
IERG5090
Advanced Networking Protocols and Systems

2016/2017 Sem 2

HW2: SDN Lab

Due on Apr 3, 2017

Mar, 2017

IERG5090 Advanced Networking Protocols and Systems HW2: SDN Lab

Overview

In this lab, you will learn

1. how to set up a SDN emulation environment on your own laptop or PC; how to connect

and access the environment from your laptop; simple examples of Mininet and some

development tools;

2. how to write and run custom topology in Mininet; the basic knowledge and APIs of the

controller platform you choose (here we take POX as an example); how to implement

network functions, such as hub, switch, and firewall, on the controller platform;

3. the IP load balancer component of POX and its usage together with L2 learning

switches; the problem of containing connection loop in network topology for SDN

and how POX handles it via the spanning tree module; the load balancing via routing

on multiple paths in SDN.

Submission

You are required to submit a lab report containing screenshots of some key steps. Besides,

you need to submit some files which contains your implementation of some functions. The

required screenshots and files are marked in red color through the lab task description. Please

follow the guidelines below to submit your lab report.

Submit Method

You need to submit a compressed file (e.g., a .zip file), which contains the PDF version of

your report and all the required files. Please include your name and student ID in the file

name and the first page of your report. Submit your compressed file to eLeanring or send it

to the following email address before 23:59pm of the due date. If you submit by email, the

email subject should start with IERG5090-HW2.

dt016@ie.cuhk.edu.hk

Academic Honesty

You are required to complete the homework by yourself. Please refer to the plagiarism policy

of CUHK at http://www.cuhk.edu.hk/policy/academichonesty/index.htm.

Acknowledgement

The design and write-up of this lab exercise is mostly prepared by Jacky ZHAN.

Page 2 of 32

http://www.cuhk.edu.hk/policy/academichonesty/index.htm

IERG5090 Advanced Networking Protocols and Systems HW2: SDN Lab

Lab Tasks

Task I: Set up Virtual Machine

1. Download and install VirtualBox on your laptop at https://www.virtualbox.org/.

2. Download the virtual machine image from HERE.

3. Install the downloaded image in VirtualBox in following steps:

(a) start up VirtualBox, select File → Import Appliance;

(b) select the .ova image that you downloaded, wait for the installation;

(c) select your VM and go to the Settings Tab. Go to Network→ Adapter 2. Select the

”Enable adapter” box, and attach it to ”host-only network”. (This will allow you to

easily access your VM through your host machine)

Remarks: In case there is no valid adapter for host-only, please refer to [3] for solutions.

4. Start the VM and you should be able to login the VM using mininet as both username

and password.

Task II: Connect and Access VM

IP for Host Access

Run the following command in your VM to figure out the network interface configuration

of your VM. There should be three interfaces (2 ethx and 1 loc) if you follow the previous

steps in setting up VM.

$ ifconfig -a

If the IP address of any ethx is missing, run the following command to assign IP address to

the interface.

$ sudo dhclient ethx

Mark down the IP address for the host-only network interface (probably the 192.168.x.x),

it will allow you to connect your VM from your laptop via SSH.

(Include the screenshot of running (ifconfig − a) into your lab report)

Connect VM from Host

Only the connect procedures for Windows are introduced here. For other operating systems

for your laptop, please refer to the instructions at [1].

We will use PuTTY as the SSH client to access the VM, you can download and install it

from http://www.putty.org/.

Before we start the connection via PuTTY, we need to setup the Xming Sever (explore it at

Page 3 of 32

https://www.virtualbox.org/
https://www.cs.princeton.edu/courses/archive/fall13/cos597E/assignments/tester.ova
http://www.putty.org/

IERG5090 Advanced Networking Protocols and Systems HW2: SDN Lab

HERE) and enable the connection to VM with X11 forwarding. These will allow you to use

X11 applications such as xterm and Wireshark in future labs.

1. Xming Sever could be downloaded from HERE and you can start it by double-clicking its

icon. (No window will appear, check its running process in the task manager of Windows)

2. X11 forwarding could be enabled in PuTTY by clicking Connection → SSH → X11, and

then Forwarding → Enable X11 Forwarding, see below.

Till now, you should be able to access the VM from host (your laptop) via PuTTY, you

could set up multiple connections simultaneously.

Task III: Start Mininet

Connect to the VM via PuTTY and run the following command to emulate a simple network

in Mininet. It will remains in Mininet console (start with mininet) after initializing the

network and you could play with different Mininet commands.

$ sudo mn --topo single,3 --mac

*** Creating network

*** Adding controller

*** Adding hosts:

5 h1 h2 h3

Page 4 of 32

https://en.wikipedia.org/wiki/Xming
http://sourceforge.net/project/downloading.php?group_id=156984&filename=Xming-6-9-0-31-setup.exe

IERG5090 Advanced Networking Protocols and Systems HW2: SDN Lab

*** Adding switches:

s1

*** Adding links:

(h1, s1) (h2, s1) (h3, s1)

10 *** Configuring hosts

h1 h2 h3

*** Starting controller

*** Starting 1 switches

s1

15 *** Starting CLI:

Development Tool: xterm

The xterm is a terminal emulator and allows you to access the emulated network nodes in

Mininet. Run the following command in Mininet console and it will provide the terminal for

the host h1 you just created, see below.

mininet> xterm h1

Development Tool: dpctl

The dpctl is a management utility that enables some control over the OpenFlow switch.

With this tool it’s possible to add flows to the flow table, query for switch features and

status, and change other configurations.

To try the dpctl, you need to create another connection to the VM via PuTTY, as the

Page 5 of 32

IERG5090 Advanced Networking Protocols and Systems HW2: SDN Lab

existing one is occupied by Mininet. You could duplicate the PuTTY session easily from the

existing one, see below.

In the new PuTTY session, run the following command to dump the port state and capa-

bilities of the switch s1 you just created.

$ dpctl show tcp:127.0.0.1:6634

You could configure the switch with the following commands to applying packet forward

rule: forwarding packets coming at port 1 to port 2 and vice-versa.

$ dpctl add-flow tcp:127.0.0.1:6634 in_port=1,actions=output:2

$ dpctl add-flow tcp:127.0.0.1:6634 in_port=2,actions=output:1

Run the following command to verify the configuration by checking the flow-table of the

switch.

$ dpctl dump-flows tcp:127.0.0.1:6634

(Include the screenshot of the flow-table into your lab report)

More information about the usage of dpctl could be found at [6].

Development Tool: Wireshark

Wireshark is a network protocol analyzer and it lets you see what’s happening on your

network at a microscopic level. It is the de facto standard across many industries and

educational institutions. We could utilize it to observe the traffics of the created network in

Mininet.

Wireshark is installed by default in the VM image. Run the following command to start

Wireshark for the VM on your laptop via the X11 forwarding enabled.

Page 6 of 32

IERG5090 Advanced Networking Protocols and Systems HW2: SDN Lab

$ sudo wireshark &

To monitor traffics of the network, select Capture → Interfaces and pick the interface you

want to monitor, see below.

Try to monitor the traffics generated by the following Ping test. (Include the screenshot

of traffic records captured in Wireshark into your lab report)

mininet> h1 ping -c3 h2

Task IV: Mininet Walkthrough

You will be introduced some basic commands and APIs of Mininet in this section. The

complete documentation of Mininet is at [7].

Basic Commands

Start a minimal topology and enter the CLI:

$ sudo mn

Display Mininet CLI commands:

5 mininet> help

Exit the CLI

mininet> exit

10 # If Mininet crashes for some reason, clean it up

$ sudo mn -c

Page 7 of 32

IERG5090 Advanced Networking Protocols and Systems HW2: SDN Lab

Nodes and Links

Display nodes:

mininet> nodes

Display links:

5 mininet> net

Dump information about all nodes:

mininet> dump

10 # Run command on specific node by typing the node name first

mininet> h1 ifconfig -a

Connectivity

Ping test from h1 to h2

mininet> h1 ping -c 1 h2

Test all-pairs Ping

5 mininet> pingall

(Include the screenshot of verifying connectivity in your VM into your lab report)

Task V: Topology in Mininet

Built-in Topology

Mininet supports several built-in typical topologies and it allows you to run some self-

contained regression tests, such as Ping Test, on the topologies. For example, the following

command performs pingall test in a default single topology with 2 hosts connecting to a

single switch.

$ sudo mn --test pingall

You could specify the topology and corresponding parameters among the built-in ones that

Mininet supports, including linear, minimal, reversed, single, tree. For example, the following

command performs the pingall test in a tree topology with a depth of 2 and fanout of 3.

You can explore other built-in topologies at [8].

$ sudo mn --test pingall --topo tree,2,3

Page 8 of 32

IERG5090 Advanced Networking Protocols and Systems HW2: SDN Lab

Custom Topology

Apart from the built-in topologies and self-contained regression tests, Mininet supports cus-

tomization of both test and topology in Python, see below:

filename: mytopo.py

class MyTopo(Topo):

def build(self, ...):

def myTest(net):

5 ...

topos = { ’mytopo’: MyTopo }

tests = { ’mytest’: myTest }

The above example adds the MyTopo class to the topos dictionary and allows you to run the

myTest. You could specify to use MyTopo and run myTest using the −− custom to include

the file following sudomn, see below:

$ sudo mn --custom mytopo.py --topo mytopo,3 --test mytest

The concrete implementation of the custom topology requires understanding of the Mininet

Python APIs, which are built at three primary levels according to the Mininet documentation

at [9].

1. Low-level API (nodes and links): the low-level API consists of the base node and link

classes (such as Host, Switch, and Link and their subclasses) which can actually be in-

stantiated individually and used to create a network, but it is a bit unwieldy.

low-level API example

h1 = Host(’h1’)

h2 = Host(’h2’)

s1 = OVSSwitch(’s1’, inNamespace=False)

5 c0 = Controller(’c0’, inNamespace=False)

Link(h1, s1)

Link(h2, s1)

h1.setIP(’10.1/8’)

h2.setIP(’10.2/8’)

10 c0.start()

s1.start([c0])

2. Mid-level API (network object): The mid-level API adds the Mininet object which serves

as a container for nodes and links. It provides a number of methods (such as addHost(),

addSwitch(), and addLink()) for adding nodes and links to a network, as well as network

configuration, startup and shutdown (notably start() and stop().)

mid-level API example

net = Mininet()

Page 9 of 32

IERG5090 Advanced Networking Protocols and Systems HW2: SDN Lab

h1 = net.addHost(’h1’)

h2 = net.addHost(’h2’)

5 s1 = net.addSwitch(’s1’)

c0 = net.addController(’c0’)

net.addLink(h1, s1)

net.addLink(h2, s1)

3. High-level API (topology templates): The high-level API adds a topology template ab-

straction, the Topo class, which provides the ability to create reusable, parametrized

topology templates. These templates can be passed to the mn command (via the –custom

option) and used from the command line.

high-level API example

class SingleSwitchTopo(Topo):

def build(self, count=1):

hosts = [self.addHost(’h%d’ % i)

5 for i in range(1, count + 1)]

s1 = self.addSwitch(’s1’)

for h in hosts:

self.addLink(h, s1)

net = Mininet(topo=SingleSwitchTopo(3))

10 net.start()

CLI(net)

net.stop()

Performance Parameters

For full reference manual of Mininet Python API, you can explore at [10]. Here we introduce

the parameters for configuring network performance in Mininet APIs.

Mininet provides performance limiting and isolation features, through the CPULimitedHost

and TCLink classes. A simple way to use the classes is to specify them as the default host

and link classes/constructors to Mininet(), and then to specify the appropriate parameters

in the topology, see below:

network performance classes

net = Mininet(topo=topo, host=CPULimitedHost, link=TCLink)

The parameter cpu in addHost() allows you to specify a fraction of overall system CPU

resources which will be allocated to the virtual host.

CPU Limitation

self.addHost(name, cpu=f)

In addLink(), the parameter bw configures the link bandwidth in Mbit; delay is expressed

as a string with units in place (e.g. ’5ms’, ’100us’, ’1s’); loss is expressed as a percentage

Page 10 of 32

IERG5090 Advanced Networking Protocols and Systems HW2: SDN Lab

(between 0 and 100); and max queue size refers to the maximum queue size and is expressed

in packets; and use htb indicates whether to use the Hierarchical Token Bucket rate limiter.

Link Performance

self.addLink(node1, node2, bw=10, delay=’5ms’, max_queue_size=1000,

loss=10, use_htb=True)

Topology Design Practice

Suppose we are going to design the network topology for a campus department. The network

will serve three types of purposes: a) Student Lab, which has 5 end hosts; b) 3 Staff Offices,

among which 1 office has 3 end hosts and each of the others is equipped with one end host;

and c) a Private Web Server with DB, which supports internal content sharing inside the

department.

Please implement a topology class Lab2Topo for the above scenario, and configure the net-

work to meet the following requirements:

1. Separate the end hosts of a), b) and c) under different switches;

2. Set the host names of a), b) and c) with prefixes as sl, so and sw respectively;

3. Configure the link bandwidths of all switch pairs to be 2 Gbits/sec and that of switch-host

pairs to be 10 Mbits/sec, 50 Mbits/sec and 1 Gbits/sec for a), b) and c) respectively;

4. Configure the link delay of all switch pairs to be 20us and that of switch-host pairs to be

50ms, 20ms and 10ms for a), b) and c) respectively;

5. Configure the link loss of all switch pairs to be 0 and that of switch-host pairs to be 5%,

2% and 1% for a), b) and c) respectively.

(Submit your topology class file with name as lab2topo.py)

To verify your design of network topology, implement a test with name lab2Test to do the

following tasks:

1. Dump all nodes and host connections;

2. Test the network connectivity;

3. Conduct iperf for all node pairs.

(Submit your implementation of lab2Test file with name as lab2test.py and in-

clude the screenshot of applying your lab2Test on your Lab2Topo)

Task VI: SDN Controller

One of Mininet’s most powerful and useful features is that it uses Software Defined Network-

ing. Using the OpenFlow protocol and related tools, you can program switches to do almost

Page 11 of 32

IERG5090 Advanced Networking Protocols and Systems HW2: SDN Lab

anything you want with the packets that enter them.

In previous lab tasks, we don’t specify a controller when running sudo mn. Therefore,

Mininet uses the ovsc controller as the default one, which is equivalent to the following

command:

$ sudo mn --controller ovsc ...

Controller Platforms

To implement your own logic of network behavior, it is more convenient to use some con-

troller platform and connect it to Mininet as remote controller. The following lists controller

platform options in different languages.

1. Java: Beacon, Floodlight;

2. Python: POX, Ryu;

3. Ruby: Trema.

You might choose the controller platform as you want for the following lab tasks. Introduc-

tions of different controller choices could be found at [1]. We will explore POX as an example

in the following.

POX Basics

The POX controller has been pre-installed in your VM, so as some other controller options.

You may find the pox directory with the ls command.

Before we start the POX controller, we need to restart Mininet to remove the previous default

controller process, see below:

mininet> exit

$ sudo mn -c

We will use the simple single topology with 3 hosts connecting to a switch to explain the POX

basics. Run the following command to start Mininet with specifying a remote controller.

$ sudo mn --topo single,3 --mac --switch ovsk --controller remote

You might also try to connect a remote controller in your own topology or scripts, which

uses the RemoteController class of Mininet.

net = Mininet(topo=topo, controller=None)

net.addController(’c0’, controller=RemoteController, ip=’127.0.0.1’,

port=6633)

After set up the network in Mininet, we could run a controller script in POX and it could

automatically connect to your network. Before digging into the controller implementation,

Page 12 of 32

IERG5090 Advanced Networking Protocols and Systems HW2: SDN Lab

let’s run a built-in example of POX, run the following commands in a separate PuTTY

session from the one you run Mininet.

$ cd pox

$ pox.py log.level --DEBUG misc.of_tutorial

The above command tells POX to enable verbose logging and to start the of tutorial com-

ponent. You should see the following output of POX, which means your network is under

control of the POX script of tutorial.py under the misc directory.

INFO:openflow.of_01:[00-00-00-00-00-01 1] connected

DEBUG:misc.of_tutorial:Controlling [00-00-00-00-00-01 1]

POX APIs

It is worthy for you to download the source code of POX from [11] and study its examples

(e.g. of tutorial.py) under misc directory, which would help you with the future lab tasks.

Several useful POX APIs are explained below.

send an OpenFlow message to a switch

connection.send(...)

When a connection to a switch starts, a ConnectionUp event is fired. The example code in

of tutorial.py creates a new Tutorial object that holds a reference to the associated Connec-

tion object. This can later be used to send commands (OpenFlow messages) to the switch.

ofp action output class

This is an action for use with ofp packet out and ofp flow mod. It specifies a switch port

that you wish to send the packet out of. It can also take various ”special” port numbers.

An example of this would be OFPP FLOOD which sends the packet out all ports except the

one the packet originally arrived on.

Example. Create an output action that send packets to all ports

out_action = of.ofp_action_output(port = of.OFPP_FLOOD)

ofp match class

Objects of this class describe packet header fields and an input port to match on. All fields

are optional – items that are not specified are ”wildcards” and will match on anything. Some

notable fields of ofp match objects are:

1. dl src - The data link layer (MAC) source address

2. dl dst - The data link layer (MAC) destination address

3. in port - The packet input switch port

Page 13 of 32

IERG5090 Advanced Networking Protocols and Systems HW2: SDN Lab

Example. Create a match that matches packets arriving on port 3:

match = of.ofp_match()

match.in_port = 3

ofp packet out OpenFlow message

The ofp packet out message instructs a switch to send a packet. The packet might be one

constructed at the controller, or it might be one that the switch received, buffered, and

forwarded to the controller (and is now referenced by a buffer id).

Notable fields are:

1. buffer id - The buffer id of a buffer you wish to send. Do not set if you are sending a

constructed packet.

2. data - Raw bytes you wish the switch to send. Do not set if you are sending a buffered

packet.

3. actions - A list of actions to apply (for this tutorial, this is just a single ofp action output

action).

4. in port - The port number this packet initially arrived on if you are sending by buffer id,

otherwise OFPP NONE.

Example. Sends a packet out of the specified switch port.

def send_packet(self, buffer_id, raw_data, out_port, in_port):

"""

Sends a packet out of the specified switch port.

5 If buffer_id is a valid buffer on the switch, use that. Otherwise,

send the raw data in raw_data.

The "in_port" is the port number that packet arrived on. Use

OFPP_NONE if you’re generating this packet.

"""

10 msg = of.ofp_packet_out()

msg.in_port = in_port

i f buffer_id != -1 and buffer_id i s not None:

We got a buffer ID from the switch; use that

msg.buffer_id = buffer_id

15 else:

No buffer ID from switch -- we got the raw data

i f raw_data i s None:

No raw_data specified -- nothing to send!

return

20 msg.data = raw_data

action = of.ofp_action_output(port = out_port)

Page 14 of 32

IERG5090 Advanced Networking Protocols and Systems HW2: SDN Lab

msg.actions.append(action)

25 # Send message to switch

self.connection.send(msg)

ofp flow mod OpenFlow message

This instructs a switch to install a flow table entry. Flow table entries match some fields of

incoming packets, and executes some list of actions on matching packets. The actions are

the same as for ofp packet out, mentioned above (and, again, for the tutorial all you need is

the simple ofp action output action). The match is described by an ofp match object.

Notable fields are:

1. idle timeout - Number of idle seconds before the flow entry is removed. Defaults to no

idle timeout.

2. hard timeout - Number of seconds before the flow entry is removed. Defaults to no

timeout.

3. actions - A list of actions to perform on matching packets (e.g., ofp action output)

4. priority - When using non-exact (wildcarded) matches, this specifies the priority for over-

lapping matches. Higher values are higher priority. Not important for exact or non-

overlapping entries.

5. buffer id - The buffer id of a buffer to apply the actions to immediately. Leave unspecified

for none.

6. in port - If using a buffer id, this is the associated input port.

7. match - An ofp match object. By default, this matches everything, so you should probably

set some of its fields!

Example. Create a flow_mod that sends packets from port 3 out of 4.

fm = of.ofp_flow_mod()

fm.match.in_port = 3

fm.actions.append(of.ofp_action_output(port = 4))

Task VII: Network Functions in Controller

Hub

Hub is a common connection point for devices in a network, which is commonly used to

connect segments of a LAN. A hub contains multiple ports. When a packet arrives at one

port, it is copied to the other ports so that all segments of the LAN can see all packets [12].

Therefore, the behavior of a hub could be verified by conducting host ping test, in which

case all hosts connected to the hub will receive the exact same traffic.

Page 15 of 32

IERG5090 Advanced Networking Protocols and Systems HW2: SDN Lab

The of tutorial.py of POX implements the switch as a hub by default. It evokes the function

self.act like hub() when handling the in-packets, which will flood all the packets to all ports.

def act_like_hub (self, packet, packet_in):

"""

Implement hub-like behavior -- send all packets to all ports

besides the input port.

5 """

We want to output to all ports -- we do that using the special

OFPP_ALL port as the output port. (We could have also used

OFPP_FLOOD.)

10 self.resend_packet(packet_in, of.OFPP_ALL)

Note that if we didn’t get a valid buffer_id, a slightly better

implementation would check that we got the full data before

sending it

15 # (len(packet_in.data) should be == packet_in.total_len)).

Let’s verify the hub behavior by conducting ping test from h1 to h2. We can create xterm

for each host and view the received TCP traffic using tcpdump. The following command will

create 3 consoles for hosts h1, h2 and h3.

mininet> xterm h1 h2 h3

In the xterm of h2 and h3, run tcpdump on h2-eth0 and h3-eth0 respectively.

root@mininet:˜# tcpdump -XX -n -i h2-eth0

In the xterm of h1, conduct a ping test.

root@mininet:˜# ping -c1 10.0.0.2

The ping packets are now going up to the controller, which then floods them out all interfaces

except the sending one. You should see identical ARP and ICMP packets corresponding to

the ping in both xterms running tcpdump. This is how a hub works; it sends all packets to

every port on the network.

Switch

A network switch also connects computers to each other, like a hub. Where the switch differs

from a hub is in the way it handles packets of data. When a switch receives a packet of

data, it determines what computer or device the packet is intended for and sends it to that

computer only. It does not broadcast the packet to all computers as a hub does which means

bandwidth is not shared and makes the network much more efficient. For this reason alone,

switches are usually preferred over a hub [12].

Page 16 of 32

IERG5090 Advanced Networking Protocols and Systems HW2: SDN Lab

In the of tutorial.py of POX, it has the method self.act like switch() but without concrete

implementation.

(Complete the implementation of self.act like switch() in of tutorial.py and sub-

mit the updated file with name of tutorial switch.py. In addition, verify the

behavior of your switch and include the corresponding screenshots in your lab

report.)

Firewall

A Firewall is a network security system that is used to control the flow of ingress and egress

traffic usually between a more secure local-area network (LAN) and a less secure wide-area

network (WAN). The system analyses data packets for parameters like L2/L3 headers (i.e.,

MAC and IP address) or performs deep packet inspection (DPI) for higher layer parameters

(like application type and services etc) to filter network traffic. A firewall acts as a barricade

between a trusted, secure internal network and another network (e.g. the Internet) which is

supposed to be not very secure or trusted [13].

(Write a simple firewalling module that blocks traffic between hosts 2 and 3

in of tutorial.py and submit the updated file with name of tutorial firewall.py.

In addition, verify the behavior of your Firewall and include the corresponding

screenshots in your lab report.)

Task VIII: IP Load Balancer in SDN

One of the main features of SDN is the capability of implementing load balancing for the

target network topology or services. One type of load balancing is to forward network

requests from end hosts to multiple servers smartly. Figure 1 presents a simple example of

such load balancing case, in which the switch acts as a load balancer. It forwards network

requests from end hosts to multiple servers with the objective of balancing loads between

Server 1 and Server 2.

POX provides a built-in component misc.ip loadbalancer as a simple TCP load balancer

(which started in the carp branch). The POX command of running the load balancer is as

following [17].

mininet@mininet:˜/pox$./pox.py misc.ip_loadbalancer --ip=<Service IP>

--servers=<Server1 IP>,<Server2 IP>,.. [--dpid=<dpid>]

Give it a service IP and a list of server IP addresses. New TCP flows to the service IP will

be randomly redirected to one of the server IPs. In the meantime, servers are periodically

probed to see if they’re alive by sending them ARPs.

Page 17 of 32

IERG5090 Advanced Networking Protocols and Systems HW2: SDN Lab

Figure 1: Network Topology with IP Load Balancer

Test Load Balancer in POX

The network in Figure 1 can be easily created from the built-in topology single of Mininet

with 5 hosts connecting to a single switch.

Run the following POX command to start the controller, this will assume h1 and h2 as the

servers with the service IP as 10.0.1.1.

mininet@mininet:˜/pox$./pox.py misc.ip_loadbalancer --ip=10.0.1.1

--servers=10.0.0.1,10.0.0.2

In another PuTTY session, run the following command to start the network in Figure 1.

mininet@mininet:˜$ sudo mn --topo single,5 --controller remote

Create xterm console for all hosts h1-h5. Run the following command in h1 and h2 to start

simple HTTP service at h1 and h2.

python -m SimpleHTTPServer 80

At xterm console of h3, h4 and h5, run the following command to send HTTP request to

the service IP (10.0.1.1).

curl 10.0.1.1

The command above will grab the directory list in html from the servers (the default web

page for a simple server) as shown in Figure 2.

(Include the screenshots of xterm consoles at h1 and h2 and describe the test

result in your lab report)

Page 18 of 32

IERG5090 Advanced Networking Protocols and Systems HW2: SDN Lab

Figure 2: Directory List in HTML from the Server

Load Balancer Plus Switch

By default, the load balancer component of POX will make the first switch that connects

into a load balancer and ignore the other switches. If you have a topology with multiple

switches, it probably makes more sense to specify which one should be the load balancer,

and this can be done with the –dpid option in command line. In this case, you probably

want the rest of the switches to do something worthwhile (like forward traffic), and you may

have to create a component that does this for you. For example, you might create a simple

component which does the same thing as forwarding.l2 learning on all the switches besides

the load balancer [17].

Figure 3 shows an example of topology with multiple switches, among with s2 acts as the

load balancer to distribute network requests among multiple servers (w1-w3). s1 and s3 are

supposed to act as normal L2 learning switch.

Complete the following tasks for the topology shown in Figure 3.

1. Create a custom topology template for the network with class name Lab3Topo1 and file

name lab3topo1.py ;

Page 19 of 32

IERG5090 Advanced Networking Protocols and Systems HW2: SDN Lab

Figure 3: Load Balancer together with Learning Switches

2. Implement s2 as a load balancer and keep s1 and s3 as normal L2 learning switch;

3. Create simple HTTP server on w1-w3 ;

4. Conduct the curl test (similar to the example above) on all end hosts (h1-h6).

*Remarks

A quick way to run load balancer with multiple switches is to upgrade the POX in your VM

from carp to dart. The ip loadbalancer component has been updated in the dart version.

Follow the Git commands below to complete the upgrade. Besides, the materials at [17] and

[18] might be helpful for you to explore more.

remeber to backup you own files implemented under ./pox directory

mininet@mininet:˜/pox$ sudo git checkout -b dart

mininet@mininet:˜/pox$ sudo git clean -fd

mininet@mininet:˜/pox$ sudo git pull origin dart

(Include the screenshots of curl test results in your lab report and submit your

implementation of topology template and controller)

Page 20 of 32

IERG5090 Advanced Networking Protocols and Systems HW2: SDN Lab

Task IX: Load Balancing via Path Routing

Another type of load balancing in SDN is via routing on multiple paths. The SDN controller

schedules traffic flow between hosts on the path selected from multiple path options (between

the same hosts). Path routing is based on its global knowledge of the network, so as to

improve the network performance and achieve the goal of load balancing.

Figure 4: Network Topology with a Connection Loop

Loops in Network Topology

However, multiple paths between the same host pair means there is at least one loop in the

network topology (graph). For example, in the previous lab, you are required to implement

a custom topology for the given campus department. You might have tried connecting your

switches in a loop, see Figure 4. In such network, there exist two paths between all host

pairs. The SDN controller could select a suitable path from the two candidates according to

some criteria (e.g. with less traffic).

However, Mininet will fail to work with the default ovs-controller, for example, you cannot

ping anything in such a network. It’s important to remember that Ethernet bridges (also

known as learning switches) will flood packets that miss in their MAC tables. They will also

flood broadcasts like ARP and DHCP requests. This means that if your network has loops or

multiple paths in it, it will not work with the default ovs-controller and controller controllers,

nor NOX’s pyswitch, nor POX’s l2 learning, which all act as learning switches/Ethernet

bridges [14].

Page 21 of 32

IERG5090 Advanced Networking Protocols and Systems HW2: SDN Lab

Therefore, to use a network with loops, you need controllers that support such a network.

POX includes a spanning tree module, and other controllers (Floodlight, ONOS, ODL, etc.)

may support multipath and/or spanning tree - you will want to consult the documentation

for your controller, make sure it is configured correctly to support multipath or spanning

tree, and test it to make sure that it actually works [15].

Test Spanning Tree Module in POX

Create a topology template with name lab3loop.py and implement it as following. This will

create a simple network similar to the one in Figure 4, but with each switch connecting to

only one host. The 3 switches form a loop in the network.

file: lab3topo.py

from mininet.topo import Topo

from mininet.net import Mininet

from mininet.cli import CLI

5

class Lab3LoopTopo(Topo):

initiate the topology

def __init__(self):

Topo.__init__(self)

10

h1 = self.addHost(’h1’)

h2 = self.addHost(’h2’)

h3 = self.addHost(’h3’)

15 s1 = self.addSwitch(’s1’)

s2 = self.addSwitch(’s2’)

s3 = self.addSwitch(’s3’)

self.addLink(h1, s1)

20 self.addLink(h2, s2)

self.addLink(h3, s3)

self.addLink(s1, s2)

self.addLink(s2, s3)

25 self.addLink(s3, s1)

topos = { ’loop’: (lambda: Lab3LoopTopo()) }

Run the following command to start your POX controller with spanning tree module enabled.

You can explore more details about POX spanning tree at [16].

mininet@mininet:˜$ cd pox

mininet@mininet:˜/pox$./pox.py forwarding.l2_learning

Page 22 of 32

IERG5090 Advanced Networking Protocols and Systems HW2: SDN Lab

openflow.discovery openflow.spanning_tree --no-flood --hold-down

Start Mininet with the topology defined in lab3loop.py using the following command, which

specifies the remote POX controller (the one you just started) as the network controller.

mininet@mininet:˜$ sudo mn --custom lab3loop.py --topo loop

--controller remote

The POX controller will start to discover the network topology upon connecting to the

network. You could conduct ping tests between hosts to verify whether Mininet works

normally.

(Include the screenshots of POX controller output and the test result into your

lab report)

Restart your POX controller without spanning tree using the following command and repeat

the same experiment.

(Describe the experiment result in your lab report)

mininet@mininet:˜/pox$./pox.py forwarding.l2_learning

According to the above example, the spanning tree module allows loop of connection links

in SDN network. However, it uses the list of all links within the network to build a spanning

tree and changes the default flood behavior of OpenFlow switches. It only allows paths on

the spanning tree, therefore, there is no multiple path between any host pairs.

Figure 5: Network Topology of the Given Scenario

Page 23 of 32

IERG5090 Advanced Networking Protocols and Systems HW2: SDN Lab

Example of Load Balancing via Routing

Suppose a company deploys 5 data centers across the world to support its applications and

services. Figure 5 shows the network topology of the data centers and Table 1 gives the

corresponding performance parameters of network links. To guarantee its service quality, it

is necessary for the data centers to replicate and synchronize data with each other. However,

the data synchronization tasks can only be scheduled at midnight and must be completed

as soon as possible.

The company uses SDN to operate the network and needs smart routing at the SDN con-

troller. The primary objective here is to minimize the time needed for completing all the

data synchronization tasks. The details of data synchronization tasks between data centers

Link Bandwidth Delay Loss

* 1 Gbps 20 us 0%

Link 1 50 Mbps 1 ms 1%

Link 2 40 Mbps 2 ms 1%

Link 3 80 Mbps 1 ms 1%

Link 4 50 Mbps 2 ms 1%

Link 5 50 Mbps 1 ms 1%

Table 1: Network Performance Parameters

are listed in Table 2. For the node pair of each task, there exist two possible paths for the

data traffic. For example, for task 1, the packets from data center A to data center E could

follow either A - S1 - S5 - E or A - S1 - S2 - S3 - S4 - S5 - E. The scheduling of paths for the

Task From To Data Volume

Task 1 A E 2 GB

Task 2 B E 1 GB

Task 3 B C 3 GB

Task 4 A C 2 GB

Table 2: Data Synchronization Tasks for the

Example

Task Path

Task 1 A - S1 - S5 - E

Task 2 B - S2 - S1 - S5 - E

Task 3 B - S2 - S3 - C

Task 4 A - S1 - S2 - S3 - C

Table 3: Path Scheduling with the Least

Stop Numbers

tasks will lead to different performances in the given network. Table 3 lists a possibility of

the path scheduling for the tasks, which always select path with the least number of stops. It

is not for sure that the path with less number of stops is with better network performance. It

depends on the link quality as well as the traffic between other nodes. Please try to schedule

the routing path for each task by yourself, so as to minimize the overall time needed for all

data synchronization tasks.

(Include your path scheduling table for the tasks in your lab report)

Page 24 of 32

IERG5090 Advanced Networking Protocols and Systems HW2: SDN Lab

Task X: Load Balancing Experiment for the Example

Connection Information

Create your custom topology in file datacenter.py for the data center network in Figure 3.

Naming the data centers as end host ha, hb, hc, hd and he respectively; and the switches as

switch s1, s2, s3, s4 and s5 respectively. Run the following command to start the network

in Mininet.

mininet@mininet:˜$ sudo mn --custom datacenter.py --topo datacenter

--mac --controller remote --link tc

A prerequisite task for our load balancing experiment is to determine the detailed network

connection information, especially the port (interface) mapping at switches, so as to forward

packets accordingly. In previous lab, the collection information is collected via the process

of constructing the mac to port mapping dictionary. However, the switches flood packets to

all their ports to probe the information, which cannot be used in our example (flood leads

to disasters for network with loop).

Therefore, in our case, extra efforts are needed to collect the connection information at

switches. On one hand, you can run the following command at Mininet CLI to show the

interface mapping of nodes.

mininet> net

c0

s1 lo: s1-eth1:s2-eth1 s1-eth2:s5-eth2 s1-eth3:ha-eth0

...

On the other hand, more detailed information could be found at the controller. For example,

in the misc.of tutorial.py, insert the following code in the function handle PacketIn(). Be-

sides, commenting both the act like hub() and act like switch to disable the flood behavior.

def _handle_PacketIn (self, event):

"""

Handles packet in messages from the switch.

"""

5 packet = event.parsed # This is the parsed packet data.

i f not packet.parsed:

log.warning("Ignoring incomplete packet")

return

10 # the code to display the connection ports

print "-------------"

print "At switch with ID %s" % event.connection.dpid

for p in event.connection.features.ports:

print "port %s with name %s" % (p.port_no, p.name)

15

Page 25 of 32

IERG5090 Advanced Networking Protocols and Systems HW2: SDN Lab

packet_in = event.ofp # The actual ofp_packet_in message.

Comment out the following line and uncomment the one after

when starting the exercise.

20 # self.act_like_hub(packet, packet_in)

self.act_like_switch(packet, packet_in)

Start the POX controller via the following command and then conduct ping test from each

host to extract the ID and port information for each switch, for example, ha ping -c1 hb.

You may note, as the flood behavior is disabled at switches, the ping packet will stop at the

first switch (stop).

mininet@mininet:˜$./pox.py log.level --DEBUG misc.of_tutorial_lab3

...

At switch with ID 5

5 port 3 with name s5-eth3

port 2 with name s5-eth2

port 65534 with name s5

port 1 with name s5-eth1

...

Fill the connection mappings in Table 4 for your network using methods above.

(Include the table in your lab report)

Node To Interface Port

s1 ha s1-eth3 3

s1 s2 s1-eth1 1

Table 4: Network Topology Connection Details

Installing Flow Entry at Switch

The ofp flow mod of POX is the OpenFlow message that instructs a switch to install a flow

table entry. Flow table entries match some fields of incoming packets, and executes some list

of actions on matching packets. The match is described by an ofp match object. If incoming

packets are matched in flow table, the switch will not make extra requests to controller.

You could set the corresponding behavior of flow entry via fields of matched incoming packets.

Notable fields include:

1. actions - A list of actions to perform on matching packets (e.g., ofp action output)

2. priority - When using non-exact (wildcarded) matches, this specifies the priority for over-

lapping matches. Higher values are higher priority. Not important for exact or non-

overlapping entries.

Page 26 of 32

IERG5090 Advanced Networking Protocols and Systems HW2: SDN Lab

3. match - An ofp match object. By default, this matches everything, so you should probably

set some of its fields

The match field is used to describe and match against target incoming packets for the flow

entry. It contains several fields with some widely used ones as following:

1. dl dst : Ethernet destination address

2. dl src: Ethernet destination address

3. dl type: Ethernet frame type

4. in port : Input switch port

5. nw dst : IP destination address

6. nw src: IP source address

Different combination of match fields should be used for matching packets under different

protocols. Figure 6 lists the match fields for some protocols. More details about match could

be found at [19] and [20].

In our case, if we want to install a flow table entry at the switch s1, so as to forward

packets from host ha to host hd via switch s2 and s3, we could implement it as following.

The implementation adds flow entry for both IPv4 and ARP protocols, so that ping test will

work in our experiment.

creat a new flow_message (0-4)

msg = of.ofp_flow_mod(command=0)

msg.priority = 3

5 # set src and dst IP address of matching

msg.match.dl_type = 0x800

msg.match.nw_src = IP_of_ha

msg.match.nw_dst = IP_of_hd

10 # forward the packet to certain port X at s1 to s2

msg.actions.append(of.ofp_action_output(port=X))

send out the message

self.connection.send(msg)

15

add similar flow entry for arp

msg.match.dl_type = 0x806

self.connection.send(msg)

The flow entry installation steps above could be implemented as a function install flow entry()

at controller. Another function act in lab3() could be created to add all entry flows to

matched switch as below. The flow entries should be according to your selection of paths

for the tasks in our example.

Page 27 of 32

IERG5090 Advanced Networking Protocols and Systems HW2: SDN Lab

Figure 6: Match Fields for Different Protocols

match switch s1

i f switch_id == "id_of_s1":

install flow entry at s1

...

Therefore, we could install flow entry to switches to customize the forwarding rules of packets.

The installation at a switch could be triggered when the first matching packet arrives at the

switch. In Mininet, switches are identified by the dpid field, which could be found via

event.connection.dpid under handle PacketIn().

Implement your controller accordingly and conduct tests to verify the behavior of your

network, that is, packets between host pairs follow your selection of paths.

(Include the screenshots of test result in your lab report and your implementation

in a file with name misc.of tutorial lab3.py)

Page 28 of 32

IERG5090 Advanced Networking Protocols and Systems HW2: SDN Lab

Traffic Generation

To conduct the experiment, we need to generate traffic between host pairs according to the

tasks in our example. Here, we make use of simple HTTP downloading to emulate the data

synchronization of the tasks. For example, for task 1, the data center E has to retrieve data

of 2GB from A. In such case, we could start data center A as a SimpleHTTPServer and let

data center E download a BIG file (2GB) from A. Considering the file is too large, we can

change the task to download a relatively small file multiple times from A.

At the xterm console of ha, run the following code to generate a file (traffic) of size 100MB

and start the SimpleHTTPServer under the same directory with the file.

dd i f=/dev/urandom of=traffic bs=10M count=10

python -m SimpleHTTPServer 80

At the xterm console of he, run the following code to verify the behavior of the HTTP server

at ha.

wget 10.0.0.1/traffic

Create a python script download.py with the following implementation, which will perform

the downloading for multiple times. Beside, it simply measures the time to complete all the

downloading.

import urllib

import sys

import time

5 def download(count=1):

start = time.time()

for i in range(count):

urllib.urlretrieve("http://10.0.0.1/traffic")

print "Use %s seconds" % (time.time() - start)

10

i f __name__ == ’__main__’:

count = int(sys.argv[1])

download(count)

At the xterm console of he, run download.py to emulate the data traffic of task 1.

python download.py 20

For the other tasks in our example, similar steps could be followed. However, please note

that all tasks should be started simultaneously and the time needed to complete all tasks

(should be the duration between the last end-time and the first start-time) is the experiment

result for your path planning.

Page 29 of 32

IERG5090 Advanced Networking Protocols and Systems HW2: SDN Lab

Load Balancing Experiment

The procedures to conduct load balancing experiment for our example are as following:

1. Implement and run the topology in Mininet for the given network;

2. Check the connection information of your network and fill in Table 4;

3. Implement the flow entry installing at the controller according to your path planning;

4. Generate the traffic for all tasks simultaneously and evaluate the completion time.

Conduct the experiment for both the path scheduling in Table 3 and your selection of paths

for the tasks. Compare the completion time for the two experiments.

* Remarks

For the tasks in our example, both hc and he need to download data from ha and hb simul-

taneously, and ha and hb need to serve as HTTP server for multiple end hosts (hc and he).

Therefore, ha and hb need to act as a Multi-thread HTTP Server, while hc and he need to

execute download tasks in parallel.

To enable Multi-thread HTTP Server at ha and hb, create a file MultithreadedSimple-

HTTPServer.py (at the same place with your topology) and implement it following [21].

Run the following command at xterm of ha and hb to start Multi-thread HTTP Server.

python MultithreadedSimpleHTTPServer.py 80

To execute download tasks in parallel at hosts, e.g., hc, run the scripts in the following

manner and output the execute messages into files for reference.

python download_hb.py 30 > hc_hb.txt & python download_ha.py 20

> hc_ha.txt &

(Include the screenshots of both experiment results in your lab report and pre-

pare a demonstration for the demo session.)

References

[1] OpenFlow Tutorial

http://archive.openflow.org/wk/index.php/OpenFlow Tutorial

[2] Software Defined Networking Course of Princeton

https://www.cs.princeton.edu/courses/archive/fall13/cos597E/index.html

[3] No Host-only Adapter Selected

http://askubuntu.com/questions/198452/no-host-only-adapter-selected

[4] Mininet Installation Instructions

https://www.youtube.com/watch?v=yNmv7GiHIKE

Page 30 of 32

IERG5090 Advanced Networking Protocols and Systems HW2: SDN Lab

[5] Dpctl Documentation

https://github.com/CPqD/ofsoftswitch13/wiki/Dpctl-Documentation

[6] Man Page of dpctl

http://ranosgrant.cocolog-nifty.com/openflow/dpctl.8.html

[7] Mininet Documentation

https://github.com/mininet/mininet/wiki/Documentation

[8] SDN 101: Using Mininet and SDN Controllers

http://pakiti.com/sdn-101-using-mininet-and-sdn-controllers/

[9] Introduction to Mininet

https://github.com/mininet/mininet/wiki/Introduction-to-Mininet

[10] Mininet Python API Reference Manual

http://mininet.org/api/annotated.html

[11] Github of POX

http://github.com/noxrepo/pox

[12] The Difference Between a Router, Switch and Hub

http://www.webopedia.com/DidYouKnow/Hardware Software/router switch hub.asp

[13] Software Defined Networking Lab

http://noise.gatech.edu/classes/cs8803sdn/fall2014/

[14] Introduction to Mininet: Multipath Routing

https://github.com/mininet/mininet/wiki/Introduction-to-Mininet#multipath

[15] FAQ of Mininet

https://github.com/mininet/mininet/wiki/FAQ#ethernet-loops

[16] POX: openflow.spanning tree

https://openflow.stanford.edu/display/ONL/POX+Wiki#POXWiki-

openflow.spanning tree

[17] POX: IP Load Balancer

https://openflow.stanford.edu/display/ONL/POX+Wiki#POXWiki-

misc.ip loadbalancer

[18] Load balancing with multiple switches

http://pox-dev.noxrepo.narkive.com/mvip3Oxn/load-bancing-with-multiple-switchs

[19] OpenFlow Protocol: Class Match

http://archive.openflow.org/doc/gui/org/openflow/protocol/Match.html

Page 31 of 32

IERG5090 Advanced Networking Protocols and Systems HW2: SDN Lab

[20] OpenFlow: Classification

http://flowgrammable.org/sdn/openflow/classifiers/

[21] MultithreadedSimpleHTTPServer

https://github.com/Nakiami/MultithreadedSimpleHTTPServer

Page 32 of 32

	Overview
	Submission
	Submit Method
	Academic Honesty
	Acknowledgement

	Lab Tasks
	Task I: Set up Virtual Machine
	Task II: Connect and Access VM
	IP for Host Access
	Connect VM from Host

	Task III: Start Mininet
	Development Tool: xterm
	Development Tool: dpctl
	Development Tool: Wireshark

	Task IV: Mininet Walkthrough
	Basic Commands
	Nodes and Links
	Connectivity

	Task V: Topology in Mininet
	Built-in Topology
	Custom Topology
	Performance Parameters
	Topology Design Practice

	Task VI: SDN Controller
	Controller Platforms
	POX Basics
	POX APIs

	Task VII: Network Functions in Controller
	Hub
	Switch
	Firewall

	Task VIII: IP Load Balancer in SDN
	Test Load Balancer in POX
	Load Balancer Plus Switch

	Task IX: Load Balancing via Path Routing
	Loops in Network Topology
	Test Spanning Tree Module in POX
	Example of Load Balancing via Routing

	Task X: Load Balancing Experiment for the Example
	Connection Information
	Installing Flow Entry at Switch
	Traffic Generation
	Load Balancing Experiment

