
Public Key Cryptography

Motivation for Public Key Cryptography
 In symmetric key or secret key cryptosystems, the

communication parties must have some pre-share secret, i.e.
the master key

 Distribution of such keys in a secure and scalable manner is a
major problem

 The introduction of a trust third
party, namely the Key Distribution
Center (KDC) solves the problem
partially by reducing the number
of master keys from O(N2) to
O(N) but still inconvenient and
KDC can become the single point
of failure and/or performance
bottleneck (more details later)

 Symmetric key system also
cannot provide non-repudiation

The Concept of Public Key Cryptography

To send Nola a secret message,
any sender first finds Nola’s
Public Key, e.g. from a public
directory, and uses it for
encrypting the message.
Only the person who has Nola’s
private key (presumably Nola’s
herself) can decrypt the
message successfully
•Note: No need for secure
distribution of pre-shared secret
key anymore

 Every participant has a pair of keys: the Public Key and Private Key
 The Public key is published or sent to everyone else in the community

openly
 The Private key is kept secret by its owner
 Plaintext encrypted by A’s public key can only be decrypted by A’s

private key
 Some Ciphertext can be decrypted by A’s public key if and only if it has

been encrypted by A’s private key

The Concept of Public Key Cryptography
(cont’d)

Hmm…if I can decrypt successfully an incoming message with Vera’s public
key, the message must have been encrypted with Vera’s private key.
Since Vera is required (e.g. by law) to keep her private key secret to herself,
no one but Vera could have encrypted (and sent) the message
=> This provides the notion of digital signature and thus non-repudiation
service

Digital Signature using Public Key
Cryptography

Digital Signature (cont’d)

 Instead of signing the entire message, one can sign the digest of
the message to improve performance because public key
algorithms are much slower than secret key ones. One should
avoid using public key algorithms to encrypt large amount of data
(long messages)

Use Public-key encryption to “seal” a digital
envelope

 The sender picks a “secret” Session Key to encrypt the long message
using a secret key algorithm, e.g. AES.

 By encrypting the session key with the Recipient’s public key, the
session key can be delivered securely to the recipient without any pre-
shared secret between the 2 parties

 Conversely, we can consider this as doing a secure session-key
exchange using public key encryption

History of Public Key Cryptography in “public”
world

 Diffie was a graduate student in Stanford, working with Prof. Hellman on
solving the “key distribution problem”.

 They proposed the concept of a “Public-Key Cryptosystem” (PKC). (This
remarkable idea developed jointly with Merkle.) which can:
 solve the key distribution problem of a symmetric key system and
 Even more amazingly, introduce the notion of digital signature

 However, they were unable to find the necessary functions to realize such a
system, namely, to find a pair of functions D() and E() such that:

D(E(m)) = E(D(m)) = m and
D() can be kept secret while E() is known to the public
i.e. it is computationally infeasible to derive D() by knowing E()

 Instead, they were able to find a way for communication parties to establish
a shared secret via open communications only
=> This is the Diffie-Hellman Key exchange algorithm

The Beginning of Public Key Cryptography in
“public” world (cont’d)

 Diffie and Hellman published their ideas and findings in “New
Directions in Cryptography” Nov ’76, together with the open problem of
realizing PKC

 Ron Rivest saw Diffie and Hellman’s paper and was intrigued by it.
He enlisted the help of Shamir and Adleman, all from MIT, to work on
the open problem and came up with the solution in 1977 --- this is the
RSA algorithm

 Diffie, Hellman, Merkle, Rivest, Shamir, Adleman were commonly
recognized as the founders of Public Key Cryptography.

RSA Algorithm

 Ron Rivest, Adi Shamir, Len Adleman – found the
functions and published the results in 1978:

 D[E[m]] = m = E[D[m]]
 Most widely accepted and implemented approach to

public key encryption
 Block cipher where m = plaintext ; and c =ciphertext

are integers, between 0 <= m , c <= n-1 for some n
 Following form:

c = me mod n
m = cd mod n
Public key is (n,e). Private key is (n,d).

This is the D[]
This is the E[]

RSA: Choosing keys
1. Choose two large prime numbers p, q.

(e.g., 1024 bits each)

2. Compute n = pq, z = (p-1)(q-1)

3. Choose e (with e<n) that has no common factors
with z. (e, z are “relatively prime”).

4. Choose d such that ed-1 is exactly divisible by z.
(in other words: ed –1 = K * z for some integer K ,
i.e. , ed = K * z + 1,
in other words: If ed is divided by z, the remainder
is equal to 1, i.e., ed mod z = 1).

5. Public key is (n,e). Private key is (n,d).

Kpub Kpriv

RSA: Encryption, decryption
0. Given (n,e) and (n,d) as computed above

1. To encrypt bit pattern, m, compute
c = m mod ne (i.e., remainder when m is divided by n)e

2. To decrypt received bit pattern, c, compute
m = c mod nd (i.e., remainder when c is divided by n)d

m = (m mod n)e mod ndMagic
happens!

c

RSA example:
Bob chooses p=5, q=7. Then n=5*7 =35,

z=(5-1)*(7-1) =24
e=5 (so e, z relatively prime).
d=29 (so ed-1 = 5*29 – 1 =144 which is

exactly divisible by z.)

letter m me c = m mod ne

D 4 1024 =
29 * 35 + 9

9

c m = c mod nd
9 929= 4710128697246………

Use the following property to compute : 929 mod 35
(a * b) mod n = [(a mod n) * (b mod n)] mod n, i.e.
929 mod 35 = 910+10+9 mod 35
= [(910 mod 35) * (910 mod 35) * (99 mod 35)] mod 35
= (16 * 16 * 29) mod 35 = 4

4
cd letter

D

encrypt:

decrypt:

RSA: Why is that m = (m mod n)e mod nd

(m mod n)e mod n = m mod nd ed

Useful number theory result: If p,q prime and
n = pq, then:

x mod n = x mod ny y mod (p-1)(q-1)

= m mod ned mod (p-1)(q-1)

= m mod n1

= m (since m < n, thus m mod n = m)

(using number theory result above)

(since we chose ed to be divisible by
(p-1)(q-1) with remainder 1)

RSA: Important properties
 It is infeasible to determine d given e and n
and

K (K (m)) = m
pubpriv

K (K (m))
privpub

=

use public key
first, followed
by private key

use private key
first, followed
by public key

Result is the same!
 Ciphertext block can be as big as the key-length
=> digital signature can be as big as the key-length

How secure is RSA ?
 Brute force attack: try all possible keys – the larger the value of d the more

secure
 The larger the key, the slower the system ;
Alternatively, one can break RSA by finding p and q, and thus d by knowing n

and e
 However, for large n with large prime factors, factoring is a hard problem
 Cracked in 1994 a 428 bit key; $100
 Used to be Bounty offers by RSA (but RSA ended the Bounty in

2007):
https://en.wikipedia.org/wiki/RSA_Factoring_Challenge
 Bounty for RSA-576 and RSA-640 were cracked in 2003 and 2005.
 RSA-704 cracked in 2012 ; RSA-768 in 2009 [both after RSA ended its

Bounty programme]

$100 RSA Scientific American Challenge

 Martin Gardner publishes Scientific American column about RSA
in August ’77, including the RSA $100 challenge (129 digit , or
about 430-bit n) and the infamous “40 quadrillion = 40*1015 years”
estimate required to factor

 RSA-129 =
114,381,625,757,888,867,669,235,779,976,146,612,010,218,296,
721,242,362,562,561,842,935,706,935,245,733,897,830,597,123,
563,958,705,058,989,075,147,599,290,026,879,543,541

(129 digits)
 or to decode encrypted message.
 RSA-129 was factored in 1994, using thousands of computers on

Internet, using 5000 MIPS-years (1GHz Pentium PC ~= 250 MIPS)
“The magic words are squeamish ossifrage.”

 Cheapest purchase of computing time ever!
 Gives credibility to difficulty of factoring, and helps establish key

sizes needed for security.

Other Factoring milestones
 ’84: 69D (D = “decimal digits”) (Sandia; Time magazine)
 ’91: 100D = 332 bits (using Quadratic Sieve techniques)
 ’94: 129D = 428 bits ($100 challenge number) (Distributed QS, 8

months, 5000MIPS-year) ; [Ref: 1GHz Pentium PC ~= 250
MIPS]

 ’99: 155D = 512 bits; (Generalized Number Field Sieve
techniques, 2 months and 10 days, 8000-MIPS-year)
 512-bit RSA Backdoor in Quicken files for recovery service

by Intuit ; Elcomsoft is able to offer a competitive service =>
cracked !

 ’01: 15 = 3 * 5 (4 bits; IBM quantum computer!)
 Dec 2003: 576-bit cracked
 Nov. 2005: 640-bit cracked
 Dec. 2009: 768-bit cracked
 Dec 2019: 795-bit cracked
 Feb 2020: 829-bit cracked

Recommended Key Sizes for RSA
 Old Standard:

 Short term protection: 1024-bits (308 decimal digits)
 Long term protection: 2048-bits (616 decimal digits)

Ref: No. of operations required to crack 512-bit RSA with best
known attack = 1/50 * NDES

where NDES is the no. of operations required to crack 56-bit DES by
brute-force key-enumeration

 Starting 2024, 2048-bit RSA keys are no longer VS-NfD
compliant. The Federal Office for Information Security (BSI)
recommended the use of at least 3000-bit RSA keys since 2023.
 The use of RSA keys with length of 2048-bit was permitted

for a “transition period until end of 2023”.

Implementation Aspects of RSA
 How to find the big primes p and q ?

 Generate random numbers and test for their primality using
known testing algorithms

 How many times (numbers) one need to try before finding a
prime no. ?
 For a randomly chosen no. N, the probability of it being

prime ~= 1/ ln N ; => need to try ln N times on average
 For a 100-digit number, one 1 in 230 chance.

 e can be fixed to some constant value without decreasing security ;
 e is commonly set to 3 or 65537 = 216+1 in practice to speed up

encryption: m e mod n ; one can compute m 65537 quickly as well
 Once e is fixed, d can be found using the Euclid’s Algorithm
 Not so Recent News: (Feb 15, 2012): Implementation Flaws in RSA

random key generations
http://www.nytimes.com/2012/02/15/technology/researchers-
find-flaw-in-an-online-encryption-method.html?_r=1&hp

http://www.nytimes.com/2012/02/15/technology/researchers-find-flaw-in-an-online-encryption-method.html?_r=1&hp

Some arcane Attacks on RSA
 Guessing plaintext attack: if the attackers know the candidate set of plaintexts to

be sent (with exact wordings), the attacker can encrypt each of the possible
choice using the recipient’s public key and compare them to the actual ciphertext
sent ;

 Chosen ciphertext attack: don’t sign arbitrary messages sent by others because
signing is equivalent to decrypt the message with your private key.
 Assume you are using the a single pair of public and private key, (Kpub,Kpriv)

for both encryption/decryption and signing/verification.
Eve, the attacker, records an encrypted letter sent to you by someone else,
and ask you to sign this recorded message (and of course, return the signed
result to her). If you follow Eve’s request and sign on what Eve gives you, you
are actually decrypting your own secret letter for Eve.

=> It’s better to use different public/private key-pairs for different purposes, e.g.
one key-pair (Kpub1, Kpriv1) for letting people to send secret to you by
encrypting with Kpub1 and you can decrypt using Kpriv1; use a different pair
(Kpub2,Kpriv2) for digital-signature/verification, i.e. you use Kpriv2 to sign
outgoing messages and your intended receiptant can use Kpub2 to verify
your signature.

 Cube-root attack for e = 3: if m3 < n because the “mod” operation becomes null ,
i.e. m3 mod n = m3 = C and the attacker can obtain m by performing m =

 With e = 3, sending exactly the same secret message to 3 or more people (using
3 or more public keys) would reveal the secret message ;

 See https://crypto.stanford.edu/~dabo/papers/RSA-survey.pdf
and http://members.tripod.com/irish_ronan/rsa/attacks.html

3 c

3 C

Public Key Cryptography Standard (PKCS)
 A list of Standards (PKCS#1 to PKCS#15) on how to use RSA in practice,

regarding message formatting, information encoding scheme, choice of
parameters etc

 Protected against the following “improper use” or attacks on RSA including:
 Plaintext guessing
 Chosen ciphertext attack
 m3 < n
 Sending the same message to multiple people ;

 This is done by pre-pending some fixed number of constant and random
bytes to the message to be encrypted/ decrypted

 WARNING: WITHOUT proper preprocessing of the plaintext, Textbook
RSA (as well as El Gamal) Encryption are Insecure !!

Reference:
 Dan Boneh et al, “Why Textbook ElGamal and RSA Encryption are Insecure,”

AsiaCrypt 2000.
 Dan Boneh, “Twenty Years of Attacks on RSA Cryptosystem,” Notices of American

Math. Society, 1999, https://crypto.stanford.edu/~dabo/papers/RSA-survey.pdf

Performance of RSA
 For hardware implementation, RSA is about 1000 times slower

than DES ; for software implementation, RSA is about 100 times
slower ;

 Time to do RSA decryption on a 1 MIPS VAX was around 30
seconds (VERY SLOW…) when it was invented in late 70’s

 The inventors needed to work on efficient special-purpose
implementation (e.g. special circuit board, and then the “RSA chip”,
which did RSA in 0.4 seconds) to prove practicality of RSA.

 IBM PC debuts in 1981 and Moore’s Law to the rescue---software
now runs 2000x faster…
also, software and the Web rule…now ;

 Speed differs on types of operations, (i.e. encryption, decryption,
digital signing and signature verification), as well as relatively size
of e and d ;
 e.g. with e = 3, encryption and signature verification are

typically much (5-10 times) faster than decryption and digital
signing respectively ; Why not make d = 3 instead ?

XA XB

YA YB

Diffie-Hellman Key Exchange
 Diffie-Hellman key-exchange enables two users to establish a shared

secret key securely using an open/ public communications channel.

 (YB)XA mod q = a XBXA mod q =Secret = a XAXB mod q = (YA) XB mod q

Pu
bl

ic
 c

ha
nn

el
:

an
yo

ne
 c

an
 li

st
en

 to

=

Diffie-Hellman Key Exchange
 enables two users to establish a shared secret key via an open/

public communications channel.

 Choose a prime number q, and a (< q and is a primitive root of
q); both made public

 Alice randomly chooses XA in {2, …, q-1} as her secret;
send Bob: YA = a XA (mod q)

 Bob randomly chooses XB in {2, …, q-1} as his secret;
send Alice: YB = a XB (mod q)

 Shared key KAB = (a XA) XB = (a XB) XA

Diffie-Hellman Example

 users Alice & Bob who wish to swap keys:
 agree on prime q=353 and a=3
 select random secret keys:

 A chooses xA=97, B chooses xB=233
 compute respective public keys:

 yA=397 mod 353 = 40 (Alice)
 yB=3233 mod 353 = 248 (Bob)

 compute shared session key as:
 KAB= yB

xA mod 353 = 24897mod 353 = 160 (Alice)
 KAB= yA

xB mod 353 = 40233mod 353 = 160 (Bob)

How secure is Diffie-Hellman Key
Exchange ?

 It relies on the fact that “Discrete Logarithm” is a computationally
difficult problem, i.e.:

Knowing that YA = aXA mod q and the values of a, q and YA

It is still computationally difficult to find XA

 But still subject to Man-in-the-Middle Attack !! Because Alice does not
know for sure if it’s actually Bob who is sending her the YB

 Remedy: Published those public numbers, i.e. a, q and YA , YB in
a “Trusted, publicly accessible directory for each person”
 This also allows Alice to send Bob an encrypted message

even when he is currently offline.
 But how can you be sure that you are looking at the directory

hosted by the “true trusted directory server” ?

Man-in-the-middle (MITM) Attack

 DH protocol:
1. Alice -> Bob: ax (mod q)
2. Bob -> Alice: ay (mod q)

 Attack scenario ?

Man-in-the-middle (MITM) Attack

 What is the Root cause of this Vulnerability ? Lack of what?

Source:
https://medium.com/@dillihangrae/understanding-diffie-hellman-key-exchange-and-man-in-the-middle-attacks-f9b08abe2c20

Other Public Key Algorithms
 1978: Merkle/Hellman (Knapsack), subsequently found to be insecure
 1985: El Gamal (Discrete logarithm Problem)
 1985: Miller/Koblitz (Elliptic curves)
 1991: Digital Signature Standard (DSS) (Discrete logarithm Problem)

And many others, too

El Gamal
 El Gamal can be considered to be a generalization of Diffie-Hellman key-exchange

algorithm => still relies on the difficulty of doing discrete logarithm:
y = ax mod q

 q is prime ;
 a and x are +ve integers < q and a is a primitive root of q and 0 < x < q-1
 Public key = (y, a, q) ; Private key = x

 Encryption of plaintext message M (< q):
 Select k: 1 ≤ k ≤ q-2
 C1 = ak mod q
 C2 = (ykM) mod q
 Ciphertext = (C1,C2)

 Decryption:
 M = [C2 * (C1x)-1] mod q
where
b-1 (mod q) is the “multiplicative inverse” of b (mod q), i.e.

[b*b-1] mod q = 1 mod q ;

El Gamal
 Encryption of plaintext message M (< q):

 Select k: 0< k < q, relatively prime to (q-1)
 C1 = ak mod q
 C2 = (ykM) mod q
 Ciphertext = (C1,C2)

 Decryption:
 M = [C2 * (C1x)-1] mod q

Proof: [C2 * (C1x)-1]mod q = [yk M * (C1x)-1]mod q
= [akx M * (C1x)-1]mod q = [C1x * M * (C1x)-1] mod q = M mod q = M
because y = ax mod q

and yk mod q = akx mod q = C1x

where
b-1 (mod q) is the “multiplicative inverse” of b (mod q), i.e.
[b*b-1] mod q = 1 mod q ;

e.g.
8-1 (mod 17) = 15 (mod 17) because (8 * 15) mod 17 = (17*7+1) mod 17 = 1

We can use Fermat’s little theorem to find b-1 mod q :
If q is prime and q does not divide b, then b-1 mod q = bq-2 mod q

El Gamal - an example
q = 11, a = 2, x = 3 => y = 23 mod 11 = 8 ;
Þ Public Key of recipient = (y, a , q) = (8, 2, 11)

 Encryption of plaintext message M= 7 (< q):
 Select k = 4 : 1 ≤ k ≤ q-2
 C1 = ak mod q = 24 mod 11 = 5
 C2 = (ykM) mod q = [84 (7)] mod 11 = (4096 * 7) mod 11 = 6
 Ciphertext = (5,6)

 Decryption:
 M = [C2 * (C1x)-1] mod q = [6 * (53)-1] mod 11 = (6 * 3) mod 11 = 7

because
(53)-1 mod 11 = (53)11-2 mod 11 = (125 mod 11)9 mod 11 = [(43 mod 11)3] mod 11 = 93 mod

11
= 729 mod 11 = 3 mod 11

El Gamal

 El Gamal can be considered to be a generalization of Diffie-Hellman key-
exchange algorithm => relies on the difficulty of doing discrete logarithm:

y = ax mod q
 Advantages:

 support both encryption and digital signature
 Not patented (but someone claims it is covered by the DH patent)

 Drawbacks:
 The ciphertext (or digital signature) is about twice as big as the plaintext (or

message digest to be signed on)
 The scheme was never popular in practice
 The Digital Signature Algorithm (DSA) used in the US Digital Signature

Standards (DSS) was a variant/ or based on the El Gamal’s scheme ;
 The core ideas of the EL Gamal scheme can be generalized for the design of

encryption and digital signing algorithm for ECC public key crypto systems.
 The inventor, Taher El Gamal, also from Stanford was Netscape’s Director of

Security at one point ; aka “Father of SSL” ; PhD graduate of Prof. Hellman
 https://en.wikipedia.org/wiki/Taher_Elgamal

Digital Signature Standard (DSS)
 In 1991, NIST in US standardized

Digital Signature Standard (DSS).
SHA-1 is used to first compute
the message digest which is then
signed by the Digital Signature
Algorithm (DSA).

 DSA is based on a variant of El
Gamal digital signature, thus also
inherits it’s “size-doubling”
property => SHA-1 digest is 160-
bit long, the DSA signature is 320
bits long: signature = (r,s).

 Since DSA does not support
encryption by design, it avoids
US technology-export concerns.

Elliptic Curve Cryptosystems (ECC)
 Independent proposed by Koblitz (U. of Washington) and Miller (IBM) in 1985
 Depends on the difficulty of the elliptic curve logarithm problem

 fastest method is “Pollard rho method”
 Best attacks for discrete logarithm problem do NOT apply to elliptic curve

logarithm problem
 The first true alternative for RSA
 ECC is beginning to challenge RSA in practical deployment in selected

areas: embedded, wireless/mobile systems
 It is a family of cryptosystems instead of a single one:

 ECC replaces Modulo Exponentiation by Elliptic Curve Multiplication
and
 ECC replaces Modulo multiplication by Elliptic Curve Addition
Can then be applied directly to Diffie-Hellman, El Gamal and DSA to yield
ECC Diffie-Hellman (ECDH), ECC-ElGamal and ECC-DSA algorithms to
support key exchange, encryption and digital signature respectively

 Certicom (http://www.certicom.com, a canadian-based company, is one of
the leading companies for ECC commercialization

http://www.certicom.com/

ECC Vs. RSA
ECC

 Shorter keys (equivalent key sizes:
~150bits Vs. 1024bits of RSA) and
thus, shorter signature as well.

 Fast and compact implementations,
especially in hardware

=> Advantageous in environments with
limited bandwidth and storage, e.g.
wireless applications, smartcards,
embedded systems

 Shorter history of cryptanalysis (since
early 90’s)

 Complex mathematical description
 No patents for the cryptosystems

themselves, but many on the
implementation optimization

 Shorter signature generation time
 Shorter key generation time
 Larger no. of operations for attacks

against the algorithm

RSA
 Proven technology,
 Widely deployed and used in a

large set of general applications
 Efficient software implementation
 Longer history of cryptanalysis

(since late 70’s)
 Patent expired in 2000
 Shorter signature verification time
 Larger Memory requirements for

attacks against the algorithm

ECC Vs. RSA (cont’d):
Equivalent Key-size to support same level of Security

Elliptic Curve PKC

Key
Size

MIPS-Years
to Crack

150 3.8 x 1010

205 7.1 x 1018

234 1.6 x 1028

RSA PKC

Key Size MIPS-Years to
Crack

512 3 x 104

768 2 x 108

1024 3 x 1011

1280 1 x 1014

1536 3 x 1016

2048 3 x 1020

Example:
Equivalent key-sizes given current acceptable security level of 4.12x1012 MIPS-year:
RSA : ECC : Symmetric cipher, (e.g. AES) = 1024:163:79

[Ref: 1GHz Pentium PC ~= 250 MIPS]

Relative Performance: ECC Vs. RSA (cont’d)

Estimated Relative Time units of
Digital signing and verification (source: RSA)

RSA DSA ECC ECC with
acceleration

Sign (Private Key) 13 17 7 2
Verify (Public Key) 1 33 19 N/A

Estimated Relative Time units of
Encryption/Decryption and/or Key-exchange (source: RSA)

RSA DH ECC ECC with
acceleration

Initiate contact
(Public Key)

1 32 18 N/A

Receive message
(Private Key)

13 16 6 2

Some Cryptographic predictions by the S. of
RSA:

 AES will remain secure for the forseeable future
 Some PK schemes and key sizes will be successfully attacked

in the next few years
 Crypto will be invisibly everywhere
 Vulnerabilities will be visibly everywhere
 Crypto research will remain vigorous, but only its simplest ideas

will become practically useful
 Non-crypto security will remain a mess

42

Backup Slides

Real Elliptic Curves

 an elliptic curve is defined by an equation in two variables x & y,
with coefficients

 consider a cubic elliptic curve of form
 y2 = x3 + ax + b
 where x,y,a,b are all real numbers
 also define zero point O

 have addition operation for elliptic curve
 geometrically sum of P+Q is reflection of intersection R

Real Elliptic Curve Example

Finite Elliptic Curves
 Elliptic curve cryptography uses curves whose variables &

coefficients are finite
 have two families commonly used:

 prime curves Ep(a,b) defined over Zp

 use integers modulo a prime
 best in software

 binary curves E2m(a,b) defined over GF(2n)
 use polynomials with binary coefficients
 best in hardware

Elliptic Curve Cryptography

 ECC addition is analog of modulo multiply
 ECC repeated addition is analog of modulo exponentiation
 need “hard” problem equiv to discrete log

 Q=kP, where Q,P belong to a prime curve
 is “easy” to compute Q given k,P
 but “hard” to find k given Q,P
 known as the elliptic curve logarithm problem

 Certicom example: E23(9,17)

Recall Diffie-Hellman Key Exchange
 enables two users to establish a shared secret key via an open/

public communications channel.

 Choose a prime number q, and a (< q and is a primitive root of
q); both made public

 Alice randomly chooses XA in {2, …, q-1} as her secret;
send Bob: YA = a XA (mod q)

 Bob randomly chooses XB in {2, …, q-1} as his secret;
send Alice: YB = a XB (mod q)

 Shared key KAB = (a XA) XB = (a XB) XA

ECC Diffie-Hellman
 Readily can support Key Exchange via analogy to D-H:

 ECC Multiplication = ECC repeated addition is analog of
modulo exponentiation

 users select a suitable curve Ep(a,b)
 select base point G=(x1,y1)

 with large order n s.t. nG=O
 A & B select private keys XA<n, XB<n
 compute public keys: YA=XAG, YB=XBG
 compute shared key: K=XAYB, K=XBYA

 same since K=XAXBG

ECC Encryption/Decryption
 ECC addition is analog of Modulo Multiply
 ECC repeated addition is analog of

Modulo Exponentiation

 several alternatives, will consider simplest:
 must first encode any message M as a point

on the elliptic curve Pm

 select suitable curve & point G as in D-H
 each user chooses private key XA<n
 and computes public key YA=XAG
 When encrypting a message M, we get 2

pieces of ciphertext:{C1=kG,C2=M+kYA},
where k is some random number.

 To retrieve M, we decrypt C1 and C2 together
by computing:
M+kYA–XA(kG) = M+k(XAG)–XA(kG) = M

