
Message Authentication Code
Hash Function and Message Digest

What is Message Authentication ?

 Procedure that allows communicating parties to verify that received
messages are authentic, namely
 source is authentic – not from masquerading
 contents unaltered – message has not been modified
 timely sequencing – the message is not a replay of a previously

sent one

Ways to provide Message Authentication
 Message Authentication via Conventional Encryption

 Only the sender and receiver should share a key ;
 Include a time-stamp or “nonce” to prevent replay attack
 Implicitly assume the receiver can recognize if the output from

the decryption unit is garbage or not ;
 easy if they know the message has some specific format, e.g.

English
 May be difficult if the original plaintext are random binary

data =>need to impose some structure, e.g. Checksum
 Message Authentication without Message Encryption (thus no

message confidentiality)
 An authentication tag (aka Message Authentication Code or

MAC) is generated and appended to each message where
 the MAC is computed as a publicly known function F, of the

message M and a shared secret key K:
• MAC = F(K, M)

 A one-way Hash function can be used as F

Ensuring Message Authenticity using a MAC

Message Authentication Code

 Receiver assured that message is not altered – no modification
 Receiver assured that the message is from the alleged sender –

no masquerading
 Include a sequence number, assured proper sequence – no

replay

CBC-residue as MAC

CBC-residue, aka DAC = Data Authentication Code

CBC-residue as MAC (cont’d)
 The last encrypted block, aka the CBC residue, can be used as a

“Message Authentication Code” (MAC) for a message as follows:
1. The sender transmits the original message in plaintext together with the

the CBC residue (but NOT the key, of course)
2. The receiver, who knows the key in advance, can then encrypt the

plaintext upon its arrival using CBC mode. If the message has been
tampered with during transmission, the CBC residue won’t match !

 Notice in this case, CBC is used for MAC purpose and does NOT provide
secrecy at all ;

 If both secrecy and message-authenticity (tamper-proof) is required, we
need to do CBC twice in 2 passes with 2 different keys:
 1st pass for encryption,
 2nd pass to generate the CBC-residue for MAC.

 Why is it insufficent to just append the CBC residue of the 1st pass as the
MAC ?

Drawbacks of using Encryption for MAC
 Encryption software is slow
 Encryption hardware costs aren’t cheap
 Hardware optimized toward large data sizes
 Encryption Algorithms are usually covered by patents
 Algorithms subject to US export control

One-Way Hash Function
 Hash function accepts a variable size message M as input and

produces a fixed-size message digest H(M) as output
 Message digest is sent with the message for authentication
 Produces a fingerprint of the message
 No secret key is involved

MAC generation using One Way Hash +
Conventional encryption

Message digest H(M) Shared key
Authenticity is assured ; no confidentiality is provided;
Still need Encryption algorithm ; but faster because the hash function computation is
quicker than encrypting the entire message ; now only need to encrypt
The much shorter message digest instead

Use only One Way Hash Function to
compute MAC

No encryption for message authentication
Secret value never sent; can’t modify the message

Secret value SAB

MDM = H(M || SAB)

MDM||M

Would MDM = H(SAB || M) work as well ? The Answer is NO for
some One-Way Hash Functions

One-way Hash Function Requirements

1. H can be applied to a block of data of any size
2. H produces a fixed length output
3. H(x) is relatively easy to compute
4. For any given code h, it is computationally infeasible to find x such

that H(x) = h (i.e. safe against the so-called 1st preimage attack)
5. For any given block x, it is computationally infeasible to find y ≠ x with

H(y) = H(x) (i.e. safe against the so-called 2nd preimage attack)
6. It is computationally infeasible to find any pair (x,y) such that H(x) =

H(y)

one way

weak collision resistance
strong collision resistance
birthday attack

weak

How likely to have Hash output collisions ?

 Since N >> M , (and therefore) n >> m, collisions are
inevitable no matter how secure the one-way function H()
is.

Set of Messages of
up to N-bit long, i.e.
There are as many as

n = 2Nmessages in this set

H()
Input:

Output:

Set of Message-digests of
M-bit long, i.e.there are
at most m= 2M digests

in this set

The Birthday Paradox
 In a room with n people, what is the probability that we will

find at least 2 people who have the same birthday (there
are m = 365 possible choices of birthday)?

An approximate analysis:
 Assuming birthdays are uniformly distributed over the

entire year. For any given pair of people, the possibly of
them having the same birthday is 1/m = 1/365 ;

 There are nC2 = n(n-1)/ 2 ways to select a pair out of n
people

 Let Pcollision be the Probability of at least one collision,
 Pcollision approx. = n(n-1)/2 * 1/m = n(n-1)/2m ;

 Pcollision > ½ when n >= 20
 In general, Pcollision > ½ when n becomes >= √m
 The approximation is not good when n approaches m

 Where is the approximation ?

The Birthday Paradox (cont’d)
 In a room with n people, what is the probability that we will

find at least 2 people who have the same birthday (there
are m = 365 possible choices of birthday)?

An exact analysis:
 Assuming birthdays are uniformly distributed over the

entire year. For any given pair of people, the possibly of
them having the same birthday is 1/m = 1/365 ;

 Probability of zero collision
= Probability that all of the n people have different

birthdays
= m * (m-1) * (m-2) *…* (m-n+1) / mn

= 1 – n(n-1)/2m approximately when m>>n

 Pcollision = 1 – Probability of zero collision
= n(n-1)/2m approximately

How difficult to find a Hash collision ?
How secure is a one-way hash with 64-bit output, e.g. CBC-

DES ?

 Based on the property of a good hash function, the hash
output of any input string should be uniformly distributed
over the hash output space of size m=264
 This is analogous to the fact that the birthday of any given

person is uniformly distributed over any days within a year
(i.e. output space of size m = 365)

 Thus, according to the Birthday Paradox, if no. of all possible
outcomes = m, we only need to try about n = √m inputs to
the hash function to have a good chance to find a collision,
e.g.

For, a hash function with 64-bit output, m=264
=> it only takes about √m = 232 tries to find a pair of inputs

which will produce the same hash output, i.e. a collision

Birthday Attack on Message Digest
Fo
rg
er
y

H
as

 th
e

sa
m

e
H

as
h

EK

Compare ?

Using CBC-residue as Message Authentication Code

Birthday Attacks
 Birthday attack can proceed as follows:

 opponent generates 232 variations of a valid message, all
with essentially the same meaning ; this is “doable” given
current technology.

 opponent also generates 232 variations of a desired
fraudulent message

 two sets of messages are compared to find a pair with
same hash output (by argument similar to the Birthday
paradox, this probability > 0.5)

 have user (the victim) sign the valid message, but sent
the forgery message which will have a valid message
digest

 Conclusion is that we need to use longer MACs

 BTW, how can we generate 232 variations of a letter carrying
the same meaning ?
Just 2 choices of wording at 32 different places.

How to generate large no. of messages of each
type to get the necessary message digest

collision to pull off a B-day attack ?

MD5 Message Digest

 Ron Rivest - 1992
 RFC 1321
 Input: arbitrary Output: 128-bit digest
 Most widely used secure hash algorithm – until 2004
 MD5 shows significant crack in summer 2004 by a Chinese Team

including: Wang Xiao Yun
 they had successfully constructed a pair of input messages

which can produce collision, i.e. the same MD5 hash output.
 After several years of further effort by many other researchers, MD5

was totally broken by Dec. 30 2008 (these are all b-day collision
attacks, no successful preimage attacks so far) :
 “MD5 considered harmful TODAY”,

http://www.win.tue.nl/hashclash/rogue-ca/

The General Structure of MD5 and SHA-1

 Note the possibility of attacking by “appending” at the end of the
original message if the shared secret is placed at the beginning
of the input message ; what should we do ?

The so-called Merkle–Damgård construction

SHA-1 Secure Hash Function
 SHA was designed by NIST & NSA in 1993, revised 1995

as SHA-1 ; again, design criteria were not disclosed
 US standard for use with DSA signature scheme

 standard is FIPS 180-1 1995, also Internet RFC3174
 The algorithm is SHA, the standard was SHS

 Input is processed in 512-bit blocks ;
 Produce as output a 160-bit message digest
 But slower than MD5
 Was the generally preferred hash algorithm (than MD5)

Insecurity of SHA-1 (It’s Dead !)
 Was considered to be Very Secure – Only until Feb 2005 ;

 The same Chinese Team who broke MD5 in summer 2004 found a way to
reduce the complexity of finding SHA-1 hash collisions from 280 to 268 =>
i.e. a speed up of 4096 times

 1st Full collision for full SHA-1 discovered by Marc Stevens
 https://marc-stevens.nl/research/
 https://shattered.io
 Won CRYPTO 2017 Best Paper Award and
 Received Blackhat USA 2017 Pwnie Award for Best Crypto Attack

 Google announced the SHAttered attack in Feb 2017, which successfully
constructed 2 different input messages to produce the same SHA1 hash !!
(using ~ 110 GPU years), still 100K times faster than brute-force search for
collisions
 https://elie.net/static/files/how-we-created-the-first-sha1-collision-and-what-

it-means-for-hash-security/how-we-created-the-first-sha1-collision-and-
what-it-means-for-hash-security-slides.pdf

 But many legacy software, e.g. GiT will be stuck with SHA-1 for the foreseeable
future
 Mitigate risk by performing Counter-Cryptanalysis by scanning incoming

files for patterns which facilitating collision-generating attacks.

https://marc-stevens.nl/research/
https://elie.net/static/files/how-we-created-the-first-sha1-collision-and-what-it-means-for-hash-security/how-we-created-the-first-sha1-collision-and-what-it-means-for-hash-security-slides.pdf

Computational Cost Comparison

SHA-1 Secure Hash Function
append padding bits

append length

compression function: typically consists of shifting, bit-
rotation, XOR, NOT, AND, OR. Much quicker to execute
than encryption

output

Every bit of the hash code is a function of every bit of the input!

RIPEMD-160

 European RIPE Project – 1997
 Same group launched an attack on MD5
 Extended from 128 to 160-bit message digest

Comparison of Secure HASH functions
SHA-1 MD5 RIPEMD-160

Digest length 160 bits 128 bits 160 bits
Basic unit of
processing

512 bits 512 bits 512 bits

Number of steps 80 (4 rounds of
20)

64 (4 rounds of
16)

160 (5 paired
rounds of 16)

Maximum message
size

264-1 bits

Sample relative Speed
(on 90MHz Pentium)
http://www.esat.kuleuv
en.ac.be/~bosselae/fa
st.html

6.88 Mbyte/sec 17.09 Mbyte/sec 5.69 Mbyte/sec

∞ ∞

The SHA-2 Family
 SHA-2 is a set of cryptographic hash functions:

 SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224,SHA-512/256
 Designed by NSA and published by NIST in 2001 as a U.S. FIPS (Federal

Information Processing Standard).
 SHA-2 bears some similarities with SHA-1 but contains some key changes.

 Attacks on SHA-1 cannot be readily extended to SHA-2.

Yes

Recent Results on SHA-2 Attacks

Recent Results on SHA-2 Attacks (cont’d)

The NIST SHA-3 Competition (2006-2012)
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
On Dec. 9, 2010, the Final FIVE candidates for the Round 3 of the
competition were announced:

 http://csrc.nist.gov/groups/ST/hash/sha-
3/Round3/documents/Email_Announcing_Finalists.pdf

 http://csrc.nist.gov/groups/ST/hash/sha-
3/Round3/submissions_rnd3.html

The Winning algorithm: Keccak, (pronounced “catch-ack”) was
announced on Oct 2, 2012, to be called SHA-3 in Standards ;

 Designed by a team of researchers from Belgium and Italy
 http://keccak.noekeon.org
 NSA believes both SHA-2 and SHA-3 are secure and can be used

in practice.
 Since SHA-2 and SHA-3 differ substantially in their designs and

theory, this diversity can provide system designers a fallback
solution in case one of them is broken in the future.

SHA-3 approved as a new hashing standard by NIST of U.S..
 Published as FP202 on Aug. 5, 2015.

http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/documents/Email_Announcing_Finalists.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/submissions_rnd3.html
http://keccak.noekeon.org

The NIST SHA-3 Competition Timeline

The 5 Finalists for SHA-3 Competition

BLAKE, Grostl, JH, Keccak, Skein

 Published selection in Dec 2010
 Cryptanalytic results were harder to interpret
 Often distinguishers of no apparent relevance
 All five finalists made tweaks for third round

 BLAKE and JH increased number of rounds
 Grostl changed internals of Q permutation
 Keccak changed padding rules
 Skein changed key schedule constant

Choosing a Winner: Security
 Nobody was knocked out by cryptanalysis
 Different algorithms got different depth of

cryptanalysis
 Grostl, BLAKE, Skein, Keccak, JH

 Keccak and Blake had best security margins
 Domain extenders (aka chaining modes) all had

security proofs
 Grostl had a very big tweak, Skein a significant one
 ARX vs non-ARX designs

 ARX = Addition (mod 2n), Rotation, XOR
Keccak looks very strong, and seems to have been
analyzed in sufficient depth to give the Judging Panel
confidence.

Choosing a Winner: Performance
 All five finalists have acceptable performance
 ARX designs (BLAKE and Skein) are excellent on

high-end software implementations
 JH and Grostl fairly slow in software

 Slower than SHA2
 Keccak is very hardware friendly

 High throughput per area

Keccak performs well everywhere, and very well in
hardware.

Complementing SHA2

 SHA3 is expected to deployed into a world full of
SHA2 implementations

 SHA2 still looks strong
 NIST expect the standards to coexist.
 SHA3 should complement SHA2.

 Good in different environments
 Susceptible to different analytical insights

Keccak is fundamentally different from SHA2. Its
performance properties and implementation tradeoffs
have little in common with SHA2.

Reasons for
Keccak selected as the Winner

 High security margin
 Fairly high quality, in-depth analysis
 Elegant, clean design
 Excellent hardware performance
 Good overall performance
 Flexibility: rate is readily adjustable
 Design diversity from SHA2

Taking Keccak as SHA3:
Goals/ Requirements

 Play well with existing applications
 DRBGs (Deterministic Random Bit Generators),

KDFs (Key Derivation Functions), HMAC,
signatures

 Drop-in replacements
 SHA-224, -256, -384, -512, and even SHA1 and

MD5
 Fast and efficient everywhere
 Benefit from Tree Hashing
 Benefit from Keccak extras

 Variable output length, efficient PRF,
authenticated encryption, DRBG

A Hash Tree (Merkle Tree)

New Attacks on SHA-2 discovered during
SHA-3 Competition

Comparison of SHA functions

The Future of Hash Security is Diversity

HMAC

By XORing key with
const1 and const2,
we have pseudo-
randomly generated
two new keys from
the original key

HMAC

 Effort to develop a MAC derived from a cryptographic hash codes
such as SHA-256

 Executes faster in software
 No export restrictions
 Relies on a secret key
 RFC 2104 list design objectives and
 Provable security properties
 Used in IPsec, TLS
 Can use different digest functions as a component, e.g.

 HMAC-SHA256 , HMAC-SHA3 ;
 Informational RFC6151 (circa 2011) concluded that: Although the

security of MD5 hash function itself is severely compromised, the
currently known “attacks on HMAC-MD5 do not seem to indicate a
practical vulnerability when used as a message authentication code,”
but “for new protocol design, a ciphersuite with HMAC-MD5 should
NOT be included.”

The Nostradamus Project (circa 2007)
 https://marc-stevens.nl/research/hashclash/Nostradamus/index.html

 Predicting the 2008 US Presidential Election Result using PS3 and
MD5:

 To illustrate another Common Application of Secure Hash Function:
 To Commit a Secret

https://marc-stevens.nl/research/hashclash/Nostradamus/index.html
https://marc-stevens.nl/research/hashclash/Nostradamus/index.html

