Omega

shared state scheduler

Workload Heterogeneity

- Service jobs
 - long-time running
 - e.g. end-user operations or internal infrastructure
 - stringent availability and performance targets
 - require placement to avoid failures

- Batch jobs
 - computation then finish
 - e.g. batch log analysis
 - short, fast turnaround is important
 - require lightweight, low quality approach

Existing Problems

- Monolithic system
 - complex calculation of priority
 - multiple code paths for different types of jobs, difficult to support in a single code base

- Two level-system
 - assume job sizes are small compared to the size of the cluster
 - no global view of resources, no preemption
 - hoarding for gang scheduling, potentially deadlock

Shared state

optimistic concurrency (transactions)

- 1. master maintain "cell state", a copy of the resource allocation
- 2. each scheduler maintain a local copy of "cell state"
- 3. each scheduler could claim any available cluster resources
- master would only allow one claim to be succeed in case of conflict
- scheduler may resync local copy of cell state and rerun scheduling algorithm

Data sources

- A: medium-sized, fairly busy one
- B: larger clusters
- C: scheduler workload trace in [1][2]

Figure 2: Batch and service workloads for the clusters A, B, and C: normalized numbers of jobs (J) and tasks (T), and aggregate requests for CPU-core-seconds (C) and RAM GB-seconds (R). The striped portion is the service jobs; the rest is batch jobs.

[1] REISS, C., TUMANOV, A., GANGER, G. R., KATZ, R. H., AND KOZUCH, M. A. Heterogeneity and dynamicity of clouds at scale: Google trace analysis. In *Proceedings of SoCC* (2012).
[2] WILKES, J. More Google cluster data. Google research blog, Nov. 2011. Posted at http://goo.gl/9B7PA.

Simulation

- Lightweight simulator: obtain matrices derived from real workload
- High-fidelity simulator: driven by the actual workload traces

	Lightweight (§4)	High-fidelity (§5)
Machines	homogeneous	actual data
Resource req. size	sampled	actual data
Initial cell state	sampled	actual data
tasks per job	sampled	actual data
λ_{jobs}	sampled	actual data
Task duration	sampled	actual data
Sched. constraints	ignored	obeyed
Sched. algorithm	randomized first fit	Google algorithm
Runtime	fast (24h \approx 5 min.)	slow (24h \approx 2h)

Table 2: Comparison of the two simulators; "actual data" refers to use of information found in a detailed workload-execution trace taken from a production cluster.

Monolithic scheduler

(a) Single-path.

⁽b) Multi-path.

Two-level scheduler

Omega

(c) Shared state.

(c) Shared state.

Omega Scalability

Simulation

- Lightweight simulator: obtain matrices derived from real workload
- High-fidelity simulator: driven by the actual workload traces

	Lightweight (§4)	High-fidelity (§5)
Machines	homogeneous	actual data
Resource req. size	sampled	actual data
Initial cell state	sampled	actual data
tasks per job	sampled	actual data
λ_{jobs}	sampled	actual data
Task duration	sampled	actual data
Sched. constraints	ignored	obeyed
Sched. algorithm	randomized first fit	Google algorithm
Runtime	fast (24h \approx 5 min.)	slow (24h \approx 2h)

Table 2: Comparison of the two simulators; "actual data" refers to use of information found in a detailed workload-execution trace taken from a production cluster.

Omega Performance

Omega Performance

Omega Performance

