Towards the Real-Time Web:
SPDY, HTTP/2, WebSocket
QUIC and WebRTC

Prof. Wing C. Lau
IERG5090
Spring 2017

Real-Time Web 1

Acknowledgements

The following Lecture Slides are adapted from various sources
including those shown below. The copyright of the materials belongs
to the original authors:

m http://www.html5rocks.com/en/tutorials/websockets/basics/

m http://www.codeproject.com/Articles/531698/Introduction-to-HTML5-
WebSocket

http://www.slideshare.net/mobile/MarceloJabali/html5-websocket-
introduction

http://www.slideshare.net/peterlubbers/htmi5-realtime-and-connectivity
http://www.infoq.com/presentations/Real-time-Web-WebSocket-SPDY
http://html5videoguide.net/presentations/WebDirCode2012
http://www.chromium.org/spdy/

http://en.wikipedia.org/wiki/SPDY

IERG3090 Lecture Notes of Prof. Jack Lee

Presentation slides of Lien Gao and Tujia Chen of CMSC5709

llya Grigorik, “HTTP/2 (RFC7540) is here, let’s optimize” O’Reilly Velocity
Conference, May 2015

Jana lyengar, “QUIC - Redefining the Internet,” IETF93 BarBOF.)

HTTP: hypertext transfer protocol

= WWW’s application layer @ i
%
pr.OtOCO| PC running 4> he?"ésy _
m client/server model Explorer 7 "CSbon
Se

client: browser that D
requests, receives,
“displays” WWW objects
server: WWW server
sends objects in
response 1o requests

Server
running
NCSA Web
server

Mac running
Stateless Navigator

m Protocol Encoding: text-
based in readable English

Real-Time Web 3

Evolution of
Hyper-Text Transfer Protocol (HTTP)

m 1991 — Version 0.9 (first
specification as W3C Notes
written by Tim Berners-Lee and 1991
his team)

http://www.w3.org/Protocols/
HTTP/Asimplemented.html 1996

m 1996 — Version 1.0 (RFC1945)

http://tools.ietf.org/html/
rfc1945 1999

m 1999 — Version 1.1 (RFC2616)

and the formalization of
REST-style architecture of
the Web by W3C, with major
contributions made by Roy
T. Fielding.

Current standard used by
most web servers/browsers

W3C Notes

RFC 1945

RFC 2616

2000 Dissertation

20127? HTTP/1.1 bis IETF draft

REST = REpresentationaflState Transfer

Shortcomings of HTTP/1.0

non-persistent connection: New connection for each request puts
burden on server:

Each TCP connection must be established and managed

Each TCP connection allocates send and receive buffers and
maintains state variables

Each object suffers 2 round-trip times of delay

partially alleviated by using multiple parallel connections
Each object suffers TCP slow-start delay

also partially alleviated by using multiple parallel connections
Limited cache control

Real-Time Web

Non-persistent Vs. Persistent Vs. Pipelined

Client Server Client Server Client Server

(@) One HTTP inter- {b) Persistent TCP (c) Persistent TCP
action per TCP connections cnj:nn:ec':tl%esav]l_ltﬂme Web
connection pipelining

Improvements in HTTP/1.1

Persistent connections: allows connections to remain open over
several requests

Request pipelining (default for HTTP/1.1)

Introduces a variety of directives to control caching on proxies
and in clients

new protocol tracing feature for debugging proxy chains

Real-Time Web

Persistent HT TP

Nonpersistent HTTP issues:

requires 2 RTTs per object

OS must work and allocate host
resources for each TCP
connection

but browsers often open parallel
TCP connections to fetch
referenced objects

Persistent HTTP

server leaves connection open
after sending response

subsequent HTTP messages
between same client/server are
sent over connection

Persistent without pipelining:

client issues new request only
when previous response has
been received

one RTT for each referenced
object

Persistent with pipelining:

default in HTTP/1.1

client sends requests as soon
as it encounters a referenced
object

as little as one RTT for all the
referenced objects

Real-Time Web

Challenges of Pipelined HTTP

HTTP is supposed to be stateless but some web sites
implement stateful web sessions anyway using techniques such
as cookies or URL rewrite.

If a web session is stateful then the sequence of requests
generation and execution may become inter-dependent (i.e.,
non-idempotent).

How to determine if a web session is stateful, and if it is safe to
send the subsequent requests before prior request is
completed?

Not all servers/proxies implement pipelining correctly.
Head-of-line blocking
A request loading a large object (e.g., large image) may
block the delivery of subsequent objects.
All subsequent pipelined requests will be blocked by the

head-of-line request as requests are processed in FIFO
manner.

This can be circumvented using HT TP Range request.

Concurrent HTTP Sessions

Implemented by most browsers

After the initial HTTP connection which retrieves the HTML
body, initiate multiple (4~6) HTTP sessions (per domain) to
retrieve multiple objects (e.g., images) in parallel.
Purposes

Effectively multiplies the congestion window size by the
number of HTTP connections

Potentially overlaps the server-side processing time of
multiple HTTP requests

10

What is SPDY ?

SPDY (pronounced speedy) was an experimental networking
protocol developed primarily at Google for transporting web
content.

Although not a standard protocol, the group developing SPDY
submitted it to IETF as the initial basis of HTTP/2
standardization.

SPDY had reference implementations early on in both Google
Chrome and Mozilla Firefox.

SPDY is similar to HTTP, with particular goals to reduce web
page load latency and improve web security.

SPDY achieves reduced latency through compression,
multiplexing, and prioritization.

In lab tests, SPDY was shown to achieve up to 64% reductions
in page load times compared to HTTP.

Source: Wikipedia and SPDY’ s official whitepaper and protocol specification,
available at http://www.chromium.org/spdy/ 1

Design Goals for SPDY

To target a 50% reduction in page load time.

To minimize deployment complexity. SPDY uses TCP as the
underlying transport layer, so requires no changes to existing
networking infrastructure.

To avoid the need for any changes to content by website authors.
The only changes required to support SPDY are in the client user
agent and web server applications.

To bring together like-minded parties interested in exploring protocols
as a way of solving the latency problem. The SPDY team hopes to
develop this new protocol in partnership with the open-source
community and industry specialists.

12

Recap: Limitations of HTTP over TCP
= SPDY’s Design Focus

Single HTTP request per TCP connection. Even Pipelined HTTP is
FIFO only.

Allow only client-initiated request. Server cannot push an data object
to the client.

No compression of HTTP request and response headers (various
from hundreds to several KBs, depending on cookies and user agent
strings).

Redundant HTTP header fields across multiple requests on the
same session (e.g., User-Agent seldom changes for the same
client).

Content compression is optional rather than mandatory.

13

Specific Technical Goals for SPDY

To allow many concurrent HTTP requests to run across a single TCP
session.

To reduce the bandwidth currently used by HTTP by compressing
headers and eliminating unnecessary headers.

To define a protocol that is easy to implement and server-efficient.
The SPDY team hopes to reduce the complexity of HTTP by cutting
down on edge cases and defining easily parsed message formats.

To enable the server to initiate communications with the client and
push data to the client whenever possible.

To make SSL the underlying transport protocol, for better security and
compatibility with existing network infrastructure.

Mandatory Use of SSL by SPDY has been a quite Controversial
Decision !

Although SSL does introduce a latency penalty, the SPDY team
believes that the long-term future of the web depends on a secure
network connection.

The use of SSL is necessary to ensure that communication across
existing proxies is not broken. 14

Architecture of SPDY

m SPDY acts as a session layer between HTTP and SSL/TCP

Application Layer
Session Layer

Transport Layer

Network Layer

HTTP/SPDY

SPDY

Bk

TCP

IP

No change to the basic HTTP methods such as GET, POST.

SPDY encodes HT'TP messages for transmission over SSL.

SSL offers a secure connection for exchanges of HT TP request/response.
No change to TCP.

No change to IP.

m SPDY sessions are bi-directional and can be initiated by both the

client and the server.

15

Multiplexing HTTP Streams over SPDY

HTTP Connection1 HTTP Connection 2 HTTP Connection N

stream 1 stream 2 . stream N

1T

SPDY multiplexes multiple logical streams
on a single stream of TCP connection

stream 1 stream 2 e stream N

HTTP Connection1 HTTP Connection 2 HTTP Connection N

Real-Time Web

16

Architecture of SPDY (cont’d)

m The SPDY Specification is split into two parts:

A Framing layer, which multiplexes independent, length-
prefixed frames into a SSL/TCP connection, and

an HTTP layer, which specifies the mechanism for overlaying
HTTP request/response pairs on top of the framing layer.

Application Layer HTTP/SPDY
- HTTP Layer - Maps HTTP to a compact encodin
S La I P g
ESNOn TAYE SLLE o Framing Layer - Mux/Demux HTTP connections;
SSLL B - - Message framing
Transport Layer
TCP
Network Layer 1P

17

HTTP Layering over SPDY

The features of HT TP are mostly unchanged.

All of the application request and response header
semantics are preserved, although the syntax of
conveying those semantics has changed.

The rules from the HTTP/1.1 specification in RFC2616
apply with some changes.

Connection Management
HTTP Request/Response
Server Push Transactions

Real-Time Web 18

Key Features of SPDY vs. HTTP

Multiplexed requests

There is no limit to the number of requests that can be issued
concurrently over a single SPDY connection.

Prioritized requests

Clients can request certain resources to be delivered first. This avoids
the problem of congesting the network channel with non-critical
resources when a high-priority request is pending.

Compressed headers

Clients today send a significant amount of redundant data in the form
of HTTP headers. Because a single web page may require 50 or 100
sub-requests, this data is significant.

Server pushed streams

Server Push enables content to be pushed from servers to clients
without a request.

Real-Time Web 19

Performance of SPDY vs. HTTP/1.x

Average ms Speedup Average ms Speedup

HTTP 3111.916 2348.188

SPDY basic multi-domain* connection / TCP 2242.756 27.93% 1325.46 43.55%

SPDY basic single-domain* connection / TCP

1695.72 4551% 933.836 60.23%
SPDY single-domain + server push / TCP 1671.28 46.29% 950764 50.51%
SPDY single-domain + server hint / TCP 1608.928 48.30% 856.356 63.53%
SPDY basic single-domain / SSL 1899.744 38.95% 1099.444 53.18

SPDY single-domain + client prefetch / SSL 1781.864 42.74% 1047.308 55 40

. . Real-Time Web 20
Average page load times for top 25 websites

Support and Usage of SPDY

Browsers supporting SPDY::
Google Chrome/Chromium,
Firefox (version 11+, below 13 disabled by default)
+ It can be turned on through the network.http.spdy.enabled
preference in about:config.
Opera browser (version 12.10+)

Amazon's Silk browser for the Kindle Fire uses the SPDY
protocol to communicate with their EC2 service for Web page
rendering.

Services support SPDY

Many Google services (e.g. Google search, Gmail, Chrome-
sync, Google-Ad-servers and other SSL-enabled services) use
SPDY when available.

Twitter, Facebook, Jetty Web Server, F5 Networks, NGINX,
Wordpress.com

Ever wonder how come Chrome 1s faster accessing certain web sites?
Real-Time Web 21

From SPDY to HTTP/2

So should we all praise Google and switch to SPDY ? Not Really !

Real-world performance gain of SPDY vs. https or http may not be as
iImpressive as the lab-tests indicated:

http://www.guypo.com/technical/not-as-spdy-as-you-thought/
SPDY will hit server and client CPUs much harder than traditional HTTP.
Making SSL mandatory is a strange move.

Some argues that it would pave the way for more man-in-the-middle
attacks.

1st Draft of HTTP/2 was published by the IETF httpbis working group on
November 28, 2012, which is a direct copy of SPDY ;s = Encore (in Latin)

Changes in the protocol were made during the subsequent IETF
standardization process which introduced various differences
between HTTP/2 and SPDY.

In Feb 2015, Google announced plans to remove support for SPDY in
Chrome in favor of support for HTTP/2

RFC7540 (HTTP/2) and RFC7541 (HPACK), both IETF proposed
standards, were published in May 2015. |
Real-Time Web 22

HTTP/2 had already surpassed SPDY in adoption by May 2015.

()

“9% of all Firefox (M36) HTTP
transactions are happening over HTTP/2.
There are actually more HTTP/2
connections made than SPDY ones. This

is well exercised technology.”
Feb 18, 2015 - Patrick McManus, Mozilla

New TLS + NPN/ALPN connections in
Chrome:

~27% negotiate HTTP/1

~28% negotiate SPDY/3.1

~45% negotiate HTTP/2
May 26, 2015 - Chrome telemeftry

SPD

2 results found

=4 SPDY protocol &-unore

Networking protocol for low-latency transport of content over the
web. Superseded by HTTP version 2.

Usage relative Show all

IE Firefox Chrome Safari Opera i0S Safari * Opera Mini* Android Browser * G}{,?é?gig”

w | w | w
~N | O | -

w
N O

—
—
w
oo
&
oo
oo
w
oo

w
S
—

—
o

(o) —_

w
~
N

29
w
S

http://caniuse.com/#feat=spdy

E=N

Can | use SPDY ?

2 results found

SPDY protocol & -unorr Global 27.22%

Networking protocol for low-latency transport of content over the
web. Superseded by HTTP version 2.

@Vl Usage relative Date relative Show all

IE Edge * Firefox Chrome Safari Opera i0S Safari Opera Mini *

Android * Chrome for
Browser Android

49

=
= R

11 57 43 ! 53

v | =]

http://caniuse.com/#feat=spdy

Canluse |'|T|-P2 ? % Settings

1 result found

=3 HTTP/2 protocol &-ores

Networking protocol for low-latency transport of content over the
web. Originally started out from the SPDY protocol, now
standardized as HTTP version 2.

Usage relative Show all
IE Firefox Chrome Safari Opera i0S Safari * Opera Mini* Android Browser * C%?é?gigor

Can | use HTTP/2 /

1 result found

HTTP/2 protocol &-orter Global 73.91% + 565% = 79.56%

Networking protocol for low-latency transport of content over the
web. Originally started out from the SPDY protocol, now
standardized as HTTP version 2.

(@Vg=iec([=[<6l Usage relative Date relative Show all
Android * Chrome for

* . X X . x L. F
IE Edge Firefox Chrome Safari Opera iOS Safari Opera Mini Browser Android

http://caniuse.com/#feat=HTTP%2F2

Differences b/w SPDY and HTTP/2

SPDY

SSL Required. In order to use

the protocol and get the speed
benefits, connections must be
encrypted.

Fast Encrypted Connections.
Does not use the ALPN
extension that HTTP/2 uses.

Single-Host Multiplexing.
Multiplexing happens on one
host at a time.

Compression. SPDY leaves a
small space for vulnerabilities
in its current compression
methods.

Prioritization. While
prioritization is available with
SPDY, HTTP/2’s
implementation is more
flexible and friendlier to

proxies.

HTTP/2

SSL Not Required. However — even though the IETF doesn’t
require SSL for HTTP/2 to work, many popular browsers do
require it. And because most Internet data is accessed through
popular browsers (Chrome and Firefox), what they require
matters most.

Faster Encrypted Connections. The new ALPN extension lets
browsers and servers determine which application protocol to
use during the initial connection instead of after.

Multi-Host Multiplexing. Multiplexing happens on different hosts
at the same time.

Faster, More Secure Compression. HTTP/2 introduces HPACK, a
compression format designed specifically for shortening headers
and preventing vulnerabilities.

Improved Prioritization. Lets web browsers determine how and
when to download a web page’s content more efficiently.

28

HTTP/2 Architecture Overview

1. One TCP connection

2. Request — Stream
Streams are multiplexed
Streams are prioritized

3. Binary framing layer
o Prioritization
o Flow control
o Server push

4. Header compression
(HPACK)

Application (HTTP/2)

Binary Framing

HTTPN.1

Session (TLS) (optional)

Transport (TCP)

POST /upload HTTP/1.1

Host: www.example.org
Content-Type: application/json
Content-Length: 15

{nm g g”:”h e" 0”}

Network (IP)

HTTPI2

HEADERS frame

DATA frame

HTTP/2 binary framing 101

il e HTTP messages are
POST /upload HTTP/1.1 decomposed into one or
Host: www.example.org more frames
Content-Type: application/json o HEADERS for meta-data
(ontent-Length: 15
o DATA for payload
{”msg”:”hello”} O RST_STREAM to cancel
O
HTTPI2
e Each frame has a common
HEADERS frame header
o 9-byte, length prefixed
— DATA frame o Easy and efficient to
parse

Basic data flow in HTTP/2

HTTP 2.0 connection
h | stream1 | stream3 | stream3 | stream
DATA | HEADERS DATA DATA
e — sreamS |
DATA

(lient

{ o

=

Server

Streams are multiplexed because frames

can be interleaved

e All frames (e.g. HEADERS, DATA, etc) are sent over single

TCP connection

e Frame delivery is prioritized based on stream dependencies

and weights

e DATA frames are subject to per-stream and connection flow

control

HPACK header compression

Request headers

‘method

GET

:scheme

https

‘host

example.com

path

[resource

user-agent

Mozilla/5.0 ...

custom-hdr

some-value

Encoded headers

2

7

63

19| Huffman(“/resource”)

62

Huffman(“‘custom-hdr”)

Huffman(“some-value”)

Static table

1| authority

2| :method GET
51 referer

62 | user-agent| Mozilla/5.0 ...
63 ‘host | example.com
Dynamic table

e Literal values are (optionally) encoded with a static

Huffman code

e Previously sent values are (optionally) indexed
o e.g. “2”in above example expands to “method: GET”

HPACK header compression (more)

Request #1 —_— Request #2
:method GET mpadt » :method GET
:scheme https »| :scheme https

implicit

implicit

:host | example.com > :host | example.com

:path | /resource :path }/new_resource
, , implicit

accept | image/jpeg
user-agent | Mozilla/5.0 ...

> accept | image/jpeg
» user-agent | Mozilla/5.0 ...

implicit

HEADERS frame (Stream 1) HEADERS frame (Stream 3)

:method: GET :path: /new_resource
:scheme: https
:host: example.com
:path: /resource
accept: image/jpeg
user-agent: Mozilla/5.0 ...

OREILLY"

HTTP/2

A New Excerpt from
High Performance Browser Networking

llya Grigorik

For a deep(er) dive on
HTTP/2 protocol, grab
the free book at the
O’Reilly booth, or...

Read it online (free):

WebSocket

Real-Time Web 35

Recalling the original Socket

W process sends/receives
messages to/from its socket ot or host or

SCrver

m socket analogous to door
sending process shoves controlled by

) s
message out door @ app developer O
. . Process Process
sending process relies on 4 4

transport infrastructure on other socket

soclket

: . . v] v
side of door which brings TCP with : TCP with
. buffers nternet buffers,
message to socket at receiving e .
variables variables
process
m Support both blocking and non-
SI pﬁ- I 9 controlled
OCKINg calls by OS

=> Support both synchronous and
Asynchronous mode of operations

Can we provide similar abstraction of Network Service to a Web Application directly ?

WebSocket (ws:// or wss://)
Part of the original HTMLS5 effort to enhance REAL-TIME, asynchronous, bi-
directional communications between the browser and the web-server

Provide full-duplex communications channels over a single TCP connection
by carrying sub-protocols, e.g. SOAP, XMPP, JSON-RPC

Over-the-wire protocol standardized by the IETF as RFC 6455

WebSocket APIs available for Javascripts & other programming languages

Some Server-side Implementations:
+ Node.js — Socket.lO, WebSocket.Node, ws
+ Java —jetty
+ Python — pywebsocket, Tornado
+ C++ - libwebsockets
+ .NET - SuperWebSocket

Browser-side Implementation:

Web Sockets B - s Global 93.27% + 027% = 93.54%

o ' o unprefixed: 93.27% + 0.23% = 93.49%
Bidirectional communication technology for web apps

Usage relative Date relative Show all

Android * Chrome for

o . . X L * .
IE Edge Firefox Chrome Safari Opera iOS Safari Opera Mini S Android

49

10.2 53

Real-Time Web 37

Overhead/Latency Comparison:
AJAX long-polling vs. WebSocket

+ - ~ ~N - |=
g g 8 % 8 I % . 3
= > 5 § E § IS §
-4 1 o
< g g g g ' & ' 8
« « n: 4 | & «
] ¥
—
Browser
Time 50ms 100ms 150ms —— 200ms 250ms ——p

T
)
5 B T B %o 3. 18 o 700,000,000
3 8'3 8 Se Se 0o 180
37 |28 3 }E }E 3E 13§
o oS © & °uw ®u 1o S @ Polling
2 = = s = = e e @ Web Sockets
S
Bfowse' 500,000,000
Time 50ms 100ms 150ms —— 200ms 250ms ——p ©
c
g 400,000,000
e
§ 300,000,000
o
200,000,000
100,000.000
[D e L
Use Case A Use Case B Use Case C
@ s.968.000 @ 59,680,000 @ 596,800,000
B 1600 @ 160,000 @ 1.600,000

Real-Time Web 38
Source: http://www.codeproject.com/Articles/531698/Introduction-to-HTMLS5-WebSocket

WebSocket is triggered using the HTTP-Upgrade
Mechanism during Opening handshake

O HTTP TCP HTTP Upgrade Request HTTP
Client Server

GET /chat HTTP/1.1

Host: example.com

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25j7ZQ==
Sec-WebSocket-Origin: http://example.com
Sec-WebSocket-Version: 6

Real-Time Web

Opening handshake

HTTP TCP HTTP Upgrade Request HTTP

: Client Server
O HTTP Tcre HTTP
Client HTTP Switching Protocols Response Server

HTTP/1.1 101 Switching Protocols

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Accept: s3pPLMB1TxaQ9%kYGzzhZRbK+x0o0=

Real-Time Web 40

Opening handshake

0 HTTP TCP HTTP Upgrade Request * HTTP
Client Server
e HTTP Tcp HTTP
Client <—- HTTP Switching Protocols Response Server
e Web TCP WebSocket Messages Web
SOCket WebSocket Messages S()Cket
Binary or UTFS8

Messages or streams

Real-Time Web 41

WebSocket Client-Server Communication Pattern

HTTP GET Upgrade Request

WebSocket
Server

HTTP 101 Switching Protocols Response

OnOpen() <

Client
readyState =
CONNECTING
:> onopen
readyState =
QEEN send{data)
> onmessage(data)
> onmessage(data)
> onmessage(data)
Close()
readyState =
CLOSING
> onclose()
readyState =
CLOSED

Real-Time Web

42

Similarities b/w
SPDY and WebSocket

m Support Asynchronous mode of communications

eliminates the overhead of “polling” generally used to
simulate “real time” updates

m Use only a single TCP connection

reduces overhead on servers (and infrastructure) which can
translate into better performance for the end-user.

m Make use of compression

reduces size of data transferred, better performance,
particularly over more constrained mobile networks.

Real-Time Web 43

Data Framing in WebSocket

m Messages are segmented as frames.

m Why frames?
No need to wait until the whole message is completed
Multiplexing, better share the output channel

Real-Time Web 44

Origin-based security Model
for WebSocket

Verify the “Origin” field. If the origin indicated is unacceptable to the
server, reject.

Recall: Same Origin Policy (SOP) in Javascript
Restrict which web pages can contact a WebSocket server.

Don’t work when the connection is initiated by Non-Browser
Clients

Assume trusted origin is always secure
May not be a good assumption

Actually, some early versions of WebSocket has been disabled
by some browser by default due to Security concern !

Real-Time Web

45

Differences b/w SPDY and WebSocket

Application Layer HTTP/SPDY
Session Layer SPDY
s Web Tcp WebSocket Messages i Web
SSL
Transport Layer Socket ‘ WebSocket Messages Socket
' TCP
Network Layer IP

m Key Difference in their relationship with HTTP
SPDY: does not replace HTTP message/header ; HTTP simply nested within SPDY
WebSocket: almost independent, without HTTP header
+ Less overhead

+ Lack of HTTP header can blind the infrastructure. IDS, IPS, Load-balancer,
Accelerator, Firewalls, anti-virus scanners — any service which relies upon HTTP
headers to determine specific content type or location (URI) of the object being
requested — is unable to inspect or validate requests due to its lack of HTTP headers.

m There is even a serious draft specification for running WebSocket over SPDY !

https://docs.google.com/document/d/
1zUEFzz7NCIs3Yms8hXxY4wGXJ3EEvoZc3GihrgPQcMO/edit

m When to use what (SPDY or WebSocket) ? Some advice from:
https://blogs.akamai.com/2012/07/spdy-and-websocket-support-at-akamai.html
https://www.infoq.com/news/2012/06/spdy-websockets Real-Time Web 46

QUIC

Redefining Internet Transport

Google

QUIC

Google

Internet Transport

Latency vs Bandwidth Impact on Page Load Time

35001
30001
2500 1

Page Load Time as bandwidth increases

. Single digit %

1500 4 » perf

0. Improvement
TMbps ~ 2Mbps ~ 3Mbps ~ 4Mbps ~ SMbps 6Mbps ~ 7Mbps ~ 8Mbps 9Mbps 10 Mbps after

5 Mbps

Page Load Time (ms)

35001
30001
2500 1
20001
1500 1
1000

Page Load Time as latency decreases

Linear
improvement
in page load
T 0ms 180ms 160ms Moms 10ms 100ms 80ms 60ms 40ms 20ms time!

Page Load Time (ms)

“To speed up the Internet at large, we should look for more ways to bring down RTT. What if we
could reduce cross-atlantic RTTs from 150 ms to 100 ms? This would have a larger effect on the
speed of the internet than increasing a user’s bandwidth from 3.9 Mbps to 10 Mbps or even 1 Gbps.” -
Mike Belshe

How do you make the web faster?

&I

User-perceived latency

$BROWSER

HTTP/1.1

TLS 1.2

TCP

IP

Physical Network

google.com

How do you make the web faster?

4

User-perceived latency

$BROWSER

HTTP/1.1

TLS 1.2

TCP

IP

PhySIca/ Network A

Build a

~carrier-
google.com grade

google.com

M

User-perceived latency

$BROWSER

HTTP/1.1

TLS 1.2

TCP

IP

Physical Network

google.com

~ Launch
. your own
. browser

How do you make the web faster?

Chrome

HTTP/2

Build a
carrier-
grade

google.com

How do you make the web faster?

4

User-perceived latency

$BROWSER

HTTP/1.1

TLS 1.2

TCP

IP

Physical Network

google.com

~ Launch
. your own
. browser

Build a
carrier-
grade

4

Chrome

HTTP/2

google.com

Update
transport

What is QUIC ?

Quick UDP Internet Connections

= A reliable, multiplexed transport over UDP

Always encrypted
Reduces latency
Runs in user-space

Open sourced in Chromium

What is QUIC?

New transport designed to reduce web latency
« TCP +TLS + SPDY over UDP
* Faster connection establishment than TLS/TCP
* O-RTT usually, 1-RTT sometimes
« Deals better with packet loss than TCP
« Has Stream-level and Connection-level Flow Control

 FEC recovery
* Multipath

Where does QUIC fit?

HTTP/2

TLS 1.2

'8

Y

TCP

AN

HTTP/2 API

QuicC

UDP

IP

Always encrypted

Comparable to TLS
Perfect forward secrecy, with more efficient
handshake

IP spoofing protection
Signhed proof of address

Inspired TLS 1.3’s 0-RTT handshake
Plan to adopt TLS 1.3 when complete

Connection establishment

Connection identified by Connection ID

e As opposed to common S5-tuple

e 04 bits

e Chosen randomly by the client

e Enables connection mobillity across IP,
port

Zero RTT connection establishment

TCP

Receiver

100 ms

Sender

Sender

>

QUIC

(equivalent to TCP + TLS)

\-o

TCP + TLS
200 ms'
300 ms?

0 ms'
100 ms?

1. Repeat connection
2. Never talked to server before

Receiver

First-ever connection - 1 RTT

No cached information available
First CHLO is inchoate (empty)
Simply includes version and server
name
Server responds with REJ
Includes server config, certs, etc
Allows client to make forward progress
Second CHLO is complete
Followed by initially encrypted request
data
Server responds with SHLO
Followed immediately by forward-
secure encrypted response data

Client

Inchoate CHLO

%‘

REJ

SRCT and CERT

Complete CHLO

\

Encrypted Request

\

SHLO

SRCT and CERT

Encrypted response

Server

1T

pi ey

Subsequent connections - 0 F

Client Server

First CHLO is complete CHLO

. . SRCT, NONC, SCID, ...
Based on information from \
previous connection %

Followed by Initially
encrypted data.

Server responds with SHLO %

Followed immediately by

Encrypted response
forward-secure encrypted /

data

Congestion control & reliability

QUIC builds on decades of experience with TCP

Incorporates TCP best practices
TCP Cubic - fair with TCP
FACK, TLP, F-RTO, Early Retransmit...

More flexibility going forward
Improved congestion feedback, control over

acking

Better signaling than TCP

Better signaling than TCP

Retransmitted packets consume new sequence
number

No retransmission ambiguity
Prevents loss of retransmission from causing RTO

More verbose ACK
TCP supports up to 3 SACK ranges
QUIC supports up to 256 NACK ranges
Per-packet receive times, even with delayed ACKs

ACK packets consume a sequence number

Measuring performance of QUIC

G Chrome Controlled Experiments

Client Side
Latency, Bandwidth, Quality of Experience,
Errors

Server Side
Latency, Bandwidth, QUIC Success Rate

Fine Grained Analysis

GO gle By ASN, Server, OS, Version

Initial Deployment timeline of QUIC

Tested at scale, with millions of users
n Chrome Canary: June, 2013
n Chrome Stable: April, 2014

n Ramped up for Google traffic in 2015

8/1/2014 10/1/2014 12/1/2014 2/1/2015 4/1/2015 6/1/2015

Infrastructure Compatibility of QUIC

® QUIC works
@ UDP is rate limited
¢ QUIC is not used

QUIC handshakes fail when RTTs are greater than 2.5 seconds
or
when UDP is blocked

Performance of QUIC on
Google properties

Faster page loading times
- 5% faster on average
= 1 second faster for web search at 99th-percentile

Improved YouTube Quality of Experience
= 30% fewer rebuffers (video pauses)

Where are the gains from?

0-RTT
= Over 50% of the latency improvement (at median
and 95th-percentile)

Improved loss recovery
-« Over 10x fewer timeout based retransmissions
improve tail latency and YouTube video rebuffer
rates

Other, smaller benefits
- e.g. head of line blocking, more efficient framing

Client-side protection

What if UDP is blocked?
= Chrome seamlessly falls back to HTTP/TCP

What if the path MTU is too small?
- QUIC handshake fails, Chrome falls back to TCP

What if a client doesn’t want to use QUIC?
- Chrome flag / administrative policy to disable QUIC

When client-side protection is not

enough...
As a last resort, Google disables QUIC to
specific ASNs
= This is used as a fallback to protocol features

Why do we disable QUIC delivery?
- Degraded quality of experience measured
= Indications of UDP rate limiting at peak times of
day
- End user reports (via chromium.org)

Debugging Tools: Chrome

chrome://net-

internals

- Active QUIC
sessions

= Captures all
events

« Important for
filing Chromium

bugs

| 000 . @ Coogle Chrome - YouTube X | chrome://net-internals /4 X

¢ C [chrome://net-internals /#events&q=type:QUIC_SESSION%20is:active

capturing events (33167)

(7) (" type.QUIC_SESSION is:active 8of1327

[/ID Source Type Description
3767 QUIC_SESSION 11.ytimg.com
13771 QUIC_SESSION s.ytimg.com
3773 QUIC_SESSION ¢sl.gstatic.com
113786 QUIC_SESSION www.google-analytics.com
W 3796 QUIC_SESSION www.youtube.com
3800 QUIC_SESSION www.gstatic.com
3825 QUIC_SESSION s2.googleusercontent.com
3884 QUIC_SESSION pagead2.googlesyndication.com

www.youtu
Start Time: 2013-06-27 11:51:52.832

t=1372359112832 [st»

e.com

£1372359112834 (st 2)

t=1372359112834 [st= 2]

t#1372359112835 [st= 3]

t=1372359112835 (st= 3]

0] +QUIC_SESSION [dt=?)

-=> host = "www.youtube.com"
QUIC_SESSION_STREAM_FRAME_SENT
-=> fin = false
==> length = 512
-=> offget = "0"
-=> gtream_id = 1
QUIC_SESSION_PACKET SENT
-=> encryption_level = 0
--> packet_sequence_number = "1"
-=> gize = 564
QUIC_ETTP_STREAM_SEND_REQUEST HEADERS
-=> thost: www.youtube.com
:method: GET
:path: /user/googlechrome
:scheme: http
tversion: HTTP/1.1
accept: text/html,application/xhtml+xml,application/xm
accept-encoding: gzip,deflate,sdch
accept-language: en-US,en;q=0.8
cache-control: max-age=0
cookie: (280 bytes were stripped)
user-agent: Mozilla/5.0 (Macintosh; Intel Mac 08 X 10_
QUIC_SESSION STREAM_FRAME SENT
-=> fin = true
-=> length = 568
-=> offget = "0"

Debugging Tools: Wireshark

Parses

Protocol: QUIC
CID: Connection ID
Seq: Sequence
number

Version: ie: Q024
Public flags: 1 byte
Payload: Encrypted

985 14.027869000 173.194.46.73 10.1.10.14 QuIc 1392 CID:
986 14.028834000 10.1.10.14 173.194.46.73 QuIc 1392 CID:
989 14.065914000 173.194.46.73 10.1.10.14 QuIcC 1392 CID:
990 14.066812000 10.1.10.14 173.194.46.73 QuIc 79 CID:
991 14.194009000 10.1.10.14 173.194.46.73 QuIc 1392 CID:
992 14.194164000 10.1.10.14 173.194.46.73 QuIc 350 CID:
993 14.231536000 173.194.46.73 10.1.10.14 QuIc 85 CID:
994 14,258228000 173.194.46.73 10.1.10.14 QuIc 353 CID:
995 14,268285000 2601:6:2c01:9300:69a8:92607: f8b0:4004:a::12 QUIC 1412 CID:
997 14.270807000 10.1.10.14 216.58.216.238 QuIc 1392 CID:
998 14.273189000 10.1.10.14 173.194.46.76 QuIcC 1392 CID:
999 14.277601000 10.1.10.14 173.194.46.73 QuIc 1392 CID:
1000 14.278560000 10.1.10.14 173.194.46.73 QuIc 1392 CID:
1001 14.278618000 10.1.10.14 173.194.46.73 QuIc 515 CID:
1002 14.284072000 10.1.10.14 173.194.46.73 QuIc 82 CID:
1003 14.295209000 2607:f8b0:4004:3::12 2601:6:2c01:9300:69a8 QUIC 1412 CID:
1004 14.296658000 2601:6:2c01:9300:69a8:92607: f8b0:4004:a::12 QUIC 99 CID:
1005 14.309132000 216.58.216.238 10.1.10.14 QuIc 1392 CID:
1006 14.312428000 173.194.46.76 10.1.10.14 QuIc 1392 CID:

e =Y
18 ‘)

b Frame 981: 1392 bytes on wire (11136 bits),
D Ethernet II, Src: Apple bc:da:74 (78:31:cl:bc:da:74)
P Internet Protocol Version 4, Src: 10.1.10.14 (10.1.10.14),
b User Datagram Protocol, Src Port: 51863 (51863), Dst Port: 80 (80)
¥ QUIC (Quick UDP Internet Connections)
P Public Flags: 0xod

CID: 3182875774876983667

Version: 0024

Sequence: 1

Payload: 9f8da5hbb0e0724d965b22dc01a001000443484c4f130000. . .

3182875774876983667, Seq:
3182875774876983667, Seq:
3182875774876983667, Seq:
3182875774876983667, Seq:
3182875774876983667, Seq:
3182875774876983667, Seq:
3182875774876983667, Seq:
3182875774876983667, Seq:
2735399198252988334, Seq:
2060901289831796684, Seq:

16164325528471686122, Seq:

9176532438181928584, Seq:
9176532438181928584, Seq:
9176532438181928584, Seq:
3182875774876983667, Seq:
2735399198252988334, Seq:
2735399198252988334, Seq:
2060901289831796684, Seq:

16164325528471686122, Seq:

1392 bytes captured (11136 bits) on interface 0 (outhound)
Dst: Netgear_bf:79:04 (c4:04:15:bf:79:04)
Dst: 173.194.46.73 (173.194.46.73)

Ll S — R SR S B I L R

—

= RO W N e

1'
>

Future Improvements

= Forward Error Correction
= Connection Mobility

" Multipath

"= More congestion control experiments

Open source implementations

Servers
= Open source test server included in Chromium

- Working with other server vendors

Clients
= Open source Chromium client library for desktop

and mobile
- Google Chrome and some Google Android apps

- Working with other browsers

QUIC at the IETF

Nov 2013 Initially Presented
Mar 2015 QUIC Crypto
July 2015 BarBoF

FEB 2017

* Formation of QUIC Working Group for Standard
Track work based on previous QUIC drafts, their

Implementation and deployment experience !!
https://datatracker.ietf.org/wg/quic/charter/

* (Generalize the design described in previous IETF drafts:
draft-hamilton-quic-transport-protocol
draft-iyengar-quic-loss-recovery
draft-shade-quic-http2-mapping
draft-thomson-quic-tls

IETF QUIC WG Milestones

Milestones

Date * Milestone

Feb 2017 Working group adoption of QUIC Applicability and Manageability Statement
Feb 2017 Working group adoption of HTTP/2 mapping document

Feb 2017 Working group adoption of TLS 1.3 mapping document

Feb 2017 Working group adoption of Loss detection and Congestion Control document
Feb 2017 Working group adoption of Core Protocol document

Mar 2018 TLS 1.3 Mapping document to IESG

Mar 2018 Loss detection and Congestion Control document to IESG

Mar 2018 Core Protocol document to IESG

May 2019 Multipath extension document to IESG

Nov 2017 Working group adoption of Multipath extension document

Nov 2018 QUIC Applicability and Manageability Statement to IESG

Nov 2018 HTTP/2 mapping document to IESG

Summary of QUIC

= Reliable, multiplexed transport
= Always encrypted

= Run over UDP

- Lower Latency Connection Establishment
= Optional FEC
- Rapidly Evolving User-Space Implementation

= Open Source

Additional QUIC resources

Design Document of Specification Rationale for

QUIC:

Jim Roskind, “QUIC Quick UDP Internet Connections — Multiplexed Stream

Transport over UDP,” Dec 2013.
https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/edit

Source: QUIC in Chromium

Page: www.chromium.org/quic

Public Mailing lists: quic@ietf.org
proto-quic@chromium.org (old)

IETF WG:
https://datatracker.ietf.org/wg/quic/documents/

Towards the Real-Time Web |

m Some people referred to the following as the Enabling Technologies for the
“Real-Time Web” !
http://www.infog.com/presentations/Real-time-Web-WebSocket-SPDY :

HTMLS5,

WebSocket,

SPDY => HTTP/2,

QUIC and ...

WebRTC (Web Real-Time Communications) (www.webrtc.org)

W3C WebRTC WG (API) http://www.w3.0rg/2011/04/webrtc-charter.html
IETF RTCweb WG htip://datatracker.ietf.org/wag/rtcweb/charter/

“These two specifications aim to provide an environment where Javascript embedded in any
page, viewed in any compatible browser, when suitably authorized by its user, is able to set
up communication using audio, video and auxiliary data, where the browser environment
does not constrain the types of application in which this functionality can be used.” — from
IETF Draft: draft-ietf-ricweb-overview-18, Mar 3, 2017

m See the link below for a demo on how to implement
a Real-Time Video Conference App using HTML5 with your Browser ONLY !

http://html5videoguide.net/presentations/WebDirCode2012
Real-Time Web 79

+ 0+ 4+

Towards the Real Time Web

U

WebRTC

Real-Time Web 80

The Evolution Path from Web-Surfing to WebRTC

The (Simplified) Path to WebRTC

6 HTTP (Pre AJAX)

Original Web, one page request retums
one page (e.g. Geocities).

AJAX (2004)
o Page can update without refreshing

(e.g. GMail).

Web Sockets (2008)

Page can establish bi-directional
communications (e.g. Trello)

WebRTC (2012)

Page t0 page communications

Source: Jimmy Lee / jimmylee.info

htto://venturebeat.com/2012/08/13/webrtc-1s-almost-here-and-i1t-will-chang

What is WebRTC ?

m A Google-driven W3C standardization effort (w/ support from IETF) which
enables Web Browsers with Real-Time Communications capabllmes via
HTML5 and JavaScript APls ; '

| Web Server

WebRTC
Service
Platform

S — N
Webapp : “4

JavaScript ﬁ%
. . Internet

Srowser - SRTP / SCTP 3 :
................. ; No Need

@ Device 4~ \&J Device) for Plugins

Key Components of WebRTC include: anymore !

(1) A Browser supporting the WebRTC APls
GetUserMedia , RTCPeerConnection, MediaStream, DataChannel

(2) WebRTC Service Platform with WebRTC API and/or IETF Protocol Support
for Signaling, e.g. using SIP, Jingle or other Messaging Protocols.

(3) A Web-based application written in Javascript which accesses WebRTC
APls provided by the Browser and the WebRTC Service Platform

Pre-WebRTC Messaging & Real-Time Communications
Services in the Market

Enterprise

Market Segment

Consumer

SaaS Providers
Cloud Frameworks / APls
Unified Communication Solutions
Q Voice/Video ConferenaQ
A ~~————" Pushto
Talk 7
Mobile Phone
K| VOIP Apps >
MMS
Webmail
(Rich Communication Services)
RCS
Social Networking / Media

" Web&

AN \‘ Inteemet >
/:/mP/SID
Mobile
Services

Sharing Voice Video

Breadth of Services

Messaging

© 2012 ATE&T Intellectual Property. All rights reserved.
83

WebRTC-enabled Opportunities

Third Party App

Game

PSTN
XMPP Gateway | Push |
Platforms gateway
Other XMPP I
Capabilities

Web Services m “ IMS
RESTful APIs m |
Basic WebRTC s |
Operator APls '||
] WebRTC JS library
Clients ey

Native iOS

|
Firefox
App
(WebView)

Desktop/mobile VO!.TE RCS
(WebRTC) (Voice)

© 2012 ATET Intellectual Property. All rights reserved.

Plain Old

Phone

84

The Ecosystem of
Real-Time Communication Services

Users

§ ¥ 8 W

Subscribers

d®ag

Application developers

WebRTC
Service

Over The Top (OTT)

Web Platform and Cloud Service Providers

o
b
%
2
=

OS Platforms

API| Framework Providers

WebRTC Platform
gateway

WebRTC

Network APls

Multimedia
Communications

Network Service
Providers

© 2012 ATET Intellectual Property. All rights reserved.

85

WebRTC Standards and Supporting Functions

Web Server

Web Application

supporting

WebRTC
functions [

WebRTC Call

Push'S Presence and PSTN
Control ush server Directory Gateway

[
b

Web app I \
HTML, IS

Signaling JS

G —
’/

? " WebRTC supporting
ISEP functions / APIs
WebRTC main functions

PeerConnection Push Notification

GetUserMedia

API

IMS proxy

Other WebRTC

Js
Qo™ -
client

SRTP/ scTP *

SDP
4 7
WebRTC supporting functions
Audio Codec Video Codec
Audio Video Transport

User Agent (Browser or Web Runtime)

Device

© 2012 ATET Intellectual Property. All rights reserved.

Standardization activities:
W3C - Web API
IETF — Protocol

86

WebRTC Architecture

The weh

£# dde
gam JnoA

|# dde
gam JnoA

7# dde
gam JnoA

WebRTC \
WebRTC C++ AP| (PeerConnedion)

Session management / Abstract signaling (Session)
(Voice Engine \ ﬂideolimine \ [Trmsport \ Your browser
iSAC /iLBC Codec VP8 Codec SRTP
NetEQ for voice Video jitter buffer Multiplexing
N~ S
Echo Canceler / Image enhancements P2pP
\ Noise Reduction) \ k STUN + TURN + ICE J

———————— pon W W W% W W

|(Audio ' | VideoCaptwe ' | N etwork 1/0
\ Capture/Render 1 . 1 \ 1

@ ~P! for web developers () Apiforbrowsermakers { _ © T} Ovenideable by browser makers
87

Source: webrtc.org

Javascript Session Establishment Protocol (JSEP)
Architecture

Signaling Signaling

App

WebRTC

Caller Callee

Source: Sam Dutton, http://www.html5rocks.com/en/tutorials/webrtc/basics/

88

A Sample Realization: A Demo App, AppRTC, which
uses the Google App Engine’s Channel APl (Messaging
service) to enable signaling b/w Javascript Clients

App Engine

JSON/XHR+Channel JSON/XHR+Channel

App

--

WebRTC

Caller Callee 89

Source: Sam Dutton, http://www.html5rocks.com/en/tutorials/webrtc/basics/ ;

WebRTC Audio and Video Engines

Web Application API (W3()

|

Internal WebRTC API

Voice engine Video engine
Audio codecs Video codecs
Jitter/packet loss concealment Jitter/packet loss concealment
Echo cancellation Synchronization
Noise reduction Image enhancement
Audio Capture Video Capture
Device hardware

Source: Ilya Grigorik, Ch.18 of High Performance Browser Networking, O’Reilly Publisher,
http://chimera.labs.oreilly.com/books/1230000000545/index.html

90

The WebRTC Networking Protocol Stack

RTCPeerConnection | DataChannel
XHR SSE WebSocket SRTP SCTP
HTTP 1.x/2.0 Session (DTLS) - mandatory
Session (TLS) - optional ICE, STUN, TURN
Transport (TCP) Transport (UDP)

Network (IP)

ICE: Interactive Connectivity Establishment (RFC 5245)
STUN: Session Traversal Utilities for NAT (RFC 5389)
TURN: Traversal Using Relays around NAT (RFC 5766)
SDP: Session Description Protocol (RFC 4566)
DTLS: Datagram Transport Layer Security (RFC 6347)
SCTP: Stream Control Transport Protocol (RFC 4960)
SRTP: Secure Real-Time Transport Protocol (RFC 3711)

Source: Ilya Grigorik, Ch.18 of High Performance Browser Networking, O’Reilly Publisher,
http://chimera.labs.oreilly.com/books/1230000000545/index.html

91

RTCPeerConnection API

Local user

Application

|

Remote peer

RTCPeerConnection
VVY
<
Local ICE Agent Remote [
streams streams |
STUN server TURN server 4

Source: Ilya Grigorik, Ch.18 of High Performance Browser Networking, O’Reilly Publisher,
http://chimera.labs.oreilly.com/books/1230000000545/index.html

92

Peer-to-Peer Secure Handshake over DTLS

WebRTC standards require ALL transferred data — audio, video and
application data/ payloads to be ENCRYPTED during transit ; DTLS is

used for such purpose.

-

\,

(lientHello }

Certificate
ClientKeyExchange
CertificateVerify
ChangeCipherSpec
Finished

7

\

Application Data

o

ServerHello
Certificate
ServerKeyExchange
CertificateRequest
| ServerHelloDone

(ChangeCipherSpec)
Finished

~

[Application Data

Source: Ilya Grigorik, Ch.18 of High Performance Browser Networking, O’Reilly Publisher,
http://chimera.labs.oreilly.com/books/1230000000545/index.html

93

Video and Audio Delivery via
Secure RTP (SRTP) over UDP

Application ‘ Application l

@ @ addstream @ onaddstream

getUserMedia l
\ 4
RTCPeerConnection l-———b‘ RTCPeerConnection l

SRTP over UDP

Source: Ilya Grigorik, Ch.18 of High Performance Browser Networking, O’Reilly Publisher,
http://chimera.labs.oreilly.com/books/1230000000545/index.html

Deployment Status of WebRTC
(circa June 2016)

m WebRTC is powering many of the Top Communications Apps:

Google Hangouts, Facebook Messager, Amazon Mayday,

Snapchat, Slack

Whatsapp also uses some WebRTC components according to [**]

Skype is moving to WebRTC

3 Billion+ WebRTC apps downloaded so far !

m 1.5 Billion+ WebRTC browsers

Chrome, Firefox, Opera, Microsoft Edge

WebRTC for WebKit browser (of Android & I0S) under development
[**] webrtchacks.com/whats-up-with-whatsapp-and-webrtc

* * *
IE Edge Firefox Chrome Safari Opera iOS Safari Opera Mini

Android * Chrome for
Browser Android

45

34 = 9.2
EEE B
” .

o

caniuse.com/webrtc

Additional References
http://www.webrtc.org
Sam Dutton, http://www.html5rocks.com/en/tutorials/webrtc/basics/
llya Grigorik, Ch.18 of High Performance Browser Networking, O’Reilly:
http://chimera.labs.oreilly.com/books/1230000000545/index.html

Cullen Jenngins, Ted Hardie, Magnus Westerlund, “Real-Time
Communications over the Web,” IEEE Communications Magazine, Vol.
51, pp.20-26, 2013

Justin Uberti, Sam Dutton, "Real-Time Communication with WebRTC,”
Google 1/0 2013

http://io13webrtc.appspot.com/#1
http://www.youtube.com/watch?v=p2HzZkd2A40&t=21m12s
AppRTC, a WebRTC demo hosted on the Google App Engine,
http://www.webrtc.org/demo
https://apprtc.appspot.com/
Another set of WebRTC Demo Apps:
http://generative.edb.utexas.edu/webrtc-demos/

https://bloggeek.me/quic-webrtc/
Cullen Jenninas. “What’s Next with WebRTC.” Sept 2016

96

