IERG4300
Web-Scale Information Analytics

Finding Similar Items and
Locality Sensitive Hash (LSH)

Prof. Wing C. Lau
Department of Information Engineering
wclau@ie.cuhk.edu.hk

LSH 1

Acknowledgements
o Many slides used in this chapter are adapted from:

e CS246 Mining Massive Data-sets, by Jure Leskovec, Stanford
University.

e COMS 6998-12 Dealing with Massive Data, by Sergei Vassilvitskii,
(Yahoo! Research), Columbia University

All copyrights belong to the original author of the material.

LSH 2

[Hays and Efros, SIGGRAPH 2007]

LSH 3

.
Scene Completion Problem

LSH 4

.
Scene Completion Problem

10 nearest neighbors from a collection of 20,000 images

LSHS5

.
Scene Completion Problem

10 nearest neighbors from a collection of 2 million images

LSH 6

A Common Metaphor

Many problems can be expressed as
finding “similar” sets:

Web Pages with similar words
For duplicate detection, classification by topic

Customers who purchased similar products
Products with similar customer sets

Images with similar features
Users who visited the similar websites

LSH 7

Relation to Previous Topic

Last time: Finding frequent pairs

ltems 1...N

B
P \
v Count of pair {i,j}
GE) in the data

Naive solution:

Single pass but requires
space quadratic in the
number of items

N ... number of distinct items
K ... number of items with support > s

ltems 1...K
<
i O
0 \
=
2 Count of pair {i,j}
in the data
A-priori:

First pass: Find frequent singletons
For a pair to be a candidate for a
frequent pair, its singletons have to
be frequent!

Second pass:

Count only candidate pairs!

LSH 8

Relation to Previous Topic

Last time: Finding frequent pairs
Further improvement: PCY

Pass 1: ltems 1...N

= Count exact frequency of each item: |

" Take pairs of items {i,j}, hash them into B buckets and
count of the number of pairs that hashed to each bucket:

Buckets 1...B

2 1

Basket 1: {1,
Pairs: {1,2} {1,3} {2,3}

LSH9

Relation to Previous Topic

Last time: Finding frequent pairs
Further improvement: PCY

Pass 1: ltems 1...N

= Count exact frequency of each item: |

" Take pairs of items {i,j}, hash them into B buckets and
count of the number of pairs that hashed to each bucket:

Pass 2: Buckets 1...B

1 2

" For a pair {i,j} to be a candidate for
a frequent pair, its singletons have _
to be frequent and it has to hash Pairs:)\{1,2} {{,3} {4,3}

to a frequent bucket!

Pairs: {1:2} {14} {2'4}

LSH 10

Relation to Previous Lecture

Previous lecture: A-priori

Main idea: Candidates
Instead of keeping a count of each pair, only keep a count for
candidate pairs!

Today’s lecture: Find pairs of similar docs

Main idea: Candidates

-- Pass 1: Take documents and hash them to buckets such that
documents that are similar hash to the same bucket

-- Pass 2: Only compare documents that are candidates

(i.e., they hashed to a same bucket)

Benefits: Instead of N2 comparisons, we need O(N)
comparisons to find similar documents

Finding Similar Items

Distance Measures

Goal: Find near-neighbors in high-dim. space

We formally define “near neighbors” as
points that are a “small distance” apart

For each application, we first need to define
what “distance” means
Today: Jaccard distance (/similarity)

The Jaccard Similarity/Distance of two sets is the size of
their intersection / the size of their union:

sim(Cy, G) = |CiNG |/ CLUG, |
d(Cy, C)) =1-|CiNG|/|CUG |

3 in intersection

8 in union

Jaccard similarity= 3/8
Jaccard distance = 5/8

LSH 13

Finding Similar Documents

Goal: Given a large number (N in the millions or
billions) of text documents, find pairs that are
“near duplicates”

Mirror websites, or approximate mirrors
Don’t want to show both in a search

Similar news articles at many news sites
Cluster articles by “same story”

Many small pieces of one document can appear
out of order in another

Too many documents to compare all pairs

Documents are so large or so many that they cannot
fit in main memory

LSH 14

3 Essential Steps for Similar Docs

1. Shingling: Convert documents to sets

2. Minhashing: Convert large sets to short
signatures, while preserving similarity

3. Locality-sensitive hashing: Focus on
pairs of signatures likely to be from
similar documents

= Candidate pairs!

The Big Picture

Document—

T

T

Min

A 4

Shingling

/

] Hashing

/

Locality-
Sensitive
Hashing

The set Signatures:
of strings short integer
of length k vectors that
that appear represent the
in the doc- sets, and
ument reflect their

similarity

Candidate
pairs:

those pairs
of signatures
that we need
to test for
similarity

LSH 16

Document—»@ ‘ >

The set

of strings

of length k

that appear

in the document

Shingling

Shingling:

Documents as High-Dim Data

Step 1: Shingling: Convert documents to sets

Simple approaches:
Document = set of words appearing in document
Document = set of “important” words
Don’t work well for this application. Why?

Need to account for ordering of words!
A different way: Shingles (aka n-grams)!

Define: Shingles

A k-shingle (or k-gram) for a document is a
sequence of k tokens that appears in the doc

Tokens can be , or something
else, depending on the application

Assume tokens = characters for examples

k=2; document D,= abcab
Set of 2-shingles: S(D,)={ab, bc, ca}

: Shingles as a bag (multiset), count ab
twice: S’(D,)={ab, bc, ca, ab}

Compressing Shingles

To , We can them
to (say) 4 bytes

Represent a doc by the set of hash values
of its k-shingles

Idea: Two documents could (rarely) appear to have
shingles in common, when in fact only the hash-
values were shared

Example: k=2; document D,= abcab
Set of 2-shingles: S(D,)={ab, bc, ca}
Hash the shingles: h(D,)={1, 5, 7}

Working Assumption

Documents that have lots of shingles in
common have similar text, even if the text

appears in different order

You must pick k large enough, or most
documents will have most shingles
k=5 is OK for short documents
k =10 is better for long documents

Similarity Metric for Shingles

Document D, = set of k-shingles C,=S(D,)
Equivalently, each document is a
0/1 vector in the space of k-shingles

Each unique shingle is a dimension

Vectors are very sparse
A natural similarity measure is the
Jaccard similarity:

Sim(D,, D,) = |GG, |/]C UG, |

CLOD

Encoding Sets as Bit Vectors

Many similarity problems can be (‘)
formalized as finding subsets that
have significant intersection

Encode sets using 0/1 (bit, boolean) vectors

“ One dimension per element in the universal set
Interpret set intersection as bitwise AND, and

set union as bitwise OR

Example: C; =10111; C, =10011
= Size of intersection = 3; size of union =4,
Jaccard similarity (not distance) = 3/4

= d(C,,C,) =1 — (Jaccard similarity) = 1/4

LSH 23

From Sets to Boolean Matrices

Rows = elements (shingles) . (‘)
Columns = sets (documents)

1 in row e and column s if and only
if e is a member of s i i
Column similarity is the Jaccard 1 |1 |0 |1
similarity of ’Fhe corresponding o |11 lo |1
sets (rows with value 1)
O |0 |0 |1
Each document is a column: 1 |0 |0 |1
Example: sim(C; ,C,)) =7 1 11 |1 lo
Size of intersection = 3; size of union = 6,
Jaccard similarity (not distance) = 3/6 1 O |1 O

d(C;,C,) =1 — (Jaccard similarity) = 3/6

LSH 24

Motivation for Minhash/LSH

Suppose we need to find near-duplicate
documents among N=1 million documents

Naively, we’d have to compute
for every pair of docs

i.e, N(N-1)/2 = 5*1011 comparisons

At 10° secs/day and 10° comparisons/sec,
it would take 5 days

For N = 10 million, it takes more than a year...

Docu-
ment

The set

of strings
of length k
that appear
in the doc-
ument

MinHashing

Minhashing:

Hash-

— [&

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

Outline: Finding Similar Columns

So far:
Documents — Sets of shingles

Represent sets as boolean vectors in a matrix
Next Goal:

small summaries of columns

to find similar columns
Essential: Similarities of signatures & columns are related

Check that columns with similar signatures
are really similar

Comparing all pairs may take too much time: Job for LSH

These methods can produce false negatives, and even false
positives (if the optional check is not made)

LSH 27

Hashing Columns (Signatures)

Key idea: “hash” each column Cto a small
signature H(C), such that:

(1) H(C) is small enough that the signature fits in RAM

(2) sim(C,, C,) is the same as the “similarity” of
signatures H(C,;) and H(C,)

Goal: Find a hash function H(-) such that:
if sim(C,,C,) is high, then with high prob. H(C;) = H(C,)
if sim(C,,C,) is low, then with high prob. H(C,) # H(C,)
Hash documents into buckets, and expect that

“most” pairs of near duplicate docs hash into the
same bucket!

LSH 28

Min-Hashing

Goal: Find a hash function H(:) such that:
= if sim(C,,C,) is high, then with high prob. H(C,) = H(C,)
= if sim(C,,C,) is low, then with high prob. H(C,) # H(C,)
Clearly, the hash function depends on
the similarity metric:
= Not all similarity metrics have a suitable
hash function
There is a suitable hash function for
Jaccard similarity: Min-hashing

Estimating sim(V, W)=|VnW]|/|VOUW]
Key Idea:

If we pick a “winner”, say x, among all elements of VUW In
a uniformly random manner, then:
Prob[Element x is the winner] =1 /| VUW/|

and
Prob[x € VN W] = |VnW|/|VOUW]|=sim(V, W)...Eq.(1)
If we can repeat the experiment many times and be able
to detect and count the cases of “winner e V W” we
can estimate Prob[x € V" W], and thus sim(V, W) (per
Eq (1) Algorithm 1 Similarity(V,W)

1: counter «— 0

2: fori =1 to 100 do

3 Pick a random element z e V U W
4: ifreVAazxze W then
5

6

counter «+— counter + 1

: return counter /100
LSH 30

Estimating sim(V, W)=|VnW|/|VOUW|

Now, let’s use the following way to pick a winner within VUW in a
uniformly random manner :

After randomly permute the ordering of all elements in VUW, assign
a unique value to each element according to its order in the resultant
permutation, e.g. “1” to the 1t element, “2” to the 2"d element, and so

LSH 31

Estimating sim(V, W)=|VnW|/|VOUW|

Now, let’s use the following way to pick a winner within VUW in a
uniformly random manner :

After randomly permute the ordering of all elements in VUW, assign
a unique value to each element according to its order in the resultant
permutation, e.g. “1” to the 1t element, “2” to the 2"d element, and so

LSH 32

Estimating sim(V, W)=|VnW|/|VOUW|

Now, let’s use the following way to pick a winner within VUW in a
uniformly random manner :

After randomly permute the ordering of all elements in VUW, assign
a unique value to each element according to its order in the resultant
permutation, e.g. “1” to the 1t element, “2” to the 2"d element, and so

Among all elements in VUW, we declare the element, say x, with the

smallest assigned value (according to (*)), the winner of VUW.
Similarly, within set V, we declare the element with the smallest assigned value
(according to (*)), the winner of set V.
Similarly, within set W, we declare the element with the smallest assigned value
(according to (*)), the winner of set W.

Winner of VUW is d

Winner of V'is g Winner of W is also d

LSH 33

Estimating sim(V, W)=|VnW|/|VOUW|

Now, try another randomly permutation, followed by value

assignment ;
This time, say, e becomes the element with the smallest value

assigned and thus the winner!

Notice that e = Winner of V\WW = Winner of V' = Winner of W

(The winning element x € VW) iff (The winner of V is also the winner of W)

LSH 34

Estimating sim(V, W)=|VNW|/[VUW| (cont'd)

Observe that:
(The winning element x € V W) iff (The winner of set V is also the winner of set W)(**)

Since the event of the R.H.S. of (**) is readily observable, we can use this condition to
determine whether x, the winning element of the current permutation belongstoVW..

By repeating the experiment in (*) using different random permutations and count the
number of times the event specified in the R.H.S. of (**) is observed,
we can estimate Prob[x € V. n W] (which is = sim(V, W)) according to Eq.(1) as follows:

Algorithm 2 Similarity(V, W)

1:counter <— 0 ®
2:fori=0to Ndo

3: Randomly permute the ordering of elementsin V' U W

4: Assign a value to each element according to the resultant order
5: 1if (smallest value within J == smallest value within ')

6: counter <— counter +1

7 :end /*of for */

8 :return (counter / N) / *as an est. of sim(V ,W)*/ o3

Estimating sim(V, W)=|VnW|/|VOUW|

Now, try another randomly permutation, followed by value

assignment ;
This time, say, e becomes the element with the smallest value

assigned and thus the winner!

® V=15

Notice that e = Winner of V\WW = Winner of V' = Winner of W

(The winning element x € VW) iff (The winner of V is also the winner of W)

LSH 36

© Elements (Shingles)

(ox

Note: An alternative way

(equivalent) is to
Min-Hashing Example o 555
of the winning 2 3 1 3
element 6 4 6 4
BEFORE the permutation
Element a, i.e. 2™ row after the permutation, is the winner in Col. 1 because
it is the first to map to 1 ; Element e can’t be the winner for Col. 1 because e does
NOT appear in doc. represented by Col. 1.

Perm Wt/natrix

413 1V |0 |1
% oo\
/

2
6

les x Documents) Signature matrix M
(stores the row #'s of winning element

2 N

4t row after the permutation,
l.e. element a, is the first to
map to a 1

1 1 0] 1

o|lo|Rr|/kp|R o
// //K(

5|l |1 |o |1

LSH 37

Min-Hashing

Imagine the rows of the boolean matrix permuted under
T

Define a “hash” function h_{C) = the row number of the first row
(according to permuted order 1) in which column C has a value of
1:
We skip rows with a zero because it means the corresponding element is
NOT a member of Col. C anyway !

Define h(C) = row # (after permutation n) of winner of Col. C

Alternatively, we can also use:
h’_(C) = row # (before permutation nt) of winner of Col. C

Use several (e.g., 100) independent hash (permutation) functions
to create a signature of a column.

LSH 38

Note: Another (equivalent) way is to

Min-Hashing Example socmmisio 5 s ts

6 4 6 4

Permutationt Input matrix (Shingles x Documents)

Signature matrix M

41131 [2 |o |1 |oO
2l4| |2 |o |0 |1
1|[{7| [0 (2 |o |2
3{|2| [0 |2 |o |2 :>
6([6] [0 |1 |o |12 Similarities:

1-3 2-4 1-2 3-4
(| |t |© Col/Col| 0.75 0.75 0 o©
5ll5] [2 |o |1 |oO Sig/Sig| 0.67 1.00 0 ©
Prob[h (C,) = h (C,)] is the same as sim(D,, D,) ...

Alternative Derivation for
Pr[Same winner for C, & C,] = Pr[h(C,) = h(C,)] =sim(C_, C,)

Given cols C; and C,, there are 4 types of rows:

C C
Type A 1 1
B 1 0)
C 0) 1
D 0) 0)

a = # rows of type A, etc.
By definition of Jaccard Similarity: sim(C,, C,) = a/(a +b +c)......Eq.(2)

Now, after random shuffling of rows, look down the cols of C; and G,
row-by-row until we see at least one 1: (i.e. a winner is detected)
If it’s a type-A row =>same winner for C; and C,, i.e. h(C;) = h(C,),
If a type-B or type-C row, then different winners for C; and C,
BUT: Pr[Same winner for C; and C,]
= Pr [h(C,) = h(C,)] = Pr[h’(Cy) = h’(C,)]
Pr[Reaching a type-A row before a type-B or type-C row]
a/(a +b +c) /* due to the # of type-A,B,C, rows in C; and C, */
=sim(Cy, C;) /* by Eq.(2) */

40

Similarity for Signatures

As a result, we have:
Pr[winner of C, = winner of C,] =
Pr[h_(C,) = h(C,)] = sim(C,, C,)).eevvrerrrnnriinerrnnnene Eqg.(3)

We will use multiple hash functions to realize different
random permutations among the elements within the
Columns

Define the similarity of two signatures to be the
fraction of the hash functions in which they agree

Per Eq.(3), the similarity of columns (2 sets) is the
same as the expected similarity of their signatures

MinHash Signatures

Pick K=100 random permutations of the rows
Think of sig(C) as a column vector

sig(C)[i] = according to the i-th permutation, the
index of the first row that hasa 1 in column C

Note: The sketch (signature) of document C is
small -- ~100 bytes!

We “compressed”
long bit vectors into short signatures

Implementation Trick

Permuting rows even once is prohibitive
Row hashing!

Pick K =100 hash functions k;

Ordering under k; gives a random row permutation!
One-pass implementation

For each column C and hash-func. k; keep a “slot” for
the min-hash value

Initialize all sig(C)[i] = «©

How to pick a random

Scan rows looking for 1s hash function h(x)?
Universal hashing:
Suppose row j has 1 in column C h, »(X)=((a-x+b) mod p) mod N

where:
Then for each ki' a,b ... random integers

If ki(j) < sig(C)[i], then sig(C)[i] « ki(j) p ... prime number (p > N)

LSH 43

Docu-
ment

]

The set

of strings
of length k
that appear
in the doc-
ument

Locality Sensitive Hashing

A 4

Locality-
sensitive
Hashing

=

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-sensitive hashing:

Candidate
pairs:

those pairs
of signatures
that we need
to test for
similarity

LSH: First Cut 1 2 1 2

Goal: Find documents with Jaccard similarity at
least s (for some similarity threshold, e.g., s=0.8)

LSH — General idea: Use a function f(x,y) that
tells whether x and y is a candidate pair: a pair
of elements whose similarity must be evaluated

For minhash matrices:
Hash columns of signature matrix M to many buckets

Each pair of documents that hashes into the
same bucket is a candidate pair

Candidates from Minhash j ; j ;

Pick a similarity threshold s (0 < s < 1)

Columns x and y of M are a candidate pair if
their signatures agree on at least fraction s of
their rows:

M (i, x) = M (i, y) for at least frac. s values of i

We expect documents x and y to have the same
(Jaccard) similarity as is the similarity of their

signatures

LSH for Minhash —

Big idea: Hash columns of
signature matrix M several times

Arrange that (only) similar columns are
likely to hash to the same bucket, with
high probability

Candidate pairs are those that hash to
the same bucket

2
Partition Minto b Bands ; : ;

r rows
per band

b bands

\ One

signature

Signature matrix M

LSH 48

Partition M into Bands

Divide matrix M into b bands of r rows

For each band, hash its portion of each
column to a hash table with k buckets

Make k as large as possible

Candidate column pairs are those that hash
to the same bucket for = 1 band

Tune b and r to catch most similar pairs,
but few non-similar pairs

Hashing Bands

‘ _ Columns 2 and 6
Bucket\ ¢ -—-——~ are probably identical
f X \ (candidate pair)

Columns 6 and 7 are

""" surely different.
atfixM |\ N
N ! b bands
r rows

LSH 50

Simplifying Assumption

There are enough buckets that columns are
unlikely to hash to the same bucket unless
they are identical in a particular band

Hereafter, we assume that “same bucket”
means “identical in that band”

Assumption needed only to simplify analysis,
not for correctness of algorithm

Example of Bands Lo s

Assume the following case:
Suppose 100,000 columns of M (100k docs)
Signatures of 100 integers (rows)
Therefore, signatures take 40Mb
Choose b = 20 bands of r =5 integers/band

Goal: Find pairs of documents that
are at least s = 0.8 similar

] _ 2 1 4
C,, C, are 80% Similar L2 12

Find pairs of > s=0.8 similarity, set b=20, r=5
Assume: sim(C,, C,) = 0.8

Since sim(Cy, C,) ='s, we want C;, C, to be a candidate
pair: We want them to hash to at least 1 common bucket

(at least one band is identical)
Probability C,, C, identical in one particular band:
(0.8)>=0.328
Probability C,, C, are not similar in all of the 20
bands: (1-0.328)%° = 0.00035

i.e., about 1/3000th of the 80%-similar column pairs
are false negatives (we miss them)

We would find 99.965% pairs of truly similar documents

LSH 53

_ _ 2 1 4
C,, C, are 30% Similar L2 12

Find pairs of > s=0.8 similarity, set b=20, r=5
Assume: sim(C,, C,) =0.3
Since sim(C;, C,) < s we want C,, C, to hash to NO
common buckets (all bands should be different)
Probability C,, C, identical in one particular band:
(0.3)> =0.00243
Probability C,, C, identical in at least 1 of 20
bands: 1-(1-0.00243)?°=0.0474

In other words, approximately 4.74% pairs of docs
with similarity 0.3 end up becoming candidate pairs

= They are since we will have to examine them
(they are candidate pairs) but then it will turn out their
similarity is below threshold s

LSH 54

2 1 4 1
LSH Involves aTradeoff , ., ; ,

Pick:
the number of minhashes (rows of M)

the number of bands b, and

the number of rows r per band
to balance false positives/negatives

Example: if we had only 15 bands of 5
rows, the number of false positives would
go down, but the number of false negatives
would go up

Analysis of LSH - What We Want

/

- Probability = 1
[S if s>t

@]
o
- (0p)]
Probability No chance 9_5)
of sharing If o< ¢ =
a bucket =
(©
=
(0p)]

\

Similarity s =sim(C,, C;) of two sets ———

What 1 Band of 1 Row Gives You

|

Probability Remember:

of sharing Probability of

a bucket equal hash-values
= similarity

Similarity s =sim(C,, C;) of two sets ———

LSH 57

b bands, r rows/band

Columns C; and C, have similarity s
Pick any band (r rows)

Prob. that all rows in band equal = s’
Prob. that some row in band unequal =1 - s’

Prob. that no band identical = (1 - s")®

Prob. that at least 1 band identical =
1-(1-s")°

What b Bands of r Rows Gives You

(Al Iegst g No bands
_one _an identical
identical /

| \

Probability t ~ (1/b)r 1-1-s")b
of sharing
a bucket H-/ / \
All rows
SOME oW ¢ 3 hand
1 = ofaband 5re equal

Similarity s=sim(C, C) of two sets —» unequal

LSH 59

S-curves as a Func.of band r

Given a fixed
threshold .

We want to
choose rand b
such that the
P(Candidate
pair) has a
“step” right
around t.

Prob(Candidate pair)

Prob(Candidate pair)

-

o
o

o
@

o
J

o
[=2)

o
(5]

o
N

o
w
T

o
N

o
-

0 L (o).
0 01 02 03 04 05 06 07 08 09 0 0.1 02 03 04 05 06 07 08 09 1
1

o.gnr - 10, b - 1..50

09l
o8| 08|
07| 07|
08| 08|
05| 05|
04 04|
0al | 03|
02 / 02
V" r=1,b=1.10
v 0 — L
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

Similarity Similarity

y=1-(1- s)

Example: b =20;r =5

Similarity level s
Prob. that at least 1 band is identical:

s | 1-(1-s 7P
006
047
186
470
802
975
19996

o N|olo|~lw|N

Picking r and b: The S-curve

Picking r and b to get the best S-curve
= 50 hash-functions (r=5, b=10)

1

091

Prob. sharing a bucket

011

0.8}
0.7]
0.6}
05}
041
03[

02}

0 L L L I
0O o1t 02 03 04 05 06 07 08 09 1

Similarity

Blue area: False Negative rate
Green area: False Positive rate

LSH 62

LSH Summary

Tune M, b, r to get almost all pairs with

similar signatures, but eliminate most pairs
that do not have similar signatures

Check in main memory that candidate pairs
really do have similar signatures

Optional: In another pass through data,
check that the remaining candidate pairs
really represent similar documents

Summary: 3 Steps

Shingling: Convert documents to sets

We used hashing to assign each shingle an ID
Min-hashing: Convert large sets to short signatures,
while preserving similarity
We used similarity preserving hashing to generate signatures
with property Pr[h.(C,) = h.(C,)] = sim(C,, C,)
We used hashing to get around generating random
permutations
Locality-sensitive hashing: Focus on pairs of signatures
likely to be from similar documents

We used hashing to find candidate pairs of similarity > s

Notice that MinHash is only good for constructing LSH under
the Jaccard similarity ;

Other Hash functions exist for LSH under for other
similarity metrics, e.g. cosine similarity or hamming
distance etc.

LSH 64

Theory of
Locality Sensitive Hashing (LSH)

general hashing locality-sensitive hashing

/X ool

[o] @] Lo | | rl0|! | Jee] | Je e |

'I

Generalization of LSH for

other Distance Metrics

MinHash works for Jaccard Similiarity [d(x,y) = 1 —sim(x,y)]
Different LSH methods for other distance metrics:

Cosine distance,
Euclidean distance etc

Signatures: short

\ integer signatures that _ f:ndlda_te p?lrs:
. Hash reflect their similarity | Locality- NOSE Pairs o
Points: X, y, ..—— »| sensitive —— signaturesthat
func.]
Hashing we need to test
for similarity

Design a family of hash functions s.t.
If d(x,y) < d,, then prob. that h(x) = h(y) is high, e.g. at least p, family to get the

AND
_ _ "S" curve using
If d(x,y) > d,, then prob. that h(x) = h(y) is low, e.g. at most pzj AND and OR

Amplify the hash

. .Y . _ constructions
The design of the hash function h() will depend on the choice of

distance metric, d(x,y) =1 — sim(x,y) 66

Locality-Sensitive (LS) Families

Suppose we have a space S of points with
a distance measure d

A family H of hash functions is said to be
(dy, d,, p,, p,)-sensitive if for any x and y in S:

If d(x, y) < d,, then the probability over allhe H,
that h(x) = h(y) is at least p,

If d(x, y) > d,, then the probability over all he H,
that h(x) = h(y) is at most p,

Ad,d,,p.p.)-sensitive function

High

probability;
at least p,

d, d,

d(x,y) (= 1-sim(x.y))

Low
probability;
at most p,

Recap: The S-Curve

The S-curve is where the “magic” happens

Remember:
Probability of
equal hash-values
= similarity

the same bucket

Probability of sharing

Similarity s of two sets

This is what 1 band & 1 row gives you
Pr[h.(Cy) = hi(Cp)] = sim(Dy, D)

(@)

£

| -
— . CU_H
© [Probability | & ©
2f~1ifs>t| B9

7]

No chance o >0
fs<t & S Al

@®©

®)

O]

| -

o

Similarity s of two sets

This is what we want!

How to get a step-function?
By choosing r rows and b bands!

69

Recap: The S-Curve

The S-curve is where the “magic” happens

D Remember: 7 N\ >
F= Probability of I =
-CC:; [qual hash-values Probability o -CCUU) o
— B = similarity ~1if 2 e S
o) :) O 5
> 2 1-distance a<t o -3
25 < | Nochance | E+
Q o = 2 A
o & M
al al
Distance d of two sets Distance d of two sets
This is what 1 band and 1 row gives you This is what we want!

Pr[h(Cy) = h(Cy)] = sim(D,, D,)

- I ?
— 1 - distance(Dy, D,) How to get a step-function?

By choosing r rows and b bands !

70

Ad,d,,p.p.)-sensitive function

Small distance, Distance

the same value

high probability threshold ¢

— P !

S A i

- |

I

R

= |

N |

* Large distance,
i low probability
of hashing to
d, d,

v

Distance d(x,y)

Jure Leskovec, Stanford CS246: Mining Massive Datasets 2/16/23

Cosine Distance

Cosine distance = angle between vectors
from the origin to the points in question
d(A, B) = 0 = arccos(A-B / IAl-IBIl)

B
>

«— AB —

Has range 0 ... (equivalently 0...180°) g

Can divide 0 by 1 to have distance in range 0...1
Cosine similarity = 1-d(A,B)

But often defined as cosine sim: cos(8) =

p

A‘B

lAlllIBII

- Has range -1...1 for
general vectors
- Range 0..1 for

Similar scores o Unrelated scores

Score Vectors in same direction Score Vectors are nearly orthogonal
Angle between then is near 0 deg. Angle between then is near 90 deg.
Cosine of angle is near 1i.e. 100% Cosine of angle is near 0 i.e. 0%

non-negative vectors
(angles up to 90°)

Opposite scores

Score Vectors in opposite direction
Angle between then is near 180 deg.
Cosine of angle is near -1 i.e. -100%

Jure Leskovec, Stanford CS246: Mining Massive Datasets 2/16/232

LSH for Cosine Distance

For cosine similarity = cos 6 = (A-B / IAllBI)
cosine distance d(A, B) = 6/180
There is a technique called

Random Hyperplanes — AB —

Technique similar to Minhashing
Random Hyperplanes is a
(d,, d,, (1-d,/180), (1-d,/180))-sensitive family
foranyd; and d,
Reminder: (d,, d,, p,, p,)-sensitive

If d(x,y) < d,, then prob. that h(x) = h(y) is at least p,
If d(x,y) > d,, then prob. that h(x) = h(y) is at most p,

Random Hyperplane

Pick a random vector v, which determines a-hash function hv
with two buckets s.t.: ’
h/(x)=+1ifvx2>0; =-1ifv.x<0

Look in the " Hyperplane
plane of __.normal to v’
x and y

Prob[Red case] =06/ 180
Hyperplane

normal to v. So: P[h(x)=h(y)] = 1- 6/180 = 1-d(x,y)

LSH 74

Signatures for Cosine Distance

Pick some number of random vectors v, and
hash your data for each vector

The result is a signature (sketch) of
+1’s and —1’s for each data point: x, v, ...

Can be used for LSH like we used the
Minhash signatures for Jaccard distance

Amplify using AND/OR constructions

How to pick random vectors?

Expensive to pick a random vector in M
dimensions for large M

Would have to generate M random numbers

A more efficient (but approximated) approach
It is “close enough” to consider only vectors v
consisting of +1 and —1 components

Why? Assuming data is random, then vectors of +/-1 cover
the entire space evenly (and does not bias in any way)

This only gives an APPROXIMATED result, but not an exact one !!

Jure Leskovec, Stanford CS246: Mining Massive Datasets 2/16/28

LSH for Euclidean Distance

Simple idea: Hash functions correspond to lines
Partition the line into buckets of size a

Hash each point to the bucket containing its
projection onto the line

Nearby points are always close;
distant points are rarely in same bucket

Projection of Points

Line

Buckets of size a

“Lucky” case:

Points that are close

hash in the same bucket

Distant points end up in

different buckets

Two “unlucky cases:

Top: unlucky
guantization

Bottom: unlucky
projection

78

Multiple Projections

Projection of Points

Points at

distance d If d << a, then

\o the chance the
points are in the
same bucket is
at least 1 — d/a.

| | | RandOme
chosen line

A
v

Bucket
width a

® Forexample, If points are distance d < a/2,
the probability they are in same bucket = 1- d/a = %%

80

Projection of Points

Points at
distance d

If d >> a, 0 must
be very close to 90°
for there to be : ,
any chance points | gcos 6 |
go to the same 5 i
bucket.

Bucket
width a

For example, if points are distance d > 2a apart,

then they can be in the same bucket only if dcos© <a
=>c0os 0 <1

So, for 60 <0< 9o, i.e., at most 1/3 probability

Randomly
chosen line

81

An LSH-Family for Euclidean Distance

If points are distance d < a/2, prob.

they are in same bucket 2 1-d/a =%

If points are distance d > 2a apart, then they
can be in the same bucket only if dcos O £ a

cos0 <%
60<08<90,i.e., at most 1/3 probability

Yields a (a/2, 2a, 1/2, 1/3)-sensitive family of
hash functions for any a
Amplify using AND-OR cascades

