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Challenges for Modern ML

* Massive Data Scale
* Gigantic Model Size
* [nadequate ML library

* ML algorithms iterative convergent



terative-Convergent ML Algorithm
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argmax = L({xi,yi}iz 5 8) + Q(0)
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Solved by an iterative convergent algorithm

for (t =1 toT) ¢
doThings()

0"t = g(0'. AO(D))

doOtherThings() ‘:7?""‘
}

This computation needs to be parallelized!




A Tale of Two Communities

e ML Communities

* want correctness, fewer
iterations to converge

e .. butassume an ideal
system

for (t=11toT) {
doThings()

parallelUpdate(x,0) C

doOtherThings()
}

o Oversimplify systems issues
e e.g. machines perform consistently
e e.g. can sync parameters any time




A Tale of Two Communities

e System Communities

* Want more iterations
executed per second

e .. butassume ML alsois a

black box
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Slow-but-correct Fast-but-unstable
Bulk Sync. Parallel Asynchronous Parallel

/e Oversimplify ML issues
e e.g. assume ML algo “works” without proof

e e.g. ML algo “easy to rewrite” in chosen
abstraction: MapR, vertex program, etc.
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A Tale of Two Communities

e ML Communities stemm Communities

0t more iterations
per second

 want correctness, fe
iterations {0 conve

e .. butassume g sume ML also is a
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doThings() :’::m-
parallelUpdate(x,
doOtherThings() Fast-but-unstable

} Asynchronous Parallel

plify ML issues
'g. assume ML algo “works” without proof

e e.g. ML algo “easy to rewrite” in chosen
abstraction: MapR, vertex program, etc.

e Oversimplify systems issues
e e.g. machines perform consisten
e €.g. can sync parameters any time



A Tale of Two Communities

Traditional Approach:

Machine l,varning .\\()(lcls,’.\lgnrilhms

« Graphical -+ Nonparametric +« Regularized « Sparse Structured ~« Spectral/Matrix
Models  Bayesian Models Bayesian Methods Large-Margin |/0 Regression = De€epP Leaming Methods +:Others

Hardware and infrastructure

* Network switches * Network attached storage * Server machines *+ GPUs * Cloud compute -+ Virtual Machines
* Infiniband * Flash storage * Desktops/Laptops (e.g. Amazon EC2)
* NUMA machines




A Tale of Two Communities

What they want:
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Modern Machine Learning Models/Algorithms

» Graphical + Nonparametric + Regularized * Sparse Structured Sparse Coding « SpectralMatrix | gy
Madels auyuunm Bayesian Methods Large-Margin  1/O Regression Methads e

Hardware and infrastructure

* Network switches «+ Network attached storage « Server machines + GPUs + Cloud compute + Virtual Machines
* Infiniband * Flash storage * Desktops/Laptops (e.g. Amazon EC2)




terative-Convergent ML Algorithm
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A e

Model Data Parameter

Solved by an iterative convergent algorithm

for (t =1 toT) ¢
doThings()

0"t = g(0'. AO(D))

doOtherThings() ‘:7?""‘
}

This computation needs to be parallelized!




Properties of ML Program

* Error tolerance
 Dependency structure
* Non-uniform convergence

o Compact update



Properties of ML Program

Example: Merge sort
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Properties of ML Program

e

for (t = 1t0T) ¢
doThings()

g+ = g(6", As6(D))
doOtherThings()
)
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Properties of ML Program

* Error tolerance
 Dependency structure
* Non-uniform convergence

o Compact update



Two Strategies of ML System
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Data parallel & Model parallel



Data Parallelism
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Model Parallelism
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Data + Model Parallelism
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High-level illustration of simultaneous data and model parallelism in LDA top-ic modeling.



Four Principles of ML System

How to Distribute the Computation?
How to Bridge Computation and Communication?
How to Communicate”

What to Communicate?



How to Distribute”

Structure Aware Parallelisation:

e schedule(): a small number of parameter are
prioritised, and dependency checks;

e push(): perform update computation in
parallel on worker machines

* pull(): perform F computation



How to Distribute”

Slow-worker agnosticism:

* A solution to straggler problem in ML
program

* Faster machine repeat their updates
while waliting for the stragglers to
catch up.




How to Distribute”

Theorem 1: SAP execution
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Theorem 2: SAP slow-worker agnosticism

Var(4'"™ ) = Var(4)-cp,n,Var(4)-c,nn,CoVar(4,V.L)+

¢,1,n, + O(cubic)



How to Bridge”
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Bulk synchronous parallel  Asynchronous parallel execution



How to Bridge”

Staleness threshold s =3
< , > e Worker 1 forced to

stop until worker 2

catches up

0 1 2 3 - S 6 7 8 9 Iteration

Stale Synchronous Parallel



How to Bridge”

Theorem 3: SSP

data parallel
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Theorem 4: SSP model pafaHe\

(1)) UHA (t+1)- 4 (t)” < 00,
(2)lim|4(z+1)- A(t)|=0, and for all p, }i{{}HA (1)-47(1)|=0;
(3) The limit points of {A(¢)} coincide with those of {4°(t)}, and both

are critical points of L.



How to Communicate”?

Communication management:
e Continuous communication

e Update Prioritisation

e Parameter Storage and Communication

Topologies



How to Communicate?

Server 1 Server 2

Worker 1
a

' ‘ Worker 2
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AN Clientlib MME Clientlib

Data partition Data partition
o / \ /

Master-Slave network topology




How to Communicate?

Worker 1 Worker 2
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Worker 3 Worker 4

Peer-to-peer network topology



How to Communicate?

Halton Sequence network topology



What to Communicate?
Matrix-Parameterized Models (MPMs)

Matrix parameter W

o

min — N £ (Wa ;b )+h(¥)

2T

i Reqularizer
Loss function g

Distance Metric Learning, Sparse Coding, Distance Metric
Learning, Group Lasso, Neural Network, etc.



What to Communicate?
Sufficient Factor (SF) Updates

[Xie et al., 2015]

* Full parameter matrix update AW can be computed as
outer product of two vectors uv? (called sufficient factors)

* Primal stochastic gradient descent (SGD)
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» Stochastic dual coordinate ascent (SDCA)
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AW =uwv' u=Az, v=a,

e Send the lightweight SF updates («,v), instead of the expensive
full-matrix AW updates!



What to Communicate?

Theorem 5 (adapted from Ref. [55]): SFB under SSP, conver-
gence theorem. Let A (1), p = 1,..., P, and A(¢) be the local worker
views and a “reference” view respectively, for the ML objective function

L£in Eq. (16) (assuming r = 0) being solved by SFB under the SSP bridg-
ing model with staleness s. Under mild assumptions, we have

(1) limmax, |A(r)- A, (1) =0, that is, the local worker views con-
verge to the reference view, implying that all worker views will be the
same after sufficient iterations .

(2) There exists a common subsequence of A (1) and A(t) zEuBt converges
Pslog(t ]

Vi

almost surely to a stationary point of £, with rate O[

Theorem to show convergent rate of SFB



Runtime (h)

What to Communicate?

[ Computation time of FMS (W Computation time of SFB M Network waiting time of FMS Il Network waiting time of SFB
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Fig. 18. Computation time versus network waiting time for (a) MLR, (b) DML, and (c) L2-MLR.

Empirically SFB is more efficient than FMB.



ML application library
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YARN
(resource manager, fault tolerance)

Stand-alone
cluster operation

Architecture of Petuum



summary

 Machine Learning is different from

traditional big data programming.
e Data parallelism and mode parallelism.

* Principles on distribution and

communication.



