
Apache Hadoop Yarn: Yet Another Resource Negotiator

Fan Jun Bo

Problems for Hadoop 1.X

Tight coupling of specific programming model with
resource management infrastructure => abuse the use
of MapReduce.

centralised handling of job’ s control flow => endless
scalability concerns of the scheduler.

Target for YARN

Decoupling programming model from resource
management infrastructure

Delegate scheduling functions to per-application
components

History works

100 billion nodes with 1 trillion edges

Dreadnaught(max 800 nodes) to Hadoop (Scalability)

Multiple Business flow => Multi-tenancy (Hadoop on
Demand)

HOD => Allocate Hadoop clusters on shared hardware

HOD’s each cluster per job => Serviceability

HOD’s shared HDFS

HOD Shortcomings

Torque’s unawareness of locality Locality Awareness

Long job latency led by cluster allocation High Cluster Utilisation

JobTracker’s Failure leads to lost of all running jobs and manually recovery is
needed Reliability/Availability

Hadoop would manage more tenants, diverse of cases and raw data with
low authorisation model currently Secure

Map Reduce is not suitable for every tasks Support for Programming
Model Diversity

of map and reduce slots are fixed by cluster operator so fallow map
resources would not help for reducer Flexible Resource Model

Fit for old version of Hadoop to avoid “second system syndrome” Backward
Compatibility

Architecture of YARN

YARN: platform layer responsible for resource
management

Resource Manager

Application Master

Node Manager

RM for YARN

Centralised view of cluster resource (global scheduling ability by various schedulers)=> fairness
capacity locality across tenants

Dynamically allocate leases(containers) to applications

container is logical bundle of resource(eg <2GB, 1Core>) to a specific Node(eg Node3)

persistent storage for accepted jobs

2 external interfaces:
Clients to submit jobs with secure control
AM dynamically access to resource

1 internal interface: cluster monitoring and resource access management towards NM

overall resource demand of an application ignore local optimisation and internal flow

Request resources back from an application(AM decides how to compress resource usage by
migration tasks, yielding containers)

RM is NOT for:
providing status or metrics for running app(AM)
serving framework specific reports of completed jobs(pre-framework daemon)

AM for YARN

Head of an application to coordinate with the app
process

Build request model => encode them to heartbeat
message => send to RM => receive container lease =>
update execution plan(late-binding)

Optimise of locality

AM decides the success or failure of container status by
the information from NM through RM

NM for YARN

NM is a worker daemon in YARN

NM is responsible for container lease, managing container
dependencies, monitoring their execution

Container Launch Context(CLC) describes all containers.{environment
variables, dependencies stored remotely, security tokens etc }. NM is for
configuring CLC for a container

NM kill containers directed by RM/AM

Periodically monitoring the health of physical node
NM provides local service to container(eg log aggregation to HDFS
once done)

Admin could configure NM set of pluggable services(eg preserve some
output until the app done)

Frameworks for YARN

0. Submit CLC for AM to RM

1. RM starts AM and register the AM

2. AM send ResourceRequest to RM and receive allocation

3. AM construct CLC to NM for launching containers and
mounting/managing them

4. AM is done, it unregister from RM and exit cleanly.

YARN at Yahoo! and Experiments

Applications and Frameworks

Hadoop MapReduce: MapReduce model

Apache Tez: DAG execution framework

Spark: machine learning

Dryad: DAG

Giraph: vertex-centric graph computation framework

Storm: real-time processing engine

