster page loading times
§  5% faster on average
§  1 second faster for web search at 99th-percentile

Improved YouTube Quality of Experience
§  30% fewer rebuffers (video pauses)

Where are the gains from?

0-RTT
§  Over 50% of the latency improvement (at median

and 95th-percentile)

Improved loss recovery
§  Over 10x fewer timeout based retransmissions

improve tail latency and YouTube video rebuffer
rates

Other, smaller benefits
§  e.g. head of line blocking, more efficient framing

Client-side protection

What if UDP is blocked?
§  Chrome seamlessly falls back to HTTP/TCP

What if the path MTU is too small?
§  QUIC handshake fails, Chrome falls back to TCP

What if a client doesn’t want to use QUIC?
§  Chrome flag / administrative policy to disable QUIC

When client-side protection is not
enough...

As a last resort, Google disables QUIC to
specific ASNs
§  This is used as a fallback to protocol features

Why do we disable QUIC delivery?
§  Degraded quality of experience measured
§  Indications of UDP rate limiting at peak times of

day
§  End user reports (via chromium.org)

Debugging Tools: Chrome

chrome://net-
internals
§  Active QUIC

sessions
§  Captures all

events
§  Important for

filing Chromium
bugs

Debugging Tools: Wireshark

Parses
●  Protocol: QUIC
●  CID: Connection ID
●  Seq: Sequence

number
●  Version: ie: Q024
●  Public flags: 1 byte
●  Payload: Encrypted

Future Improvements

§  Forward Error Correction

§  Connection Mobility

§  Multipath

§  More congestion control experiments

Open source implementations

 Servers

§  Open source test server included in Chromium
§  Working with other server vendors

Clients
§  Open source Chromium client library for desktop

and mobile
§  Google Chrome and some Google Android apps
§  Working with other browsers

QUIC at the IETF

Nov 2013 Initially Presented
Mar 2015 QUIC Crypto
July 2015 BarBoF

FEB 2017
•  Formation of QUIC Working Group for Standard

Track work based on previous QUIC drafts, their
implementation and deployment experience !!
https://datatracker.ietf.org/wg/quic/charter/

•  Generalize the design described in previous IETF drafts:
draft-hamilton-quic-transport-protocol
draft-iyengar-quic-loss-recovery
draft-shade-quic-http2-mapping
draft-thomson-quic-tls

IETF QUIC WG Milestones

Summary of QUIC
§  Reliable, multiplexed transport
§  Always encrypted
§  Run over UDP
§  Lower Latency Connection Establishment
§  Optional FEC
§  Rapidly Evolving User-Space Implementation
§  Open Source

Additional QUIC resources
Design Document of Specification Rationale for
QUIC:
Jim Roskind, “QUIC Quick UDP Internet Connections – Multiplexed Stream
Transport over UDP,” Dec 2013.
 https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/edit

Source: QUIC in Chromium

Page: www.chromium.org/quic

Public Mailing lists: quic@ietf.org

 proto-quic@chromium.org (old)

IETF WG:
https://datatracker.ietf.org/wg/quic/documents/

Towards the Real-Time Web !
■  Some people referred to the following as the Enabling Technologies for the

“Real-Time Web” !!
http://www.infoq.com/presentations/Real-time-Web-WebSocket-SPDY :
✦  HTML5,
✦  WebSocket,
✦  SPDY => HTTP/2,
✦  QUIC and …
✦  WebRTC (Web Real-Time Communications) (www.webrtc.org)
✦  W3C WebRTC WG (API) http://www.w3.org/2011/04/webrtc-charter.html
✦  IETF RTCweb WG http://datatracker.ietf.org/wg/rtcweb/charter/
“These two specifications aim to provide an environment where Javascript embedded in any

page, viewed in any compatible browser, when suitably authorized by its user, is able to set
up communication using audio, video and auxiliary data, where the browser environment
does not constrain the types of application in which this functionality can be used.” – from
IETF Draft: draft-ietf-rtcweb-overview-18, Mar 3, 2017

■  See the link below for a demo on how to implement
 a Real-Time Video Conference App using HTML5 with your Browser ONLY !
◆  http://html5videoguide.net/presentations/WebDirCode2012

Real-Time Web 79

Real-Time Web 80

Towards the Real Time Web

The Evolution Path from Web-Surfing to WebRTC

 81
Source: Jimmy Lee / jimmylee.info

http://venturebeat.com/2012/08/13/webrtc-is-almost-here-and-it-will-change-the-web/

What is WebRTC ?
■  A Google-driven W3C standardization effort (w/ support from IETF) which

enables Web Browsers with Real-Time Communications capabilities via
HTML5 and JavaScript APIs ;

 82

No Need
for Plugins
anymore ! Key Components of WebRTC include:

①  A Browser supporting the WebRTC APIs
§  GetUserMedia , RTCPeerConnection, MediaStream, DataChannel

②  WebRTC Service Platform with WebRTC API and/or IETF Protocol Support
for Signaling, e.g. using SIP, Jingle or other Messaging Protocols.

③  A Web-based application written in Javascript which accesses WebRTC
APIs provided by the Browser and the WebRTC Service Platform

Pre-WebRTC Messaging & Real-Time Communications 
Services in the Market

 83

(Rich Communication Services)

WebRTC-enabled Opportunities

 84

The Ecosystem of  
Real-Time Communication Services

 85

WebRTC Standards and Supporting Functions

 86

WebRTC Architecture

 87 Source: webrtc.org

Javascript Session Establishment Protocol (JSEP)
Architecture

 88 Source: Sam Dutton, http://www.html5rocks.com/en/tutorials/webrtc/basics/

A Sample Realization: A Demo App, AppRTC, which  
uses the Google App Engine’s Channel API (Messaging

service) to enable signaling b/w Javascript Clients

 89
Source: Sam Dutton, http://www.html5rocks.com/en/tutorials/webrtc/basics/ ;

WebRTC Audio and Video Engines

 90 Source: Ilya Grigorik, Ch.18 of High Performance Browser Networking, O’Reilly Publisher,
http://chimera.labs.oreilly.com/books/1230000000545/index.html

The WebRTC Networking Protocol Stack

 91

ICE: Interactive Connectivity Establishment (RFC 5245)
STUN: Session Traversal Utilities for NAT (RFC 5389)
TURN: Traversal Using Relays around NAT (RFC 5766)
SDP: Session Description Protocol (RFC 4566)
DTLS: Datagram Transport Layer Security (RFC 6347)
SCTP: Stream Control Transport Protocol (RFC 4960)
SRTP: Secure Real-Time Transport Protocol (RFC 3711)

Source: Ilya Grigorik, Ch.18 of High Performance Browser Networking, O’Reilly Publisher,
http://chimera.labs.oreilly.com/books/1230000000545/index.html

RTCPeerConnection API

 92 Source: Ilya Grigorik, Ch.18 of High Performance Browser Networking, O’Reilly Publisher,
http://chimera.labs.oreilly.com/books/1230000000545/index.html

Peer-to-Peer Secure Handshake over DTLS

 93 Source: Ilya Grigorik, Ch.18 of High Performance Browser Networking, O’Reilly Publisher,
http://chimera.labs.oreilly.com/books/1230000000545/index.html

WebRTC standards require ALL transferred data – audio, video and
application data/ payloads to be ENCRYPTED during transit ; DTLS is
used for such purpose.

Video and Audio Delivery via  
Secure RTP (SRTP) over UDP

 94 Source: Ilya Grigorik, Ch.18 of High Performance Browser Networking, O’Reilly Publisher,
http://chimera.labs.oreilly.com/books/1230000000545/index.html

Deployment Status of WebRTC  
(circa June 2016)

■  WebRTC is powering many of the Top Communications Apps:
◆  Google Hangouts, Facebook Messager, Amazon Mayday,
◆  Snapchat, Slack
◆  Whatsapp also uses some WebRTC components according to [**]
◆  Skype is moving to WebRTC
3 Billion+ WebRTC apps downloaded so far !

■  1.5 Billion+ WebRTC browsers
◆  Chrome, Firefox, Opera, Microsoft Edge
◆  WebRTC for WebKit browser (of Android & IOS) under development

[**] webrtchacks.com/whats-up-with-whatsapp-and-webrtc

Real-Time Web 95
caniuse.com/webrtc

Additional References

 96

■  http://www.webrtc.org
■  Sam Dutton, http://www.html5rocks.com/en/tutorials/webrtc/basics/
■  Ilya Grigorik, Ch.18 of High Performance Browser Networking, O’Reilly:

◆  http://chimera.labs.oreilly.com/books/1230000000545/index.html
■  Cullen Jenngins, Ted Hardie, Magnus Westerlund, “Real-Time

Communications over the Web,” IEEE Communications Magazine, Vol.
51, pp.20-26, 2013

■  Justin Uberti, Sam Dutton, ``Real-Time Communication with WebRTC,’’
Google I/O 2013
◆  http://io13webrtc.appspot.com/#1
◆  http://www.youtube.com/watch?v=p2HzZkd2A40&t=21m12s

■  AppRTC, a WebRTC demo hosted on the Google App Engine,
◆  http://www.webrtc.org/demo
◆  https://apprtc.appspot.com/

■  Another set of WebRTC Demo Apps:
◆  http://generative.edb.utexas.edu/webrtc-demos/

■  https://bloggeek.me/quic-webrtc/
■  Cullen Jennings, “What’s Next with WebRTC,” Sept 2016

