
Public Key Cryptography



Motivation for Public Key Cryptography
 In symmetric key or secret key cryptosystems, the 

communication parties must have some pre-share secret, i.e. 
the master key 

 Distribution of such keys in a secure and scalable manner is a 
major problem

 The introduction of a trust third 
party, namely the Key Distribution 
Center (KDC) solves the problem 
partially by reducing the number 
of master keys from O(N2) to 
O(N) but still inconvenient and 
KDC can become the single point 
of failure and/or performance 
bottleneck  (more details later)

 Symmetric key system also 
cannot provide non-repudiation



The Concept of Public Key Cryptography

To send Nola a secret message, 
any sender first finds Nola’s 
Public Key, e.g. from a public 
directory, and uses it for 
encrypting the message.
Only the person who has Nola’s 
private key (presumably Nola’s 
herself) can decrypt the 
message successfully
•Note: No need for secure 
distribution of pre-shared secret 
key anymore

 Every participant has a pair of keys: the Public Key and Private Key
 The Public key is published or sent to everyone else in the community 

openly
 The Private key is kept secret by its owner
 Plaintext encrypted by A’s public key can only be decrypted by A’s 

private key
 Some Ciphertext can be decrypted by A’s public key if and only if it has 

been encrypted by A’s private key



The Concept of Public Key Cryptography 
(cont’d)

Hmm…if I can decrypt successfully an incoming message with Vera’s public 
key, the message must have been encrypted with Vera’s private key.
Since Vera is required (e.g. by law) to keep her private key secret to herself, 
no one but Vera could have encrypted (and sent) the message 
=> This provides the notion of digital signature and thus non-repudiation 
service



Digital Signature using Public Key 
Cryptography



Digital Signature (cont’d)

 Instead of signing the entire message, one can sign the digest of 
the message to improve performance because public key 
algorithms are much slower than secret key ones. One should 
avoid using public key algorithms to encrypt large amount of data 
(long messages)



Use Public-key encryption to “seal” a digital 
envelope

 The sender picks a “secret” Session Key  to encrypt the long message 
using a secret key algorithm, e.g. AES.

 By encrypting the session key with the Recipient’s public key, the 
session key can be delivered  securely to the recipient without any pre-
shared secret between the 2 parties

 Conversely, we can consider this as doing a secure session-key 
exchange using public key encryption



History of Public Key Cryptography in “public” 
world

 Diffie was a graduate student in Stanford, working with Prof. Hellman on 
solving the “key distribution problem”.

 They proposed the concept of  a “Public-Key Cryptosystem” (PKC). (This 
remarkable idea developed jointly with Merkle.) which can:
 solve the key distribution problem of a symmetric key system and
 Even more amazingly, introduce the notion of digital signature

 However, they were unable to find the necessary functions to realize such a 
system, namely, to find a pair of functions D( ) and E( ) such that:

D(E(m)) = E(D(m)) = m and
D( ) can be kept secret while E( ) is known to the public
i.e. it is computationally infeasible to derive D( ) by knowing E( )

 Instead, they were able to find a way for communication parties to establish 
a shared secret via open communications only
=> This is the Diffie-Hellman Key exchange algorithm 



The Beginning of Public Key Cryptography in 
“public” world (cont’d)

 Diffie and Hellman published their ideas and findings in “New 
Directions in Cryptography” Nov ’76, together with the open problem of 
realizing PKC

 Ron Rivest saw Diffie and Hellman’s  paper and was intrigued by it.  
He enlisted the help of Shamir and Adleman, all from MIT, to work on 
the open problem and came up with the solution in 1977 --- this is the 
RSA algorithm

 Diffie, Hellman, Merkle, Rivest, Shamir, Adleman were commonly 
recognized as the founders of Public Key Cryptography.



RSA Algorithm

 Ron Rivest, Adi Shamir, Len Adleman – found the 
functions and published the results in 1978: 

 D[E[m]] = m = E[D[m]]
 Most widely accepted and implemented approach to 

public key encryption
 Block cipher where m = plaintext ; and c =ciphertext 

are integers,  between   0 <= m , c <= n-1 for some n
 Following form:

c = me mod n   
m = cd mod n
Public key is (n,e). Private key is (n,d).

This is the D[ ]
This is the E[ ]



RSA: Choosing keys
1. Choose two large prime numbers p, q.

(e.g., 1024 bits each)

2. Compute n = pq,  z = (p-1)(q-1)

3. Choose e (with e<n) that has no common factors
with z. (e, z are “relatively prime”).

4. Choose d such that ed-1 is  exactly divisible by z.
(in other words: ed –1 = K * z  for some integer K , 
i.e. , ed = K * z + 1, 
in other words: If ed is divided by z, the remainder 
is equal to 1, i.e.,  ed mod z  = 1 ).

5. Public key is (n,e). Private key is (n,d).

Kpub Kpriv



RSA: Encryption, decryption
0. Given (n,e) and (n,d) as computed above

1. To encrypt bit pattern, m, compute
c = m   mod ne (i.e., remainder when m is divided by n)e

2. To decrypt received bit pattern, c, compute
m = c   mod nd (i.e., remainder when c is divided by n)d

m  =  (m   mod n)e mod ndMagic
happens!

c



RSA example:
Bob chooses p=5, q=7.  Then n=5*7 =35, 

z=(5-1)*(7-1) =24
e=5 (so e, z relatively prime).
d=29 (so ed-1 = 5*29 – 1 =144 which is

exactly divisible by z.)

letter m me c = m  mod  ne

D 4 1024 = 
29 * 35  + 9

9

c m = c  mod  nd
9 929= 4710128697246………

Use the following property to compute : 929 mod 35
(a * b) mod n = [(a mod n) * (b mod n)] mod n, i.e. 
929 mod 35 = 910+10+9 mod 35 
= [(910 mod 35) * (910 mod 35) * (99 mod 35) ] mod 35 
= (16 * 16 * 29) mod 35 = 4

4
cd letter

D

encrypt:

decrypt:



RSA: Why is that m  =  (m   mod n)e mod nd

(m   mod n)e mod n  =  m    mod nd ed

Useful number theory result: If p,q prime and 
n = pq, then:

x mod n = x mod ny y mod (p-1)(q-1)

=  m                             mod ned  mod (p-1)(q-1)

=  m   mod n1

=  m  (since m < n, thus m mod n = m)

(using number theory result above)

(since we chose ed to be divisible by
(p-1)(q-1) with remainder 1 )



RSA: Important properties
 It is infeasible to determine d given e and n
and

K   (K   (m)) =  m
pubpriv

K  (K  (m))
privpub

=

use public key 
first, followed 
by private key 

use private key 
first, followed 
by public key 

Result is the same!
 Ciphertext block can be as big as the key-length 
=> digital signature can be as big as the key-length



How secure is RSA ?
 Brute force attack: try all possible keys – the larger the value of  d the more 

secure
 The larger the key, the slower the system ;
Alternatively, one can break RSA by finding p and q, and thus d by knowing n 

and e
 However, for large n with large prime factors, factoring is a hard problem
 Cracked in 1994 a 428 bit key; $100
 Used to be  Bounty offers by RSA (but RSA ended the Bounty in 

2007):
https://en.wikipedia.org/wiki/RSA_Factoring_Challenge
 Bounty for RSA-576 and RSA-640 were cracked in 2003 and 2005.
 RSA-704 cracked in 2012 ; RSA-768 in 2009 [both after RSA ended its 

Bounty programme]



$100 RSA Scientific American Challenge

 Martin Gardner publishes Scientific American column about RSA 
in August ’77, including the RSA $100 challenge (129 digit , or 
about 430-bit n ) and the infamous “40 quadrillion = 40*1015 years” 
estimate required to factor 

 RSA-129 = 
114,381,625,757,888,867,669,235,779,976,146,612,010,218,296,
721,242,362,562,561,842,935,706,935,245,733,897,830,597,123,
563,958,705,058,989,075,147,599,290,026,879,543,541

(129 digits)
 or to decode encrypted message.
 RSA-129 was factored in 1994, using thousands of computers on 

Internet, using 5000 MIPS-years (1GHz Pentium PC ~= 250 MIPS)
“The magic words are squeamish ossifrage.”

 Cheapest purchase of computing time ever!
 Gives credibility to difficulty of factoring, and helps establish key 

sizes needed for security.



Other Factoring milestones
 ’84: 69D (D = “decimal digits”) (Sandia; Time magazine)
 ’91: 100D = 332 bits (using Quadratic Sieve techniques)
 ’94: 129D = 428 bits ($100 challenge number) (Distributed QS, 8 

months, 5000MIPS-year) ; [ Ref: 1GHz Pentium PC ~= 250 
MIPS]

 ’99: 155D = 512 bits; (Generalized Number Field Sieve 
techniques, 2 months and 10 days, 8000-MIPS-year)
 512-bit RSA Backdoor in Quicken files for recovery service 

by Intuit ; Elcomsoft is able to offer a competitive service => 
cracked !

 ’01: 15 = 3 * 5 (4 bits; IBM quantum computer!)
 Dec 2003: 576-bit cracked
 Nov. 2005: 640-bit cracked
 Dec. 2009: 768-bit cracked
 Dec 2019: 795-bit cracked
 Feb 2020: 829-bit cracked



Recommended Key Sizes for RSA
 Old Standard:

 Short term protection: 1024-bits (308 decimal digits)
 Long term protection: 2048-bits (616 decimal digits)

Ref: No. of operations required to crack 512-bit RSA with best 
known attack = 1/50 * NDES

where NDES is the no. of operations required to crack 56-bit DES by 
brute-force key-enumeration

 Starting 2024, 2048-bit RSA keys are no longer VS-NfD
compliant. The Federal Office for Information Security (BSI) 
recommended the use of at least 3000-bit RSA keys since 2023.
 The use of RSA keys with length of 2048-bit was permitted 

for a “transition period until end of 2023”.



Implementation Aspects of RSA
 How to find the big primes p and q ?

 Generate random numbers and test for their primality using 
known testing algorithms

 How many times (numbers) one need to try before finding a 
prime no. ? 
 For a randomly chosen no. N, the probability of it being 

prime ~= 1/ ln N ; => need to try ln N times on average
 For a 100-digit number, one 1 in 230 chance.

 e can be fixed to some constant value without decreasing security ;  
 e is commonly set to 3 or 65537 = 216+1 in practice to speed up 

encryption: m e mod n ; one can compute m 65537 quickly as well
 Once e is fixed, d can be found using the Euclid’s Algorithm
 Not so Recent News: (Feb 15, 2012): Implementation Flaws in RSA 

random key generations
http://www.nytimes.com/2012/02/15/technology/researchers-
find-flaw-in-an-online-encryption-method.html?_r=1&hp

http://www.nytimes.com/2012/02/15/technology/researchers-find-flaw-in-an-online-encryption-method.html?_r=1&hp


Some arcane Attacks on RSA
 Guessing plaintext attack: if the attackers know the candidate set of plaintexts to 

be sent (with exact wordings), the attacker can encrypt each of the possible 
choice using the recipient’s public key and compare them to the actual ciphertext 
sent ; 

 Chosen ciphertext attack: don’t sign arbitrary messages sent by others because 
signing is equivalent to decrypt the message with your private key. 
 Assume you are using the a single pair of public and private key, (Kpub,Kpriv) 

for both encryption/decryption and signing/verification. 
Eve, the attacker,  records an encrypted letter sent to you by someone else,  
and ask you to sign this recorded message (and of course, return the signed 
result to her). If you follow Eve’s request and sign on what Eve gives you, you 
are actually decrypting your own secret letter for Eve. 

=> It’s better to use different public/private key-pairs for different purposes, e.g. 
one key-pair (Kpub1, Kpriv1) for letting people to send secret to you  by 
encrypting with Kpub1 and you can decrypt using Kpriv1; use a different pair 
(Kpub2,Kpriv2) for digital-signature/verification, i.e. you use Kpriv2 to sign 
outgoing messages and your intended receiptant can use Kpub2 to verify 
your signature.

 Cube-root attack for e = 3:  if m3 < n  because the “mod” operation becomes null , 
i.e. m3 mod n = m3 = C and the attacker can obtain m by performing m =

 With e = 3, sending exactly the same secret message to 3 or more people (using 
3 or more public keys) would reveal the secret message ; 

 See https://crypto.stanford.edu/~dabo/papers/RSA-survey.pdf
and http://members.tripod.com/irish_ronan/rsa/attacks.html

3 c

3 C



Public Key Cryptography Standard (PKCS)
 A list of Standards (PKCS#1 to PKCS#15) on how to use RSA in practice, 

regarding message formatting, information encoding scheme, choice of  
parameters etc

 Protected against the following “improper use” or attacks on RSA including:
 Plaintext guessing
 Chosen ciphertext attack
 m3 < n
 Sending the same message to multiple people ; 

 This is done by pre-pending some fixed number of constant and random 
bytes to the message to be encrypted/ decrypted

 WARNING: WITHOUT proper preprocessing of the plaintext, Textbook 
RSA (as well as El Gamal) Encryption are Insecure !!

Reference: 
 Dan Boneh et al, “Why Textbook ElGamal and RSA Encryption are Insecure,” 

AsiaCrypt 2000.
 Dan Boneh, “Twenty Years of Attacks on RSA Cryptosystem,” Notices of American 

Math. Society, 1999, https://crypto.stanford.edu/~dabo/papers/RSA-survey.pdf



Performance of RSA
 For hardware implementation, RSA is about 1000 times  slower 

than DES ; for software implementation, RSA is about 100 times 
slower ; 

 Time to do RSA decryption on a 1 MIPS VAX was around 30 
seconds (VERY SLOW…) when it was invented in late 70’s

 The inventors needed to work on efficient special-purpose 
implementation (e.g. special circuit board, and then the “RSA chip”, 
which did RSA in 0.4 seconds) to prove practicality of RSA.

 IBM PC debuts in 1981 and Moore’s Law to the rescue---software 
now runs 2000x faster…
also, software and the Web rule…now ; 

 Speed differs on types of operations, (i.e. encryption, decryption, 
digital signing and signature verification),  as well as relatively size 
of e and d ; 
 e.g. with e = 3, encryption and signature verification are 

typically much (5-10 times) faster than decryption and digital 
signing respectively ; Why not make d = 3 instead ?



XA XB

YA YB

Diffie-Hellman Key Exchange
 Diffie-Hellman key-exchange enables two users to establish a shared 

secret key securely using an open/ public communications channel.

 (YB)XA mod q = a XBXA mod q =Secret = a XAXB mod q = (YA) XB mod q
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Diffie-Hellman Key Exchange
 enables two users to establish a shared secret key via an open/ 

public communications channel.

 Choose a prime number q, and a ( < q and is a primitive root of 
q ); both made public

 Alice randomly chooses XA in {2, …, q-1} as her secret; 
send Bob: YA = a XA (mod q)

 Bob randomly chooses XB in {2, …, q-1} as his secret; 
send Alice: YB = a XB (mod q)

 Shared key KAB = (a XA ) XB = (a XB ) XA



Diffie-Hellman Example 

 users Alice & Bob who wish to swap keys:
 agree on prime q=353 and a=3
 select random secret keys:

 A chooses xA=97, B chooses xB=233
 compute respective public keys:

 yA=397 mod 353 = 40 (Alice)
 yB=3233 mod 353 = 248 (Bob)

 compute shared session key as:
 KAB= yB

xA mod 353 = 24897mod 353 = 160 (Alice)
 KAB= yA

xB mod 353 = 40233mod 353 = 160 (Bob)



How secure is Diffie-Hellman Key 
Exchange ?

 It relies on the fact that “Discrete Logarithm” is a computationally 
difficult problem, i.e.:

Knowing that YA = aXA mod q  and the values of a, q and YA 

It is still computationally difficult to find XA

 But still subject to Man-in-the-Middle Attack !! Because Alice does not 
know for sure if it’s actually Bob who is sending her the YB

 Remedy: Published those public numbers, i.e. a, q and YA , YB in 
a “Trusted, publicly accessible directory for each person”
 This also allows Alice to send Bob an encrypted message 

even when he is currently offline.
 But how can you be sure that you are looking at the directory  

hosted by the “true trusted directory server” ?



Man-in-the-middle (MITM) Attack

 DH protocol:
1. Alice -> Bob: ax (mod q)
2. Bob  -> Alice: ay (mod q)

 Attack scenario ?



Man-in-the-middle (MITM) Attack

 What is the Root cause of this Vulnerability ? Lack of what?

Source:
https://medium.com/@dillihangrae/understanding-diffie-hellman-key-exchange-and-man-in-the-middle-attacks-f9b08abe2c20



Other Public Key Algorithms
 1978: Merkle/Hellman (Knapsack), subsequently found to be insecure
 1985: El Gamal (Discrete logarithm Problem)
 1985: Miller/Koblitz (Elliptic curves)
 1991: Digital Signature Standard (DSS) (Discrete logarithm Problem)

And many others, too



El Gamal 
 El Gamal can be considered to be a generalization of Diffie-Hellman key-exchange 

algorithm => still relies on the difficulty of doing discrete logarithm:
y = ax mod q

 q is prime ; 
 a and x are +ve integers < q and  a is a primitive root of q  and   0 < x < q-1 
 Public key = (y, a, q) ; Private key = x

 Encryption of plaintext message M (< q ):
 Select  k: 1 ≤ k ≤ q-2
 C1 = ak mod q
 C2 = (ykM) mod q
 Ciphertext = (C1,C2)

 Decryption:
 M = [C2 * (C1x )-1 ] mod q  
where
b-1 (mod q) is the “multiplicative inverse” of b (mod q), i.e. 

[b*b-1 ] mod q = 1 mod q ;



El Gamal 
 Encryption of plaintext message M (< q ):

 Select  k: 0< k < q,  relatively prime to (q-1)
 C1 = ak mod q
 C2 = (ykM) mod q
 Ciphertext = (C1,C2)

 Decryption:
 M = [C2 * (C1x )-1 ] mod q   

Proof:  [C2 * (C1x )-1 ]mod q = [yk M * (C1x )-1 ]mod q 
= [akx M * (C1x )-1 ]mod q = [C1x * M * (C1x )-1 ] mod q =  M mod q = M
because y = ax mod q

and  yk mod q  = akx mod q  = C1x 

where
b-1 (mod q) is the “multiplicative inverse” of b (mod q), i.e. 
[b*b-1 ] mod q = 1 mod q ; 

e.g. 
8-1 (mod 17) = 15 (mod 17)  because (8 * 15) mod 17 = (17*7+1) mod 17 = 1

We can use Fermat’s little theorem to find b-1 mod q :  
If q is prime  and q does not divide b, then b-1 mod q = bq-2 mod q 



El Gamal - an example 
q = 11, a = 2, x = 3  =>  y =  23 mod 11 = 8 ;  
Þ Public Key of recipient  = ( y, a , q) = ( 8, 2, 11)

 Encryption of plaintext message M= 7 (< q ):
 Select  k = 4 : 1 ≤ k ≤ q-2
 C1 = ak mod q = 24 mod 11 = 5 
 C2 = (ykM) mod q = [84 (7)] mod 11 = (4096 * 7) mod 11 = 6
 Ciphertext = (5,6)

 Decryption:
 M = [C2 * (C1x )-1 ] mod q = [6 * (53 )-1 ] mod 11 = (6 * 3) mod 11 = 7

because 
(53 )-1 mod 11 = (53 )11-2 mod 11 = (125 mod 11)9 mod 11 = [(43 mod 11)3] mod 11 = 93 mod 

11
= 729 mod 11 = 3 mod 11  



El Gamal 

 El Gamal can be considered to be a generalization of Diffie-Hellman key-
exchange algorithm => relies on the difficulty of doing discrete logarithm:

y = ax mod q
 Advantages:

 support both encryption and digital signature
 Not patented (but someone claims it is covered by the DH patent)

 Drawbacks:
 The ciphertext (or digital signature) is about twice as big as the plaintext (or 

message digest to be signed on)
 The scheme was never popular in practice
 The Digital Signature Algorithm (DSA) used in the US Digital Signature 

Standards (DSS)  was a variant/ or based on the El Gamal’s scheme ; 
 The core ideas of the EL Gamal scheme can be generalized for the design of 

encryption and digital signing algorithm for ECC public key crypto systems.
 The inventor, Taher El Gamal, also from Stanford was Netscape’s Director of 

Security at one point ; aka “Father of SSL” ; PhD graduate of Prof. Hellman
 https://en.wikipedia.org/wiki/Taher_Elgamal



Digital Signature Standard (DSS) 
 In 1991, NIST in US standardized 

Digital Signature Standard (DSS). 
SHA-1 is used to first compute 
the message digest which is then 
signed by the Digital Signature 
Algorithm (DSA).

 DSA is based on a variant of El 
Gamal digital signature, thus also 
inherits it’s “size-doubling” 
property => SHA-1 digest is 160-
bit long, the DSA signature is 320 
bits long: signature =  (r,s).

 Since DSA does not support 
encryption by design, it avoids 
US technology-export concerns.



Elliptic Curve Cryptosystems (ECC)
 Independent proposed by Koblitz (U. of Washington) and Miller (IBM) in 1985
 Depends on the difficulty of the elliptic curve logarithm problem

 fastest method is “Pollard rho method”
 Best attacks for discrete logarithm problem do NOT apply to elliptic curve 

logarithm problem
 The first true alternative for RSA
 ECC is beginning to challenge RSA in practical deployment in selected 

areas: embedded, wireless/mobile systems
 It is a family of cryptosystems instead of a single one:

 ECC replaces Modulo Exponentiation by Elliptic Curve Multiplication 
and 
 ECC replaces Modulo multiplication by Elliptic Curve Addition 
Can then be applied directly to Diffie-Hellman, El Gamal and DSA to yield 
ECC Diffie-Hellman (ECDH), ECC-ElGamal and ECC-DSA algorithms to 
support key exchange, encryption and digital signature respectively

 Certicom (http://www.certicom.com, a canadian-based company, is one of 
the leading companies for ECC commercialization

http://www.certicom.com/


ECC Vs. RSA
ECC

 Shorter keys (equivalent key sizes: 
~150bits Vs. 1024bits of RSA) and 
thus, shorter signature as well.

 Fast and compact implementations, 
especially in hardware

=> Advantageous in environments with 
limited bandwidth and storage, e.g.
wireless applications, smartcards, 
embedded systems

 Shorter history of cryptanalysis (since 
early 90’s)

 Complex mathematical description
 No  patents for the cryptosystems 

themselves, but many on the 
implementation optimization

 Shorter signature generation time
 Shorter key generation time
 Larger no. of operations for attacks 

against the algorithm

RSA
 Proven technology, 
 Widely deployed and used in a 

large set of general applications
 Efficient software implementation
 Longer history of cryptanalysis 

(since late 70’s)
 Patent expired in 2000
 Shorter signature verification time
 Larger Memory requirements for 

attacks against the algorithm



ECC Vs. RSA (cont’d): 
Equivalent Key-size to support same level of Security

Elliptic Curve PKC

Key 
Size

MIPS-Years 
to Crack

150 3.8 x 1010

205 7.1 x 1018

234 1.6 x 1028

RSA PKC

Key Size MIPS-Years to 
Crack

512 3 x 104

768 2 x 108

1024 3 x 1011

1280 1 x 1014

1536 3 x 1016

2048 3 x 1020

Example: 
Equivalent key-sizes given current acceptable security level of 4.12x1012 MIPS-year: 
RSA : ECC : Symmetric cipher, (e.g. AES) = 1024:163:79

[ Ref: 1GHz Pentium PC ~= 250 MIPS]



Relative Performance: ECC Vs. RSA (cont’d)

Estimated Relative Time units of 
Digital signing and verification (source: RSA)

RSA DSA ECC ECC with
acceleration

Sign (Private Key) 13 17 7 2
Verify (Public Key) 1 33 19 N/A

Estimated Relative Time units of 
Encryption/Decryption and/or Key-exchange (source: RSA)

RSA DH ECC ECC with
acceleration

Initiate contact 
(Public Key)

1 32 18 N/A

Receive message 
(Private Key)

13 16 6 2



Some Cryptographic predictions by the S. of 
RSA:

 AES will remain secure for the forseeable future
 Some PK schemes and key sizes will be successfully attacked 

in the next few years
 Crypto will be invisibly everywhere
 Vulnerabilities will be visibly everywhere
 Crypto research will remain vigorous, but only its simplest ideas 

will become practically useful
 Non-crypto security will remain a mess
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Real Elliptic Curves

 an elliptic curve is defined by an equation in two variables x & y, 
with coefficients

 consider a cubic elliptic curve of form
 y2 = x3 + ax + b
 where x,y,a,b are all real numbers
 also define zero point O

 have addition operation for elliptic curve
 geometrically sum of P+Q is reflection of intersection R



Real Elliptic Curve Example



Finite Elliptic Curves
 Elliptic curve cryptography uses curves whose variables & 

coefficients are finite
 have two families commonly used:

 prime curves Ep(a,b) defined over Zp

 use integers modulo a prime
 best in software

 binary curves E2m(a,b) defined over GF(2n)
 use polynomials with binary coefficients
 best in hardware



Elliptic Curve Cryptography

 ECC addition is analog of modulo multiply
 ECC repeated addition is analog of modulo exponentiation
 need “hard” problem equiv to discrete log

 Q=kP, where Q,P belong to a prime curve
 is “easy” to compute Q given k,P
 but “hard” to find k given Q,P
 known as the elliptic curve logarithm problem

 Certicom example: E23(9,17)



Recall Diffie-Hellman Key Exchange
 enables two users to establish a shared secret key via an open/ 

public communications channel.

 Choose a prime number q, and a ( < q and is a primitive root of 
q ); both made public

 Alice randomly chooses XA in {2, …, q-1} as her secret; 
send Bob: YA = a XA (mod q)

 Bob randomly chooses XB in {2, …, q-1} as his secret; 
send Alice: YB = a XB (mod q)

 Shared key KAB = (a XA ) XB = (a XB ) XA



ECC Diffie-Hellman
 Readily can support Key Exchange via analogy to D-H:

 ECC Multiplication = ECC repeated addition is analog of 
modulo exponentiation

 users select a suitable curve Ep(a,b)
 select base point G=(x1,y1)

 with large order n s.t. nG=O
 A & B select private keys XA<n, XB<n
 compute public keys: YA=XAG, YB=XBG
 compute shared key: K=XAYB, K=XBYA

 same since K=XAXBG



ECC Encryption/Decryption
 ECC addition is analog of Modulo Multiply
 ECC repeated addition is analog of 

Modulo Exponentiation

 several alternatives, will consider simplest:
 must first encode any message M as a point 

on the elliptic curve Pm

 select suitable curve & point G as in D-H
 each user chooses private key XA<n
 and computes public key YA=XAG
 When encrypting a message M, we get 2 

pieces of ciphertext:{C1=kG,C2=M+kYA}, 
where k is some random number.

 To retrieve M, we decrypt C1 and C2 together 
by computing: 
M+kYA–XA(kG) = M+k(XAG)–XA(kG) = M


