Naiad: A Timely Dataflow System

FAN Junbo
1155076720

0. Introduction

1. Timely Dataflow

2. Implementation

3. Writing Programs on Naiad
4. Performance

5. Real world Application

0. Introduction

Naiad is a distributed system for executing data parallel, cyclic data flow
programs.

0. Batch Processor

1. Low latency Streaming processor

2. lterative and incremental computation

Naiad => general-purpose system fulfils all these requirements to support
high-level programming model.

User queries Low-latency query
are received

responses are delivered

DSLs Applications
(Sec 6)

joined with
processed data

Complex processing
: incrementally re-
Updatesto | 7 executes to reflect
data arrive changed data

Queries are Li bra ries
} Graph assembly (Sec4)

Timely Dataflow (Sec 2)

Distributed Runtime (Sec 3)

1. Timely Dataflow

Timely dataflow is a computational model based on directed graph.

Vertices: Send and receive logically timestamped messages.
Edges: Messages pass along the directed edges.

Streaming context

Loop context

Input vertex: Receive messages from external producers.
Output vertex: Emit messages to external consumers.

Ingress vertex: Entrance for messages to a loop context.
Egress vertex: Exit of messages for messages to a loop context.
Feedback vertex: Messages pass through feedback to continue looping.

1. Timely Dataflow

epoch loop counters
P N

Timestamp : (e € N, (cy,...,c;) € NF)

Vertex Input timestamp Output timestamp
Ingress (e,{(c1,.--,Ck)) (e,{c1y-.-,Ck,0))
Egress (e,{(c1,---,Crrcrar1)) (e,{(c1,...,Ck))
Feedback (e, {(c1,...,ck)) (e,{c1,...,ck+1))

i1 <=12 Iff el1<=e2andvec(cl) <= vec(c2)

(lexicographic ordering on integer sequences)

1. Timely Dataflow

v.ONRECV (e : Edge, m : Message, ¢ : Timestamp)
v.ONNOTIFY(¢ : Timestamp).

this. SENDBY (e : Edge, m : Message, ¢ : Timestamp)
this. NOTIFYAT (¢ : Timestamp).

ONRECYV and ONNOTIFY : User implemented functions to handle a
received message or doing something after being triggered by a specific
time.

SENDBY and NOTIFYAT: System provided functions to send a message to
next vertex or trigger a vertex by a specific timestamp.

1. Timely Dataflow

class DistinctCount<S,T> : Vertex<T> Print distinguished messages
{
Dictionary<T, Dictionary<S,int>> counts; Z.O OUt,OUZ'7
void OnRecv (Edge e, S msg, T time)
{ .
if (!'counts.ContainsKey (time)) { Pr/nt messages COU”Z'S to
counts[time] = new Dictionary<$S,int>(); Outputg

this.NotifyAt (time) ;
}
OnNotify(t) is triggered iff no

if (!'counts[time] .ContainsKey (msg)) { , .
counts[time] [msg] = 0; rmore OnReCV(e, msq, t) with t
this.SendBy (outputl, msg, time); >_t’

\ Z

| countsitimelimsgity when invoked with a timestamp
t, the methods may only call

id OnNotify (T ti) .

}m PO AR SENDBY or NOTIFYAT with

foreach (var pair in counts[time]) l-/'mes t’ > t

this.SendBy (output2, pair, time);
counts.Remove (time) ;

}

1. Timely Dataflow

location
N

Pointstamp : (¢ € Timestamp, 1€ Edge U Verte)z) :

Operation Update

v.SENDBY(e,m,t) OC[(t,e)] < OC[(t,e)] + 1
v.ONRECV(e,m,t) OC|(t,e)] <+ OC[(t,e)] — 1
v.NOTIFYAT(t) OC|(z,v)] < OC|(t,v)] +1
v.ONNOTIFY(?) OC|[(t,v)] «+ OC|(t,v)] — 1

Reason about the impossibility of future messages bearing a given timestamp.
Set of timestamps at which future messages can occur is constrained by the current set of unprocessed events.

(t1, 11) could-result-in (12, I2) ¢ ={I1,..., 12> and ¢ (11) st2 == W[I1,I12](t1) s t2

Maintains a set of active pointstamps(at least one unprocessed)

occurrence count precursor count
OC = 0 => Leave Active of P => Decrease PC that P could-result-in
PC = 0 => No more upstreams P that could-result-in => P is in frontier => Notification P at t

2.Implementation

Data Parallelism

%

Logical graph

Logical graph of stages linked by
typed connectors.

Worker
[]

Progress tracking =
protocol i—

A logical vertex could be
partitioned into several physical
vertices allocating on different

machines.

Process

Connectors are able to let
messages pass through different
partitions on or not on the same
machine.

:

2.Implementation

Logical graph

%

Worker

Progress tracking =
protocol i—

R (~)>

Process

Workers

Worker is responsible for delivering
messages and notifications to
vertices in its partition of the timely
dataflow graph.

Workers communicate with each
other using shared queues and
have no other shared state.

2.Implementation

Fault Tolerance
Checkpoint and Restore interface

During periodically checkpoints:

0. Pause worker and message delivery threads.
1. Flush unfinished message queues.

2. Do checkpoints.

3. Resume paused worker and message threads.
4. Flush checkpoints.

Recover tailed vertex according to latest backup checkpoints using Restore
method.

2.Implementation

Preventing micro-stragglers

Fact: Transient stalls at a single work will apparently affect on overall
performance.

Package Loss => Use TCP
Contention on concurrent data structure => Access through single thread.

Garbage collection =>Mark-and-Sweep GC and Engineer the system to
trigger GC less frequently.

3.Write Programs on Naiad

// la. Define input stages for the dataflow.
var input = controller.NewlInput<string>();

// 1lb. Define the timely dataflow graph.
// Here, we use LINQ to implement MapReduce.

var result = input.SelectMany(y => map (y))
.GroupBy (y => key(y),
(k, vs) => reduce(k, vs))

// lc. Define output callbacks for each epoch
result.Subscribe (result => { ... });

// 2. Supply input data to the query.
input.OnNext (/* 1lst epoch data */);
input.OnNext (/* 2nd epoch data =*/);
input .OnNext (/* 3rd epoch data =/);
input.OnCompleted() ;

SQL

MapReduce

LINQ

Pregel’s vertex program
abstraction

PowerGraph’s GAS abstraction

4 .Evaluation

§- 70 T T T T T T 25 T T T T T T g 10000 T T T | | T 2
S 60 L Ideal - - - - IR I 95th/5th percentiles ——i < 1000 -
S o L -NET Socket — « - -1z 2r Quartiles —— = 10k ..~
2 Naiad —— LT S Median g F Y T
S s 15 5 10 fru w--=- @550
< 8 £ ' °
£ = 1 = TE
) o [
e Q 3 0.1 E GlobalAcc - -= -
2 05 3 [LocalAcc ---o---
& E = 0.01 i Local+GlobalAcc ——
2 0 S 0.001 R TN R R E—
< 0 10 20 30 40 50 60 0 10 20 30 40 50 60
Number of computers Number of computers Number of computers
(a) All-to-all exchange throughput (§5.1) (b) Global barrier latency (§5.2) (c) Progress tracking optimizations (§5.3)

@ o)

2 50 = 15

5 T T T T T T 5 T T T T T T

g 45 WordCount ---a--- I . 3 WCC - » - x- - 4

g 40 WCC — = - X _& g 14 WordCount o _ 3~ .

o 35 _"’,P’f T fo) I___I'/

o 30 - s = 1 © 13¢f -

S 25| = 4 £ I,I’

s 201 -~ 4 s 12t

> 15 ra 1 2 £ 7

S 10F 4 £ 11} L& FooEo . .

® S5le" - Q | g8 - 1

o) P 3 ‘l‘! E

8 0 W&]]]]]] g 1 l |]]]]

» 0 10 20 30 40 50 60 [75) 0 10 20 30 40 50 60

Number of computers

(d) Strong scaling (§5.4)

Number of computers

(e) Weak scaling (§5.4)

4 Real world Application

o i
- 100 3
.0 -
I Y
9 - =
o 10
2 3
)

£

l—

I
&
-~

Naiad Pregel — = -
Naiad Vertex
PowerGraph -

........

Nalad Edge —— f

TR B 3

0

(a) PageRank on Twitter follower graph (§6.1)

10

20 30 40 50

Number of computers

60

10

> Bl i
? 7k i
D 6 |- .
¢ 5 :
o 4 - 7]
> 3L _
§ 2 Naiad —— -
Q 1 VW - -e - -
% 0 | | | L | |

0 10 20 30 40 50 60 70

Number of computers

(b) Logistic regression speedup (§6.2)

Fraction of responses

None --------
0.8 Checkpoint .
! Logging — - -
0.6 L , 1 gging |
I B T
04 |- ! - -
1] D
[
0.2 |- -
0'950.1 1 10
0 raal il ERET
0.01 0.1 1 10

Response latency (s)

(c) k-Exposure response time (§6.3)

Algorithm PDW DryadLINQ SHS Naiad
PageRank | 156,982 68,791 836,455 4,656
SCC 7,306 6,294 15,903 729
WCC 214,479 160,168 26,210 268
ASP 671,142 749,016 2,381,278 1,131

The general computational system Naiad is even more efficient than
other specific aim system.

