
Omega
shared state scheduler

Workload Heterogeneity
• Service jobs

• long-time running

• e.g. end-user operations or
internal infrastructure

• stringent availability and
performance targets

• require placement to avoid
failures

• Batch jobs

• computation then finish

• e.g. batch log analysis

• short, fast turnaround is
important

• require lightweight, low
quality approach

Existing Problems
• Monolithic system

• complex calculation of
priority

• multiple code paths for
different types of jobs,
difficult to support in a
single code base

• Two level-system

• assume job sizes are
small compared to the
size of the cluster

• no global view of
resources, no preemption

• hoarding for gang
scheduling, potentially
deadlock

1. master maintain “cell state”, a
copy of the resource allocation

2. each scheduler maintain a local
copy of “cell state”

3. each scheduler could claim any
available cluster resources

4. master would only allow one
claim to be succeed in case of
conflict

5. scheduler may resync local copy
of cell state and rerun scheduling
algorithm

Data sources

• A: medium-sized, fairly
busy one

• B: larger clusters

• C: scheduler workload
trace in [1][2]

[1] REISS, C., TUMANOV, A., GANGER, G. R., KATZ, R. H., AND KOZUCH, M. A. Heterogeneity and dynamicity of clouds at
scale: Google trace analysis. In Proceedings of SoCC (2012).
[2] WILKES, J. More Google cluster data. Google research blog, Nov. 2011. Posted at http://goo.gl/9B7PA.

Simulation

• Lightweight simulator:
obtain matrices derived
from real workload

• High-fidelity simulator:
driven by the actual
workload traces

Monolithic scheduler

Two-level scheduler

Omega

Omega Scalability

Simulation

• Lightweight simulator:
obtain matrices derived
from real workload

• High-fidelity simulator:
driven by the actual
workload traces

Omega Performance

Omega Performance

Omega Performance

