
Sparrow

Fan Jun Bo

breaking long-running batch jobs into a large number of short tasks

Low Latency

Time

wait time: job submitted -> begin to execute
service time: begin to execute -> job done
response time: job submitted -> last task done
delay: scheduler time + queue time

Sparrow

decentralized, randomized sampling approach provides near-optimal
per- formance while avoiding the throughput and availability
limitations of a centralized design.

Random Sampling

Per-task Sampling

Batch Sampling

Late-Binding

Constraints(per job vs per task)

Fault tolerance

Schedular failure
worker failure and cluster fail

Pr(zero wait time) in theoretical condition for single and multicore.

Sparrow structure in real

The Experiments

100 worker machines<8cores, 68.4GB RAM> with 10 schedulers
probe ratio = 2

Performance on TCP-H Workload

10 users launch random permutation of TCP-H queries to make the overload 80% for a
period of 15 minutes. During the middle 200 seconds, Sparrow scheduler handles 20K jobs

that make up 6.2K TCP-H queries.

Response time for different types of schedulers

Latency distribution among different stages

Delay with and without constraints

Failure for scheduler in node 1 at 20s
100ms failure detection

5ms to reconnect scheduler in node 2
15 ms to relaunch jobs

Sparrow vs Spark’s native scheduler. For task duration less than
1380ms, Spark’s native scheduler suffers performance issue

Fairness sharing between two users.

