
MillWheel:Fault‐Tolerant Stream Processing at Internet Scale

By FAN Junbo

Introduction
• MillWheel is a low latency data processing framework designed by Google at Internet scale.

Motived by Google Zeitgeist pipeline which is used to track trends of web queries.

0. Persistent Storage

1. Low Watermarks

2. Duplicate Prevention

2.

System Overview
• MillWheel is a graph of user-defined transformations on input data that produces output data.

Computations: the transformations in the graph

Triples: (key, value, timestamp)

For Zeitgeist:

key => query content

value => arbitrary string bytes

timestamp => the timestamp that the query occurred

Core Concepts
Computations: Application logic lives in computations, which encapsulate arbitrary user code.
(Bolt in Storm)

Keys: Keys are the primary abstraction for aggregation and comparison between different
records in MillWheel.

Streams: Streams are the delivery mechanism between different computations in MillWheel.

Persistent State: In its most basic form, persistent state in MillWheel is an opaque byte string
that is managed on a per-key basis and is backed up by a highly available data storage such as
BigTable.

Core Concepts
Low Watermarks: The low watermark for a computation provides a bound on the timestamps of
future records arriving at that computation.

Low Watermark of A = min(oldest work of A, low watermark of C : C outputs to A)

Timer: Timers are per-key programmatic hooks that trigger at a specific wall time or low watermark
value. Timers are created and run in the context of a computation, and accordingly can run
arbitrary code.

Core Concepts
APIs:

Core Concepts
Injector:

Each computation calculates a low watermark value for all of its pending work
Injectors bring external data into MillWheel and seed low watermark values for the rest of the
pipeline

Zeitgeist Implementation

Fault Tolerance
Exactly-Once Guarantee

0. The record is checked against de-duplication data from previous deliveries; duplicates are
discarded.

1. User code is run for the input record, possibly resulting in pending changes to timers, state,
and productions.

2. Pending changes are committed to the backing store.

3. Senders are ACKed.

4.Pending downstream productions are sent.

(All above actions could be regarded as a checkpoint)

The system assigns unique IDs to all records at production time.

Fault Tolerance
Strong Productions

Checkpoint produced records before delivery in the same atomic write as state modification

Weak Productions

Broadcast downstream deliveries optimistically, prior to persisting state

Each stage waits for the downstream ACKs of records

State Manipulation
Avoid Inconsistencies in Persistent States

Per-key updates are wrapped as single atomic operation

Avoid network remnant stale writes

Sequencer is attached to each write

Mediator of backing store checks before allowing writes

New worker invalidates any extant sequencer

Architecture
MillWheel deployments run as distributed systems on a dynamic set of host servers.

Each computation runs on one or more machines and streams are delivered through RPC.

Load distribution and balancing is handled by a replicated master.

Master divides each computation into a set of owned lexicographic key intervals(collectively
covering all keys)

Intervals could be split, combine or merge due to CPU and RAM pressure

Each interval is assigned a unique sequencer.

Architecture
About Low Watermark

Low Watermark is implemented as a sub-system globally available and correct.

Low Watermark is implemented as a central authority tracking all low watermarks in the system.

Low Watermarks are store to persistent state preventing unexpected shutdown

Evaluation

