
Naiad: A Timely Dataflow System

FAN Junbo
1155076720

0. Introduction

1. Timely Dataflow

2. Implementation

3. Writing Programs on Naiad

4. Performance

5. Real world Application

0. Introduction

Naiad is a distributed system for executing data parallel, cyclic data flow
programs.
0. Batch Processor
1. Low latency Streaming processor
2. Iterative and incremental computation

Naiad => general-purpose system fulfils all these requirements to support
high-level programming model.

1. Timely Dataflow

Timely dataflow is a computational model based on directed graph.

Vertices: Send and receive logically timestamped messages.
Edges: Messages pass along the directed edges.

Input vertex: Receive messages from external producers.
Output vertex: Emit messages to external consumers.
Ingress vertex: Entrance for messages to a loop context.
Egress vertex: Exit of messages for messages to a loop context.
Feedback vertex: Messages pass through feedback to continue looping.

1. Timely Dataflow

t1 <= t2 iff e1 <= e2 and vec(c1) <= vec(c2)
(lexicographic ordering on integer sequences)

1. Timely Dataflow

ONRECV and ONNOTIFY : User implemented functions to handle a
received message or doing something after being triggered by a specific
time.

SENDBY and NOTIFYAT: System provided functions to send a message to
next vertex or trigger a vertex by a specific timestamp.

1. Timely Dataflow

Print distinguished messages
to output1

Print messages counts to
output2

OnNotify(t) is triggered iff no
more OnRecv(e, msg, t’) with t
≥ t’

when invoked with a timestamp
t, the methods may only call
SENDBY or NOTIFYAT with
times t′ ≥ t.

1. Timely Dataflow

Reason about the impossibility of future messages bearing a given timestamp.
Set of timestamps at which future messages can occur is constrained by the current set of unprocessed events.

(t1, l1) could-result-in (t2, l2) ψ = ⟨l1,...,l2⟩ and ψ (t1) ≤ t2 => Ψ[l1,l2](t1) ≤ t2
Maintains a set of active pointstamps(at least one unprocessed)

occurrence count precursor count
OC = 0 => Leave Active of P => Decrease PC that P could-result-in
PC = 0 => No more upstreams P that could-result-in => P is in frontier => Notification P at t

2.Implementation

Data Parallelism

Logical graph of stages linked by
typed connectors.

A logical vertex could be
partitioned into several physical
vertices allocating on different
machines.

Connectors are able to let
messages pass through different
partitions on or not on the same
machine.

2.Implementation

Workers

Worker is responsible for delivering
messages and notifications to
vertices in its partition of the timely
dataflow graph.

Workers communicate with each
other using shared queues and
have no other shared state.

2.Implementation

Fault Tolerance

Checkpoint and Restore interface

During periodically checkpoints:
0. Pause worker and message delivery threads.
1. Flush unfinished message queues.
2. Do checkpoints.
3. Resume paused worker and message threads.
4. Flush checkpoints.

Recover failed vertex according to latest backup checkpoints using Restore
method.

2.Implementation

Preventing micro-stragglers

Fact: Transient stalls at a single work will apparently affect on overall
performance.

Package Loss => Use TCP.
Contention on concurrent data structure => Access through single thread.
Garbage collection =>Mark-and-Sweep GC and Engineer the system to
trigger GC less frequently.

3.Write Programs on Naiad

SQL
MapReduce
LINQ
Pregel’s vertex program
abstraction
PowerGraph’s GAS abstraction

4.Evaluation

4.Real world Application

The general computational system Naiad is even more efficient than
other specific aim system.

