
LSH 1

IERG4300
Web-Scale Information Analytics

Finding Similar Items and
Locality Sensitive Hash (LSH)

Prof. Wing C. Lau
Department of Information Engineering

wclau@ie.cuhk.edu.hk

LSH 2

Acknowledgements
¢ Many slides used in this chapter are adapted from:

l CS246 Mining Massive Data-sets, by Jure Leskovec, Stanford
University.

l COMS 6998-12 Dealing with Massive Data, by Sergei Vassilvitskii,
(Yahoo! Research), Columbia University

All copyrights belong to the original author of the material.

[Hays and Efros, SIGGRAPH 2007]

LSH 3

[Hays and Efros, SIGGRAPH 2007]

LSH 4

LSH 5
10 nearest neighbors from a collection of 20,000 images

[Hays and Efros, SIGGRAPH 2007]

LSH 610 nearest neighbors from a collection of 2 million images

[Hays and Efros, SIGGRAPH 2007]

¡ Many problems can be expressed as
finding “similar” sets:
§ Find near-neighbors in high-dimensional space

¡ Examples:
§ Web Pages with similar words

§ For duplicate detection, classification by topic
§ Customers who purchased similar products

§ Products with similar customer sets
§ Images with similar features
§ Users who visited the similar websites

LSH 7

¡ Last time: Finding frequent pairs

Ite
m

s
1…

N

Items 1…N

Count of pair {i,j}
in the data

Naïve solution:
Single pass but requires
space quadratic in the
number of items

Ite
m

s
1…

K

Items 1…K

Count of pair {i,j}
in the data

A-priori:
First pass: Find frequent singletons
For a pair to be a candidate for a
frequent pair, its singletons have to
be frequent!
Second pass:
Count only candidate pairs!

N … number of distinct items
K … number of items with support ³ s

LSH 8

¡ Last time: Finding frequent pairs
¡ Further improvement: PCY
§ Pass 1:

§ Count exact frequency of each item:
§ Take pairs of items {i,j}, hash them into B buckets and

count of the number of pairs that hashed to each bucket:

Items 1…N

Basket 1: {1,2,3}
Pairs: {1,2} {1,3} {2,3}

Buckets 1…B
2 1

LSH 9

¡ Last time: Finding frequent pairs
¡ Further improvement: PCY
§ Pass 1:

§ Count exact frequency of each item:
§ Take pairs of items {i,j}, hash them into B buckets and

count of the number of pairs that hashed to each bucket:

§ Pass 2:
§ For a pair {i,j} to be a candidate for

a frequent pair, its singletons have
to be frequent and it has to hash
to a frequent bucket!

Items 1…N

Basket 1: {1,2,3}
Pairs: {1,2} {1,3} {2,3}
Basket 2: {1,2,4}
Pairs: {1,2} {1,4} {2,4}

Buckets 1…B
3 1 2

LSH 10

¡ Last time: Finding frequent pairs
¡ Further improvement: PCY
§ Pass 1:

§ Count exact frequency of each item:
§ Take pairs of items {i,j}, hash them into B buckets and

count of the number of pairs that hashed to each bucket:

§ Pass 2:
§ For a pair {i,j} to be a candidate for

a frequent pair, its singletons have
to be frequent and its has to hash
to a frequent bucket!

Items 1…N

Basket 1: {1,2,3}
Pairs: {1,2} {1,3} {2,3}
Basket 2: {1,2,4}
Pairs: {1,2} {1,4} {2,4}

Buckets 1…B
3 1 2

Previous lecture: A-priori
Main idea: Candidates
Instead of keeping a count of each pair, only keep a count for
candidate pairs!

Today’s lecture: Find pairs of similar docs
Main idea: Candidates
-- Pass 1: Take documents and hash them to buckets such that
documents that are similar hash to the same bucket
-- Pass 2: Only compare documents that are candidates
(i.e., they hashed to a same bucket)
Benefits: Instead of N2 comparisons, we need O(N)
comparisons to find similar documents

LSH 11

¡ Goal: Find near-neighbors in high-dim. space
§ We formally define “near neighbors” as

points that are a “small distance” apart
¡ For each application, we first need to define

what “distance” means
¡ Today: Jaccard distance (/similarity)
§ The Jaccard Similarity/Distance of two sets is the size of

their intersection / the size of their union:
§ sim(C1, C2) = |C1ÇC2|/|C1ÈC2|
§ d(C1, C2) = 1 - |C1ÇC2|/|C1ÈC2|

3 in intersection
8 in union
Jaccard similarity= 3/8
Jaccard distance = 5/8

LSH 13

¡ Goal: Given a large number (N in the millions or
billions) of text documents, find pairs that are
“near duplicates”

¡ Applications:
§ Mirror websites, or approximate mirrors

§ Don’t want to show both in a search
§ Similar news articles at many news sites

§ Cluster articles by “same story”
¡ Problems:

§ Many small pieces of one document can appear
out of order in another

§ Too many documents to compare all pairs
§ Documents are so large or so many that they cannot

fit in main memory
LSH 14

1. Shingling: Convert documents to sets

2. Minhashing: Convert large sets to short
signatures, while preserving similarity

3. Locality-sensitive hashing: Focus on
pairs of signatures likely to be from
similar documents

§ Candidate pairs!

LSH 15

ShinglingDocument

The set
of strings
of length k
that appear
in the doc-
ument

Min
Hashing

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-
Sensitive
Hashing

Candidate
pairs:
those pairs
of signatures
that we need
to test for
similarity

LSH 16

Step 1: Shingling: Convert documents to sets

ShinglingDocument

The set
of strings
of length k
that appear
in the document

¡ Step 1: Shingling: Convert documents to sets

¡ Simple approaches:
§ Document = set of words appearing in document
§ Document = set of “important” words
§ Don’t work well for this application. Why?

¡ Need to account for ordering of words!
¡ A different way: Shingles (aka n-grams)!

LSH 18

¡ A k-shingle (or k-gram) for a document is a
sequence of k tokens that appears in the doc
§ Tokens can be characters, words or something

else, depending on the application
§ Assume tokens = characters for examples

¡ Example: k=2; document D1= abcab
Set of 2-shingles: S(D1)={ab, bc, ca}
§ Option: Shingles as a bag (multiset), count ab

twice: S’(D1)={ab, bc, ca, ab}

LSH 19

¡ To compress long shingles, we can hash them
to (say) 4 bytes

¡ Represent a doc by the set of hash values
of its k-shingles
§ Idea: Two documents could (rarely) appear to have

shingles in common, when in fact only the hash-
values were shared

¡ Example: k=2; document D1= abcab
Set of 2-shingles: S(D1)={ab, bc, ca}
Hash the shingles: h(D1)={1, 5, 7}

LSH 20

¡ Documents that have lots of shingles in
common have similar text, even if the text
appears in different order

¡ Caveat: You must pick k large enough, or most
documents will have most shingles
§ k = 5 is OK for short documents
§ k = 10 is better for long documents

LSH 21

¡ Document D1 = set of k-shingles C1=S(D1)
¡ Equivalently, each document is a

0/1 vector in the space of k-shingles
§ Each unique shingle is a dimension
§ Vectors are very sparse

¡ A natural similarity measure is the
Jaccard similarity:

Sim(D1, D2) = |C1ÇC2|/|C1ÈC2|

LSH 22

¡ Many similarity problems can be
formalized as finding subsets that
have significant intersection

¡ Encode sets using 0/1 (bit, boolean) vectors
§ One dimension per element in the universal set

¡ Interpret set intersection as bitwise AND, and
set union as bitwise OR

¡ Example: C1 = 10111; C2 = 10011
§ Size of intersection = 3; size of union = 4,

Jaccard similarity (not distance) = 3/4
§ d(C1,C2) = 1 – (Jaccard similarity) = 1/4

LSH 23

¡ Rows = elements (shingles)
¡ Columns = sets (documents)
§ 1 in row e and column s if and only

if e is a member of s
§ Column similarity is the Jaccard

similarity of the corresponding
sets (rows with value 1)

§ Typical matrix is sparse!
¡ Each document is a column:

§ Example: sim(C1 ,C2) = ?
§ Size of intersection = 3; size of union = 6,

Jaccard similarity (not distance) = 3/6
§ d(C1,C2) = 1 – (Jaccard similarity) = 3/6

0101

0111

1001

1000

1010
1011

0111

LSH 24

¡ Suppose we need to find near-duplicate
documents among N=1 million documents

¡ Naïvely, we’d have to compute pairwise
Jaccard similarites for every pair of docs
§ i.e, N(N-1)/2 ≈ 5*1011 comparisons
§ At 105 secs/day and 106 comparisons/sec,

it would take 5 days

¡ For N = 10 million, it takes more than a year…

LSH 25

Step 2: Minhashing: Convert large sets to
short signatures, while preserving similarity

ShinglingDocu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

MinHash-
ing

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

¡ So far:
§ Documents ® Sets of shingles
§ Represent sets as boolean vectors in a matrix

¡ Next Goal: Find similar columns, Small signatures
¡ Approach:

§ 1) Signatures of columns: small summaries of columns
§ 2) Examine pairs of signatures to find similar columns

§ Essential: Similarities of signatures & columns are related
§ 3) Optional: Check that columns with similar signatures

are really similar
¡ Warnings:

§ Comparing all pairs may take too much time: Job for LSH
§ These methods can produce false negatives, and even false

positives (if the optional check is not made)
LSH 27

¡ Key idea: “hash” each column C to a small
signature H(C), such that:
§ (1) H(C) is small enough that the signature fits in RAM
§ (2) sim(C1, C2) is the same as the “similarity” of

signatures H(C1) and H(C2)
¡ Goal: Find a hash function H(·) such that:

§ if sim(C1,C2) is high, then with high prob. H(C1) = H(C2)
§ if sim(C1,C2) is low, then with high prob. H(C1) ≠ H(C2)

¡ Hash documents into buckets, and expect that
“most” pairs of near duplicate docs hash into the
same bucket!

LSH 28

¡ Goal: Find a hash function H(·) such that:
§ if sim(C1,C2) is high, then with high prob. H(C1) = H(C2)
§ if sim(C1,C2) is low, then with high prob. H(C1) ≠ H(C2)

¡ Clearly, the hash function depends on
the similarity metric:
§ Not all similarity metrics have a suitable

hash function
¡ There is a suitable hash function for

Jaccard similarity: Min-hashing

LSH 29

¡ Key Idea:
If we pick a “winner”, say x, among all elements of VÈW in

a uniformly random manner, then:
Prob[Element x is the winner] = 1 /|VÈW|

and
Prob[x Î V Ç W] = |VÇW|/|VÈW|= sim(V, W)…Eq.(1)

Þ If we can repeat the experiment many times and be able
to detect and count the cases of “winner Î V Ç W”, we
can estimate Prob[x Î V Ç W], and thus sim(V, W) (per
Eq.(1):

LSH 30

Now, let’s use the following way to pick a winner within VÈW in a
uniformly random manner :
¡After randomly permute the ordering of all elements in VÈW, assign
a unique value to each element according to its order in the resultant
permutation, e.g. “1” to the 1st element, “2” to the 2nd element, and so
on …………………………………(*)

LSH 31

a c

f g

b

h

d

V W

e

Now, let’s use the following way to pick a winner within VÈW in a
uniformly random manner :
¡After randomly permute the ordering of all elements in VÈW, assign
a unique value to each element according to its order in the resultant
permutation, e.g. “1” to the 1st element, “2” to the 2nd element, and so
on …………………………………(*)

LSH 32

a:=7
e:=6 c:=8

f:=3 g:=2

b:=5

h:=4

d:=1

V W

Now, let’s use the following way to pick a winner within VÈW in a
uniformly random manner :
¡After randomly permute the ordering of all elements in VÈW, assign
a unique value to each element according to its order in the resultant
permutation, e.g. “1” to the 1st element, “2” to the 2nd element, and so
on …………………………………(*)
¡Among all elements in VÈW, we declare the element, say x, with the
smallest assigned value (according to (*)), the winner of VÈW.
¡Similarly, within set V, we declare the element with the smallest assigned value
(according to (*)), the winner of set V.
¡Similarly, within set W, we declare the element with the smallest assigned value
(according to (*)), the winner of set W.

LSH 33

a:=7
e:=6 c:=8

f:=3 g:=2

b:=5

h:=4

d:=1

V W Winner of VÈW is d

Winner of V is g Winner of W is also d

¡ Now, try another randomly permutation, followed by value
assignment ;

¡ This time, say, e becomes the element with the smallest value
assigned and thus the winner!

LSH 34

a:=2
e:=1 c:=8

f:=5 g:=6

b:=3

h:=4

d:=7

V W

Notice that e = Winner of VÈW = Winner of V = Winner of W

(The winning element x ÎV ÇW) iff (The winner of V is also the winner of W)

Observe that:
(The winning element x Î V Ç W) iff (The winner of set V is also the winner of set W) …..(**)

¡Since the event of the R.H.S. of (**) is readily observable, we can use this condition to
determine whether x, the winning element of the current permutation belongs to V Ç W .

¡By repeating the experiment in (*) using different random permutations and count the
number of times the event specified in the R.H.S. of (**) is observed,

we can estimate Prob[x Î V Ç W] (which is = sim(V, W)) according to Eq.(1) as follows:

LSH 35/*),(of est.an as * /) / (return :8
/*for of * /end :7

1 :6
) within aluesmallest v == within value(smallest if :5

orderresultant the toaccordingelement each to valueaAssign :4
in elements of ordering thepermuteRandomly :3

do N to0for :2
0 :1

W)(V,Similarity 2 Algorithm

WVsimNcounter

countercounter
WV

WV
i

counter

+¬

=
¬

!

¡ Now, try another randomly permutation, followed by value
assignment ;

¡ This time, say, e becomes the element with the smallest value
assigned and thus the winner!

LSH 36

a:=11
e:=1

m:=7

f:=8 g:=6

y:=15

h:=9

d:=3

V W

Notice that e = Winner of VÈW = Winner of V = Winner of W

(The winning element x ÎV ÇW) iff (The winner of V is also the winner of W)

j:=4

LSH 37

3

4

7

2

6

1

5

Signature matrix M
(stores the row #’s of winning element

AFTER permutation.)

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

Element a, i.e. 2nd row after the permutation, is the winner in Col. 1 because
it is the first to map to 1 ; Element e can’t be the winner for Col. 1 because e does
NOT appear in doc. represented by Col. 1.

4th row after the permutation,
i.e. element a, is the first to
map to a 1

0101

0101

1010

1010

1010

1001

0101

Input matrix (Shingles x Documents) Permutation p

Note: An alternative way
(equivalent) is to
store row #’s
of the winning
element
BEFORE the permutation

1 5 1 5
2 3 1 3
6 4 6 4

a

b

d

c

f

e

g

El
em

en
ts

 (S
hi

ng
le

s)

¡ Imagine the rows of the boolean matrix permuted under random
permutation p

¡ Define a “hash” function hp(C) = the row number of the first row
(according to permuted order p) in which column C has a value of
1:
¡ We skip rows with a zero because it means the corresponding element is

NOT a member of Col. C anyway !

Define hp (C) = row # (after permutation p) of winner of Col. C

Alternatively, we can also use:
h’p (C) = row # (before permutation p) of winner of Col. C

¡ Use several (e.g., 100) independent hash (permutation) functions
to create a signature of a column.

LSH 38

LSH 39

Similarities:
1-3 2-4 1-2 3-4

Col/Col 0.75 0.75 0 0
Sig/Sig 0.67 1.00 0 0

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

0101

0101

1010

1010

1010

1001

0101

Input matrix (Shingles x Documents)

3

4

7

2

6

1

5

Permutation p

Note: Another (equivalent) way is to
store row indexes
before permutation

1 5 1 5
2 3 1 3
6 4 6 4

¡ Prob[hp(C1) = hp(C2)] is the same as sim(D1, D2)

¡ Given cols C1 and C2, there are 4 types of rows:
C1 C2

Type A 1 1
B 1 0
C 0 1
D 0 0

§ a = # rows of type A, etc.
By definition of Jaccard Similarity: sim(C1, C2) = a/(a +b +c)......Eq.(2)

Now, after random shuffling of rows, look down the cols of C1 and C2
row-by-row until we see at least one 1: (i.e. a winner is detected)

¡ If it’s a type-A row => same winner for C1 and C2 , i.e. h(C1) = h(C2),
¡ If a type-B or type-C row, then different winners for C1 and C2
BUT: Pr[Same winner for C1 and C2]

= Pr [h(C1) = h(C2)] = Pr[h’(C1) = h’(C2)]
= Pr[Reaching a type-A row before a type-B or type-C row]
= a/(a +b +c) /* due to the # of type-A,B,C, rows in C1 and C2 */
= sim(C1, C2) /* by Eq.(2) */

40

As a result, we have:
Pr[winner of C1 = winner of C2] =
Pr[hp(C1) = hp(C2)] = sim(C1, C2)………………………… Eq.(3)

¡ We will use multiple hash functions to realize different
random permutations among the elements within the
Columns

¡ Define the similarity of two signatures to be the
fraction of the hash functions in which they agree

¡ Per Eq.(3), the similarity of columns (2 sets) is the
same as the expected similarity of their signatures

LSH 41

¡ Pick K=100 random permutations of the rows
¡ Think of sig(C) as a column vector

¡ sig(C)[i] = according to the i-th permutation, the
index of the first row that has a 1 in column C

Note: The sketch (signature) of document C is
small -- ~100 bytes!

¡ We achieved our goal! We “compressed”
long bit vectors into short signatures

LSH 42

¡ Permuting rows even once is prohibitive
¡ Row hashing!

§ Pick K = 100 hash functions ki

§ Ordering under ki gives a random row permutation!
¡ One-pass implementation

§ For each column C and hash-func. ki keep a “slot” for
the min-hash value

§ Initialize all sig(C)[i] = ¥
§ Scan rows looking for 1s

§ Suppose row j has 1 in column C
§ Then for each ki :

§ If ki(j) < sig(C)[i], then sig(C)[i] ¬ ki(j)

How to pick a random
hash function h(x)?
Universal hashing:
ha,b(x)=((a·x+b) mod p) mod N
where:
a,b … random integers
p … prime number (p > N)

LSH 43

Step 3: Locality-sensitive hashing:
Focus on pairs of signatures likely to be from
similar documents

ShinglingDocu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

MinHash-
ing

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-
sensitive
Hashing

Candidate
pairs:
those pairs
of signatures
that we need
to test for
similarity

¡ Goal: Find documents with Jaccard similarity at
least s (for some similarity threshold, e.g., s=0.8)

¡ LSH – General idea: Use a function f(x,y) that
tells whether x and y is a candidate pair: a pair
of elements whose similarity must be evaluated

¡ For minhash matrices:
§ Hash columns of signature matrix M to many buckets
§ Each pair of documents that hashes into the

same bucket is a candidate pair

1212

1412

2121

LSH 45

¡ Pick a similarity threshold s (0 < s < 1)

¡ Columns x and y of M are a candidate pair if
their signatures agree on at least fraction s of
their rows:
M (i, x) = M (i, y) for at least frac. s values of i
§ We expect documents x and y to have the same

(Jaccard) similarity as is the similarity of their
signatures

1212

1412

2121

LSH 46

¡ Big idea: Hash columns of
signature matrix M several times

¡ Arrange that (only) similar columns are
likely to hash to the same bucket, with
high probability

¡ Candidate pairs are those that hash to
the same bucket

1212

1412

2121

LSH 47

Signature matrix M

r rows
per band

b bands

One
signature

1212

1412

2121

LSH 48

¡ Divide matrix M into b bands of r rows

¡ For each band, hash its portion of each
column to a hash table with k buckets
§ Make k as large as possible

¡ Candidate column pairs are those that hash
to the same bucket for ≥ 1 band

¡ Tune b and r to catch most similar pairs,
but few non-similar pairs

LSH 49

LSH 50

Matrix M

r rows b bands

Buckets
Columns 2 and 6
are probably identical
(candidate pair)

Columns 6 and 7 are
surely different.

¡ There are enough buckets that columns are
unlikely to hash to the same bucket unless
they are identical in a particular band

¡ Hereafter, we assume that “same bucket”
means “identical in that band”

¡ Assumption needed only to simplify analysis,
not for correctness of algorithm

LSH 51

Assume the following case:
¡ Suppose 100,000 columns of M (100k docs)
¡ Signatures of 100 integers (rows)
¡ Therefore, signatures take 40Mb
¡ Choose b = 20 bands of r = 5 integers/band

¡ Goal: Find pairs of documents that
are at least s = 0.8 similar

1212

1412

2121

LSH 52

¡ Find pairs of ³ s=0.8 similarity, set b=20, r=5
¡ Assume: sim(C1, C2) = 0.8

§ Since sim(C1, C2) ³ s, we want C1, C2 to be a candidate
pair: We want them to hash to at least 1 common bucket
(at least one band is identical)

¡ Probability C1, C2 identical in one particular band:
(0.8)5 = 0.328

¡ Probability C1, C2 are not similar in all of the 20
bands: (1-0.328)20 = 0.00035
§ i.e., about 1/3000th of the 80%-similar column pairs

are false negatives (we miss them)
§ We would find 99.965% pairs of truly similar documents

1212

1412

2121

LSH 53

¡ Find pairs of ³ s=0.8 similarity, set b=20, r=5
¡ Assume: sim(C1, C2) = 0.3

§ Since sim(C1, C2) < s we want C1, C2 to hash to NO
common buckets (all bands should be different)

¡ Probability C1, C2 identical in one particular band:
(0.3)5 = 0.00243

¡ Probability C1, C2 identical in at least 1 of 20
bands: 1 - (1 - 0.00243)20 = 0.0474
§ In other words, approximately 4.74% pairs of docs

with similarity 0.3 end up becoming candidate pairs
§ They are false positives since we will have to examine them

(they are candidate pairs) but then it will turn out their
similarity is below threshold s

1212

1412

2121

LSH 54

¡ Pick:
§ the number of minhashes (rows of M)
§ the number of bands b, and
§ the number of rows r per band
to balance false positives/negatives

¡ Example: if we had only 15 bands of 5
rows, the number of false positives would
go down, but the number of false negatives
would go up

1212

1412

2121

LSH 55

Similarity s =sim(C1, C2) of two sets

Probability
of sharing
a bucket

Si
m

ila
rit

y
th

re
sh

ol
d
t

No chance
If s < t

Probability = 1
if s > t

LSH 56

LSH 57

Remember:
Probability of
equal hash-values
= similarity

Similarity s =sim(C1, C2) of two sets

Probability
of sharing
a bucket

¡ Columns C1 and C2 have similarity s
¡ Pick any band (r rows)
§ Prob. that all rows in band equal = sr

§ Prob. that some row in band unequal = 1 - sr

¡ Prob. that no band identical = (1 - sr)b

¡ Prob. that at least 1 band identical =
1 - (1 - sr)b

LSH 58

s r

All rows
of a band
are equal

1 -

Some row
of a band
unequal

()b

No bands
identical

1 -

At least
one band
identical

t ~ (1/b)1/r

Similarity s=sim(C1, C2) of two sets

Probability
of sharing
a bucket

LSH 59

LSH 60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Similarity

r = 1..10, b = 1

Pr
ob

(C
an

di
da

te
 p

ai
r)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ob

(C
an

di
da

te
 p

ai
r)

r = 1, b = 1..10

r = 5, b = 1..50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r = 10, b = 1..50

Similarity
y = 1 - (1 - s r)b

Given a fixed
threshold t.

We want to
choose r and b
such that the
P(Candidate
pair) has a
“step” right
around t.

¡ Similarity level s
¡ Prob. that at least 1 band is identical:

s 1-(1-s r)b
.2 .006
.3 .047
.4 .186
.5 .470
.6 .802
.7 .975
.8 .9996

LSH 61

¡ Picking r and b to get the best S-curve
§ 50 hash-functions (r=5, b=10)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Blue area: False Negative rate
Green area: False Positive rate

Similarity

Pr
ob

. s
ha

rin
g

a
bu

ck
et

LSH 62

¡ Tune M, b, r to get almost all pairs with
similar signatures, but eliminate most pairs
that do not have similar signatures

¡ Check in main memory that candidate pairs
really do have similar signatures

¡ Optional: In another pass through data,
check that the remaining candidate pairs
really represent similar documents

LSH 63

¡ Shingling: Convert documents to sets
§ We used hashing to assign each shingle an ID

¡ Min-hashing: Convert large sets to short signatures,
while preserving similarity
§ We used similarity preserving hashing to generate signatures

with property Pr[hp(C1) = hp(C2)] = sim(C1, C2)
§ We used hashing to get around generating random

permutations
¡ Locality-sensitive hashing: Focus on pairs of signatures

likely to be from similar documents
§ We used hashing to find candidate pairs of similarity ³ s
§ Notice that MinHash is only good for constructing LSH under

the Jaccard similarity ;
§ Other Hash functions exist for LSH under for other

similarity metrics, e.g. cosine similarity or hamming
distance etc.

LSH 64

¡ MinHash works for Jaccard Similiarity [d(x,y) = 1 – sim(x,y)]
¡ Different LSH methods for other distance metrics:

§ Cosine distance,
§ Euclidean distance etc

66

Points: x, y, … Hash
func.

Signatures: short
integer signatures that
reflect their similarity Locality-

sensitive
Hashing

Candidate pairs:
those pairs of
signatures that
we need to test
for similarity

Design a family of hash functions s.t.
If d(x,y) < d1, then prob. that h(x) = h(y) is high, e.g. at least p1

AND
If d(x,y) > d2, then prob. that h(x) = h(y) is low, e.g. at most p2

Amplify the hash
family to get the
“S” curve using

AND and OR
constructions

The design of the hash function h() will depend on the choice of
distance metric, d(x,y) = 1 – sim(x,y)

¡ Suppose we have a space S of points with
a distance measure d

¡ A family H of hash functions is said to be
(d1, d2, p1, p2)-sensitive if for any x and y in S:

1. If d(x, y) < d1, then the probability over all hÎ H,
that h(x) = h(y) is at least p1

2. If d(x, y) > d2, then the probability over all hÎ H,
that h(x) = h(y) is at most p2

67

Pr
[h

(x
) =

 h
(y

)]

d(x,y) (= 1-sim(x,y))

d1 d2

p2

p1

High
probability;
at least p1

Low
probability;
at most p2

68

¡ The S-curve is where the “magic” happens

69

Similarity s of two sets

Pr
ob

ab
ilit

y
of

 s
ha

rin
g

th
e

sa
m

e
bu

ck
et

Remember:
Probability of
equal hash-values
= similarity

This is what 1 band & 1 row gives you
Pr[hp(C1) = hp(C2)] = sim(D1, D2)

No chance
if s < t

Probability
~ 1 if s > t

This is what we want!
How to get a step-function?

By choosing r rows and b bands!

Th
re

sh
ol

d
t

Similarity s of two sets

Pr
ob

ab
ilit

y
of

 s
ha

rin
g

≥
1

bu
ck

et

¡ The S-curve is where the “magic” happens

70

Distance d of two sets

Pr
ob

ab
ilit

y
of

 s
ha

rin
g

≥
1

bu
ck

et

Remember:
Probability of

equal hash-values
= similarity

= 1-distance

This is what 1 band and 1 row gives you
Pr[hp(C1) = hp(C2)] = sim(D1, D2)

= 1 - distance(D1, D2)

No chance
If d > t

Probability
~ 1 if
d < t

This is what we want!
How to get a step-function?

By choosing r rows and b bands !

Th
re

sh
ol

d
t

Distance d of two sets

Pr
ob

ab
ilit

y
of

 s
ha

rin
g

th
e

sa
m

e
bu

ck
et

Pr
[h

(x
) =

 h
(y

)]

Distance d(x,y)

d1 d2

p2

p1

Small distance,
high probability

Large distance,
low probability
of hashing to
the same value

2/16/2371Jure Leskovec, Stanford CS246: Mining Massive Datasets

Distance
threshold t

¡

2/16/2372Jure Leskovec, Stanford CS246: Mining Massive Datasets

A

B

A×B
ǁBǁ

- Has range -1…1 for
general vectors
- Range 0..1 for
non-negative vectors
(angles up to 90°)

¡ For cosine similarity = cos q = (A·B / ǁAǁǁBǁ)
¡ cosine distance d(A, B) = q/180
¡ There is a technique called

Random Hyperplanes
§ Technique similar to Minhashing

¡ Random Hyperplanes is a
(d1, d2, (1-d1/180), (1-d2/180))-sensitive family
for any d1 and d2

¡ Reminder: (d1, d2, p1, p2)-sensitive
1. If d(x,y) < d1, then prob. that h(x) = h(y) is at least p1

2. If d(x,y) > d2, then prob. that h(x) = h(y) is at most p2

73

A

BA·B
ǁBǁ

θ ∈[0,180]

LSH 74

Prob[Red case] = θ / 180

So: P[h(x)=h(y)] = 1- θ/180 = 1-d(x,y)

¡ Pick a random vector v, which determines a hash function hv
with two buckets s.t.:

hv(x) = +1 if v×x ³ 0; = -1 if v×x < 0
v’

v

Look in the
plane of
x and y.

Hyperplane
normal to v.

Hyperplane
normal to v’

¡ Pick some number of random vectors v, and
hash your data for each vector

¡ The result is a signature (sketch) of
+1’s and –1’s for each data point: x, y, …

¡ Can be used for LSH like we used the
Minhash signatures for Jaccard distance

¡ Amplify using AND/OR constructions

75

¡ Expensive to pick a random vector in M
dimensions for large M
§ Would have to generate M random numbers

¡ A more efficient (but approximated) approach
§ It is “close enough” to consider only vectors v

consisting of +1 and –1 components
§ Why? Assuming data is random, then vectors of +/-1 cover

the entire space evenly (and does not bias in any way)
§ This only gives an APPROXIMATED result, but not an exact one !!

2/16/2376Jure Leskovec, Stanford CS246: Mining Massive Datasets

¡ Simple idea: Hash functions correspond to lines

¡ Partition the line into buckets of size a

¡ Hash each point to the bucket containing its
projection onto the line

¡ Nearby points are always close;
distant points are rarely in same bucket

77

¡ “Lucky” case:
§ Points that are close

hash in the same bucket
§ Distant points end up in

different buckets

¡ Two “unlucky cases:
§ Top: unlucky

quantization
§ Bottom: unlucky

projection
78

v
v

Line

Buckets of size a
v v

v
v

v v

v
v

v
v

79

v v

v
v

v
v

vv

Bucket
width a

Randomly
chosen line

Points at
distance d If d << a, then

the chance the
points are in the
same bucket is
at least 1 – d/a.

80

¡ For example, If points are distance d < a/2,
the probability they are in same bucket ≥ 1- d/a = ½

Bucket
width a

Points at
distance d

θ

d cos θ

If d >> a, θ must
be very close to 90o
for there to be
any chance points
go to the same
bucket.

81

Randomly
chosen line

¡ For example, if points are distance d > 2a apart,
then they can be in the same bucket only if d cos θ ≤ a
=> cos θ ≤ ½
So, for 60 < θ < 90, i.e., at most 1/3 probability

¡ If points are distance d < a/2, prob.
they are in same bucket ≥ 1- d/a = ½

¡ If points are distance d > 2a apart, then they
can be in the same bucket only if d cos θ ≤ a
§ cos θ ≤ ½
§ 60 < θ < 90, i.e., at most 1/3 probability

¡ Yields a (a/2, 2a, 1/2, 1/3)-sensitive family of
hash functions for any a

¡ Amplify using AND-OR cascades

82

