Summingbird

Integrating Batch and Online Computation

Boykin, Oscar, et al. "Summingbird: A framework for integrating batch and online mapreduce computations." Proceedings of the VLDB Endowment 7.13 (2014): 1441-1451.

Contents

* Background
o Computation Model

» Algebraic Structures

* Hybrid Processing

Background

 Hadoop and batch analytics
e Online analytics

* Need for batch/online hybrids

Hadoop and batch analysis

L ——

S A

< £ f\,

i ' 1 .|

y A ‘ % B

* Mature production

system

* Use high-level data flow

language (Pig and
Scalding)

e Exact answer are not

necessary

Online analysis

Traditionally build code to
"hook™ the libraries

 Maintain codes for different
framework N
5 STORM

e Features in Hadoop may be
too slow for online processing

e Data structures in disk cannot
meet the latency requirements

Need for online/batch hybrids

* Online analytics could

provide low latency with 5_) STORM
looser guarantees.

* Batch analytics could
provide more accurate
answers.

* Summingbird provides

abstraction for analytical EN
: : @

queries and handling for

abnormal behaviour. WA

Computation Model

Basic Concepts:

 Producer
def wordCount|[P <: Platform[P]]

(source: Producer[P, String],
o
SOurCG store: P#Store[String, Longl]) =

source.flatMap { sentence =>

e Platform toWords (sentence) .map(_ -> 1L)
} . sumByKey(store)

e Store

e Sink

Sample code for word count

// Running in Hadoop (via Scalding/Cascading)

Computation Model

Scalding.run {
wordCount [Scalding] (

Scalding.source[Tweet] ("source_data"),
Scalding.store[String, Long] ("count_out")

)
}

Input

Input

Input

l

l

l

T) (e) ()

Reduce

Reduce

l

l

Output

Output

// Running in Storm
Storm.run {
wordCount [Storm] (
new TweetSpout(),
new MemcacheStore[String, Long]

)

memcached

Computation Model

‘Map” Computation:

 flatmap|[T,U](fn: T => List[U]): List[U]
e map[T,U](fn: T => U): List[U]

e filter[T|(fn: T => Boolean): List|[T]

Computation Model

Algebraic structure:
* semigroup
* monoid

* commutative semigroup (or monoid)

Computation Model

Reasons for “commutativity”:
e Partitioned input requires commutativity

 Commutativity enables optimisation

Algebraic Structure

* Addition, multiplication
e Set union
* max, min operator

* Element-wise application of
commutative operator

Algebraic Structure

e Minhash
e Bloom Filters

» Hyperloglog counters

e Count-Min Sketches

Hybrid Processing

Hybrid Processing

Timekxtractor, Batcher

Hadoop |job Is triggered to compute aggregates on
the next incremental source batch => (K, (batchld,
V))

Storm topology for online processing => ((K,
batchld), V)

Client would first get from batch results, then get
online results to “fill in” the gap

Production Experience

e Typical Summingbird job process 1-20 M

e Simple primitives (selection, joins) are
sufficient

* Research opportunities for query
optimisation

B3/

_imitation: generic folds

(1 2 3 4 5) Here is my list.

1 + (2 3 4 5) take the first-item-cf-the-list and the-rest-of-the-list.

142 <<(_ 3 4 5) I add the-first-item-cof-the-rest-of-the-list <o the initial first item.
3 + (3 4 5) This leaves me with a new rest-cof-the-list.

6 + (4 5) I do the same thing again.

10 + (5) And again.

15 + () And again. Now I have no list left.

15 Therefore, the sum is 15. (((1 +2) +3) +4) +5 = 15.

