
Borg

User Perspective

• Heterogenous Workload: production and non-
production jobs

• Cell: belong to a cluster with 10k machines

• Jobs and tasks: operates by issuing remote
procedure call

User Perspective

• Alloc: a reserved set of resources on a
machine

• Priority, quota, and admission control

• Naming and monitoring

Job and tasks

High-level Architecture

BorgMaster
• Handle clients RPCs

• Manage state machines for
objects (machines, tasks,
allocs, etc)

• Communicates with the
Borglets

• Offer a web UI

• Replicated five times

Scheduling

• Scan jobs in queue and
assign tasks asynchronously

• Feasibility checking: find
machines on which tasks
can run

• Scoring: pick one of the
feasible machines

Borglet
• Manage tasks

• Manage local resources

• Report the state of
machines

Scalability

• Distributed scheduling: optimistic
concurrency control like Omega

• Replicated BorgMaster to respond to read-
only RPCs

• Scheduler: score caching; equivalence
classes; relaxed randomisation

Availability

• Key feature: already-running tasks continue to
run even if the Borgmaster or a Borglet goes
down

Utilisation
• Evaluation methodology

• Cell sharing

• Large cell

• Fine-grained resource requests

• Resource reclamation

Evaluation methodology

• Cell compaction: given a workload, removing machines until the
workload no longer fitted

Cell sharing
• Question: why sharing resources between prod and non-prod jobs?

• Conclusion: need more resources if separate prod and non-prod jobs.

Cell sharing
• Question: how about separating picky jobs to different cells?

• Conclusion: need more resources if separate tricky jobs to other cells.

Large cell
• Question: why use large cell with thousands of machines?

• Conclusion: need more resources if partition cells into subcells.

Fine-grained resource requests
• Question: why not fixed-size containers or virtual machines?

• Conclusion: more overhead if using bucketing resource requirements.

Resource reclamation
• Problem: Users allocate more resources than what

they needs.

• Method:

• Reservation: resource decays slowly every 300s

• Reclamation of resources for work that can
tolerate low-quality resources.

Resource reclamation

• Tasks claim more resources than what they needs.

Resource reclamation

• Conclusion: resource reclamation can save resources.

