Message Authentication Code
Hash Function and Message Digest

What is Message Authentication ?

m Procedure that allows communicating parties to verify that received
messages are authentic, namely

source is authentic — not from masquerading
contents unaltered — message has not been modified

timely sequencing —the message is not a replay of a previously
sent one

Ways to provide Message Authentication

Message Authentication via Conventional Encryption
Only the sender and receiver should share a key ;
Include a time-stamp or “nonce” to prevent replay attack

Implicitly assume the receiver can recognize if the output from
the decryption unit is garbage or not ;

+ easy if they know the message has some specific format, e.g.
English

+ May be difficult if the original plaintext are random binary
data =>need to impose some structure, e.g. Checksum

Message Authentication without Message Encryption (thus no
message confidentiality)

An authentication tag (aka Message Authentication Code or
MAC) is generated and appended to each message where

+ the MAC is computed as a publicly known function F, of the
message M and a shared secret key K:

« MAC = F(K, M)
A one-way Hash function can be used as F

Ensuring Message Authenticity using a MAC

Originator Transmitted Message Recipient

. -

Plaintext

Plaintext Plaintext

Compute
MAC

equal?
Confirm
% or indicate
failure

Shared Key

Compute
MAC

MAC

Message Authentication Code

Receiver assured that message is not altered — no modification

Receiver assured that the message is from the alleged sender —
no masquerading

Include a sequence number, assured proper sequence — no
replay

CBC-residue as MAC

Time =1 Time=2 Time=N-1 Time=N
D,))
(64 bits) D; Dy-y Dy

[DES DES l 'Q DES
K Inery K —hl : : K DES
(56 bits) Encxy] Encrypt J e ® D Encrypt E ncnpt

. l

0, |
(64 bits) = o wd N-

DAC
(16 to 64 bits)

CBC-residue, aka DAC = Data Authentication Code

CBC-residue as MAC (cont’d)

The last encrypted block, aka the CBC residue, can be used as a
“Message Authentication Code” (MAC) for a message as follows:

The sender transmits the original message in plaintext together with the
the CBC residue (but NOT the key, of course)

The receiver, who knows the key in advance, can then encrypt the
plaintext upon its arrival using CBC mode. If the message has been
tampered with during transmission, the CBC residue won’t match !

Notice in this case, CBC is used for MAC purpose and does NOT provide
secrecy at all ;

If both secrecy and message-authenticity (tamper-proof) is required, we
need to do CBC twice in 2 passes with 2 different keys:

18t pass for encryption,
2"d pass to generate the CBC-residue for MAC.

Why is it insufficent to just append the CBC residue of the 15! pass as the
MAC ?

Drawbacks of using Encryption for MAC

Encryption software is slow

Encryption hardware costs aren’t cheap

Hardware optimized toward large data sizes
Encryption Algorithms are usually covered by patents
Algorithms subject to US export control

One-Way Hash Function

Hash function accepts a variable size message M as input and
produces a fixed-size message digest H(M) as output

Message digest is sent with the message for authentication
Produces a fingerprint of the message
No secret key is involved

MAC generation using One Way Hash +
Conventional encryption

-] 1
M| T 2| O—£3
= = =
p——
K
/ (a) Using conventional encryption
Message digest H(M) Shared key

Authenticity is assured ; no confidentiality is provided;

Still need Encryption algorithm ; but faster because the hash function computation is
quicker than encrypting the entire message ; now only need to encrypt

The much shorter message digest instead

Use only One Way Hash Function to
compute MAC

Secret value Spg

\
— R B2 .
ompare
MDy| M
T (c) Using secret value

MDy = H(M || SAB)

Would MDy = H(Sag || M) work as well ? The Answer is NO for
some One-Way Hash Functions

No encryption for message authentication

Secret value never sent; can’t modify the message

One-way Hash Function Requirements

(1. H can be applied to a block of data of any size
2. H produces a fixed length output

: : one way
3. H(x) is relatively easy to compute Y

4. For any given code #, it is computationally infeasible to find x such
that H(x) = h (i.e. safe against the so-called 1% preimage attack)

5. For any given block x, it is computationally infeasible to find y # x with
H(y) = H(x) (i.e. safe against the so-called 2" preimage attack)
6. Itis computationally infeasible to find any pair (x,y) such that Hx) =

H(y)

weaky

weak collision resistance
strong collision resistance

birthday attack

How likely to have Hash output collisions ?

Output:
Input:
Set of M§ssages f)f H() Sgt of Message-digests of
up to N-bit long, i.e > -bit long, i.c.there are
There are as many as at most m=2M digests

= 2N messages in this s¢t in this set

m Since N >> M, (and therefore) n >> m, collisions are
inevitable no matter how secure the one-way function H()
IS.

The Birthday Paradox

In a room with n people, what is the probability that we will
find at least 2 people who have the same birthday (there
are m = 365 possible choices of birthday)?

An approximate analysis:

Assuming birthdays are uniformly distributed over the
entire year. For any given pair of people, the possibly of
them having the same birthday is 1/m = 1/365 ;

There are ,C,=n(n-1)/ 2 ways to select a pair out of n

people

Let P..iision 0€ the Probability of at least one collision,

+ Peoliision @pprox. = n(n-1)/2 * 1/m = n(n-1)/2m ;

P coliision = Y2 when n >= 20

In general, P.,jicion > %2 When n becomes >= Vm

The approximation is not good when n approaches m
Where is the approximation ?

The Birthday Paradox (cont’'d)

In a room with n people, what is the probability that we will
find at least 2 people who have the same birthday (there
are m = 365 possible choices of birthday)?

An exact analysis:

Assuming birthdays are uniformly distributed over the
entire year. For any given pair of people, the possibly of
them having the same birthday is 1/m = 1/365 ;

Probability of zero collision

= Probability that all of the n people have different
birthdays

=m *(m-1) *(m-2) *...* (m-n+1) / m"
= 1 - n(n-1)/2m approximately when m>>n

P.olision = 1 — Probability of zero collision
= n(n-1)/2m approximately

How difficult to find a Hash collision ?

How secure is a one-way hash with 64-bit output, e.g. CBC-

DES ?

Based on the property of a good hash function, the hash
output of any input string should be uniformly distributed
over the hash output space of size m=264

This is analogous to the fact that the birthday of any given
person is uniformly distributed over any days within a year
(i.e. output space of size m = 365)

Thus, according to the Birthday Paradox, if no. of all possible
outcomes = m, we only need to try about n = Vm inputs to
the hash function to have a good chance to find a collision,

e.gd.

For, a hash function with 64-bit output, m=264

=> it only takes about VYm = 2% tries to find a pair of inputs
which will produce the same hash output, i.e. a collision

Birthday Attack on Message Digest

Has the same Hash

s

R

9]

&0

S

S

o

7 > @ v H

3 A Iy -/

[o o
Compare ?
——E

Using CBC-residue as Message Authentication Code

Birthday Attacks

Birthday attack can proceed as follows:

opponent generates 2% variations of a valid message, all
with essentially the same meaning ; this is “doable” given
current technology.

32 . g .
opponent also generates 2™ variations of a desired
fraudulent message

two sets of messages are compared to find a pair with
same hash output (by argument similar to the Birthday
paradox, this probability > 0.5)

have user (the victim) sign the valid message, but sent
’([jhe forgery message which will have a valid message
igest

Conclusion is that we need to use longer MACs

BTW, how can we generate 2% variations of a letter carrying
the same meaning ?

Just 2 choices of wording at 32 different places.

How to generate large no. of messages of each
type to get the necessary message digest
collision to pull off a B-day attack ?

Type 1 message

I am writing {this memo | } to {demand | request | inform you} that {Fred | Mr. Fred Jones)
{must | } be {fired | terminated} {at once | immediately}. As the {July 11|11 July} {memo | memo-
randum} {from | issued by} {personnel | human resources} states, to meet {our | the corporate}
{quarterly | third quarter} budget {targets | goals}, {we must eliminate all discretionary spending |
all discretionary spending must be eliminated}.

{Despite | Ignoring} that {memo | memorandum | order}, Fred {ordered | purchased} {Fos-
tlts | nonessential supplies} in a flagrant disregard for the company’s {budgetary crisis | current

financial difficulties}.
Type 2 message

I am writing {this letter | this memo | this memorandum | } to {officially | } commend Fred
{Jones | } for his {courage and independent thinking | independent thinking and courage}. {He |
Fred} {clearly | } understands {the need | how} to get {the | his} job {done | accomplished} {at all
costs | by whatever means necessary}, and {knows | can see} when to ignore bureaucratic {non-
sense | impediments}. I {am hereby recommending | hereby recommend} {him | Fred} for {promo-
tion | immediate advancement) and {further | } recommend a {hefty | large} ({salary |

compensation} increase.

MD5 Message Digest

Ron Rivest - 1992

RFC 1321

Input: arbitrary Output: 128-bit digest

Most widely used secure hash algorithm — until 2004

MD5 shows significant crack in summer 2004 by a Chinese Team
including: Wang Xiao Yun
they had successfully constructed a pair of input messages
which can produce collision, i.e. the same MD5 hash output.

After several years of further effort by many other researchers, MD5
was totally broken by Dec. 30 2008 (these are all b-day collision
attacks, no successful preimage attacks so far) :

“MD5 considered harmful TODAY?”,
http://www.win.tue.nl/hashclash/rogue-ca/

The General Structure of MD5 and SHA-1

The so-called Merkle-Damgard construction

constant padded message

Y

@@: 512 bits
@= 512 bits

@= 512 bits

Message Digest

m Note the possibility of attacking by “appending” at the end of the
original message if the shared secret is placed at the beginning
of the input message ; what should we do ?

SHA-1 Secure Hash Function

SHA was designed by NIST & NSA in 1993, revised 1995
as SHA-1 ; again, design criteria were not disclosed

US standard for use with DSA signature scheme
standard is FIPS 180-1 1995, also Internet RFC3174
The algorithm is SHA, the standard was SHS

Input is processed in 512-bit blocks ;

Produce as output a 160-bit message digest

But slower than MD5

Was the generally preferred hash algorithm (than MD5)

Insecurity of SHA-1 (It’'s Dead !)

Was considered to be Very Secure — Only until Feb 2005 ;

The same Chinese Team who broke MD5 in summer 2004 found a way to
reduce the complexity of finding SHA-1 hash collisions from 280 to 268 =>
i.e. a speed up of 4096 times

1st Full collision for full SHA-1 discovered by Marc Stevens
https://marc-stevens.nl/research/
https://shattered.io
Won CRYPTO 2017 Best Paper Award and
Received Blackhat USA 2017 Pwnie Award for Best Crypto Attack

Google announced the SHAttered attack in Feb 2017, which successfully

constructed 2 different input messages to produce the same SHA1 hash !!
(using ~ 110 GPU years), still 100K times faster than brute-force search for

collisions

https://elie.net/static/files/how-we-created-the-first-sha1-collision-and-what-
it-means-for-hash-security/how-we-created-the-first-sha1-collision-and-
what-it-means-for-hash-security-slides.pdf

But many legacy software, e.g. GiT will be stuck with SHA-1 for the foreseeable
future

Mitigate risk by performing Counter-Cryptanalysis by scanning incoming
files for patterns which facilitating collision-generating attacks.

https://marc-stevens.nl/research/
https://elie.net/static/files/how-we-created-the-first-sha1-collision-and-what-it-means-for-hash-security/how-we-created-the-first-sha1-collision-and-what-it-means-for-hash-security-slides.pdf

Computational Cost Comparison

u

SHA-1 shattered SHA-1 bruteforce

MDS

1 smartphone
30 sec

(e e 2) 12,000,000 GPU
1 year 1 year

Research at Google https://shattered.io

SHA-1 Secure Hash Function

append padding bits —~

Padding Message length

(1 to 512 bits) (Kmod 264) ™
- L % 512 bits = N x 32 bits -
= \\ append length
Message 100..0
——512 bits——-tt——512 bits— —512 bits— —512 bits—»
Yl:-l
{512
160
—~—w Hgyy
CViLa
compression function: typically consists of shifting, bit- 160-bit «— output
iges

rotation, XOR, NOT, AND, OR. Much quicker to execute
than encryption

Every bit of the hash code is a function of every bit of the input!

RIPEMD-160

m European RIPE Project — 1997
m Same group launched an attack on MD5
m Extended from 128 to 160-bit message digest

Comparison of Secure HASH functions

SHA-1 MD5 RIPEMD-160
Digest length 160 bits 128 bits 160 bits
Basic unit of 512 bits 512 bits 512 bits

processing

Number of steps

80 (4 rounds of
20)

64 (4 rounds of
16)

160 (5 paired
rounds of 16)

Maximum message
size

264.1 bits

Sample relative Speed
(on 90MHz Pentium)

http:/www.esat.kuleuv
en.ac.be/~bosselae/fa
st.html

6.88 Mbyte/sec

17.09 Mbyte/sec

5.69 Mbyte/sec

The SHA-2 Family

m SHA-2 is a set of cryptographic hash functions:

SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224,SHA-512/256
m Designed by NSA and published by NIST in 2001 as a U.S. FIPS (Federal

Information Processing Standard).

m SHA-2 bears some similarities with SHA-1 but contains some key changes.

Attacks on SHA-1 cannot be readily extended to SHA-2.

Algorithm and | Output size Internal state | Block size| Max message Word size . Collisions
variant (bits) size (bits) (bits) size (bits) (bits) Rounds Opecrations found
MDS5 (as 128 128 512 264 _1 32 64 +,and ,or xor rot Yes
reference)
SHA-0 160 160 512 264 _1 32 80 +.and or xor rot Yes
Theoretical
SHA-1 160 160 512 264 _1 32 80 +.and or xor 1ot attack
(251)[14]
SHA-224 224 < < 64 ;
SHA-256 256 256 512 27 -1 32 64 | +.and.orxorshr ot -
SHA-384
SHA- | SHA-512 ;
2 | SHA- ~ \
512/224 224 512 1024 2128 _1 64 80 |+andorxorshrrot, None
SHA- 256
512/256
1600 120
SHA-3 224/256/384/512 | (5x5 array of 64 64 H None
(default)

bit words)

Example
Performance
(MiB/s)[13]

255

153

111

99

Recent Results on SHA-2 Attacks

Published in

New Collision Attacks Against Up To 24-step SHA-2321133]

Preimages for step-reduced SHA-2134

Advanced meet-in-the-middle preimage attacks>°!

Higher-Order Differential Attack on Reduced SHA-256"%)

Bicliques for Preimages: Attacks on Skein-512 and the
SHA-2 family'")

Year

2008

2009

2010

2011

2011

Attack
method

Differential

Meet-in-the-
middle

Meet-in-the-

middle

Differential

Biclique

Attack

Collision

Preimage

Preimage

Pseudo-
collision

Preimage

Pseudo-
preimage

Variant Rounds Complexity

HA-
> 24/64 215.5
256
SHA-

24/, 222.5
512 e

SHA- | 42/64 | 22517
256 43/64 0254.9
SHA- | 42/80 | 25023
512 46/80 0511.5

SHA-

42/64 22484
256
SHA-

42/80 | 24946
512 2

SHA- | 46/64 | 2178
256 33/64 | 246
SHA-

45/64 2255.5
256
HA-
S 50/80 2511.5
512
SHA-

52/64 2255
256 2
SHA- 1 oo/g0 | o511

512

Recent Results on SHA-2 Attacks (cont’d)

Published in

Improving Local Collisions: New Attacks on Reduced SHA-
256136]

Branching Heuristics in Differential Collision Search with
Applications to SHA-512°7]

Analysis of SHA-512/224 and SHA-512/256¢

New Records in Collision Attacks on SHA-23%

Year

2013

2014

2016

2023

Attack
method

Differential

Heuristic
differential

Differential

Differential

Attack

Collision

Pseudo-
collision

Pseudo-
collision

Collision

| Pseudo-

collision

Collision

Pseudo-
collision

Variant Rounds Complexity

SHA-

1/64 | 2855
256 514
SHA-

/64 7
A 38/6 23
SHA- /0 | 2%05
512
SHA- | o8/6a tical
56 practica
SHA-

27/80 practical
512
HA-
2 39/80 practical
512
SHA-

1/64 2498
256 =14
SHA-

31/80 | 2'156
512
ke 39/64 ractical
256 P

The NIST SHA-3 Competition (2006-2012)

http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

mOn Dec. 9, 2010, the Final FIVE candidates for the Round 3 of the
competition were announced:

http://csrc.nist.gov/groups/ST/hash/sha-
3/Round3/documents/Email_Announcing_Finalists.pdf

http://csrc.nist.gov/groups/ST/hash/sha-
3/Round3/submissions rnd3.html

mThe Winning algorithm: Keccak, (pronounced “catch-ack”) was
announced on Oct 2, 2012, to be called SHA-3 in Standards ;

Designed by a team of researchers from Belgium and ltaly
http://keccak.noekeon.org

NSA believes both SHA-2 and SHA-3 are secure and can be used
In practice.

+ Since SHA-2 and SHA-3 differ substantially in their designs and
theory, this diversity can provide system designers a fallback
solution in case one of them is broken in the future.

mSHA-3 approved as a new hashing standard by NIST of U.S..

Published as FP202 on Aug. 5, 2015.

http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/documents/Email_Announcing_Finalists.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/submissions_rnd3.html
http://keccak.noekeon.org

The NIST SHA-3 Competition Timeline

11/2/2007 Call for Proposals published, competition began

10/31/2008 SHAS3 submission deadline 64
12/10/2008 First-round candidates announced 51
2/25/2009 First SHA3 workshop in Leuven, Belgium 51
7/24/2009 Second-round candidates announced 14
8/23/2010 Second SHA3 workshop in Santa Barbara, CA 14
12/9/2010 SHAGS finalists announced

3/22/2012 Third SHA3 workshop in Washington, DC 5

10/2/2012 Keccak announced as the SHA3 winner 1

The 5 Finalists for SHA-3 Competition

BLAKE, Grostl, JH, Keccak, Skein

m Published selection in Dec 2010
m Cryptanalytic results were harder to interpret
m Often distinguishers of no apparent relevance
m All five finalists made tweaks for third round
BLAKE and JH increased number of rounds
Grostl changed internals of Q permutation
Keccak changed padding rules
Skein changed key schedule constant

Choosing a Winner: Security
m Nobody was knocked out by cryptanalysis

m Different algorithms got different depth of
cryptanalysis

Grostl, BLAKE, Skein, Keccak, JH
m Keccak and Blake had best security margins

m Domain extenders (aka chaining modes) all had
security proofs

m Grostl had a very big tweak, Skein a significant one
m ARX vs non-ARX designs
ARX = Addition (mod 2"), Rotation, XOR

Keccak looks very strong, and seems to have been
analyzed in sufficient depth to give the Judging Panel
confidence.

Choosing a Winner: Performance

m All five finalists have acceptable performance

m ARX designs (BLAKE and Skein) are excellent on
high-end software implementations

m JH and Grostl fairly slow in software
Slower than SHA2

m Keccak is very hardware friendly
High throughput per area

Keccak performs well everywhere, and very well in
hardware.

Complementing SHA2

m SHAS is expected to deployed into a world full of
SHA2 implementations

m SHAZ2 still looks strong

m NIST expect the standards to coexist.

m SHAS3 should complement SHAZ2.
Good in different environments
Susceptible to different analytical insights

Keccak is fundamentally different from SHAZ2. Its
performance properties and implementation tradeoffs
have little in common with SHAZ2.

Reasons for
Keccak selected as the Winner

m High security margin

m Fairly high quality, in-depth analysis
m Elegant, clean design

m Excellent hardware performance

m Good overall performance

m Flexibility: rate is readily adjustable
m Design diversity from SHA2

Taking Keccak as SHAGS:
Goals/ Requirements

Play well with existing applications

DRBGs (Deterministic Random Bit Generators),
KDFs (Key Derivation Functions), HMAC,
signatures

Drop-in replacements

SHA-224, -256, -384, -512, and even SHA1 and
MD5

Fast and efficient everywhere
Benefit from Tree Hashing
Benefit from Keccak extras

Variable output length, efficient PRF,
authenticated encryption, DRBG

A Hash Tree (Merkle Tree)

Top Hash

Ha_s;h 0
Hash 1

hash(

)

e

AN

Hash Hash
0 1
hash(2oy) hash(@])
Hash Hash Hash Hash
0-0 0-1 1-0 1-1
hash(L1) hash(L2) hash(L3) hash(L4)
L1 L2 L3 L4

Data
Blocks

New Attacks on SHA-2 discovered during

SHA-3 Competition

Published in Year Attack method Attack Variant Rounds Complexity
New Collision attacks Against g 5% 5 SHA-256| 24/64 2%
Up To 24-step SHA-2 [25] 2008 Deterministic Collision S 2325
42/64 22517
SHA-256
3 : : 43/64 22549
Preimages for step-reduced SHA-2 [26] 2009 | Meet-in-the-middle Preimage
42/80 25023
SHA-512
46/80 25115
-in-the-mi SHA-256| 42/64 | 22484
b 2010| Meet-in-the-middle | Preimage
preimage attacks SHA-512 42/80 24946
Higher-Order Differential Attack : : 2oz 46/64 il
2 .
on Reduced SHA.256 [2] 2011 Differential Pseudo-collision | SHA-256 PP, 246
SHA-256 45/64 22555
Preimage TR
Bicliques for Preimages: Attacks on 2011 Bicliaue SHA-512| 50/80 2
Skein-512 and the SHA-2 family [!] d SHA256| 52/64 2255
Pseudo-preimage
SHA-512| 57/80 ol
' isions: Collision SHA-256| 31/64 2655
Improving Local Collisions: N[ezv;] 2013 Differential
Attacks on Reduced SHA-256 Pseudo-collision |SHA-256| 38/64 237
Branching Heuristics in Differential Coltslon|)y | pro) itic Differential | Pseudo-collision |SHA-512| 38/80 | 2405

Search with Applications to SHA-512 [29]

Comparison of SHA functions

Output Internal | Block
Algorithm and size state size | size
variant (bits) (bits) (bits)
MDS5 (as reference) 128 128 512
(4 x 32)
SHA-0 160 160 512
(5x32)
SHA-1
SHA-2 | SHA-224 224 256 512
SHA-256 256 (8 x 32)
SHA-384 384 512 1024
SHA-512 512 (8 x 64)
SHA-512/224 224
SHA-512/256 256
SHA-3 | SHA3-224 224 1600 1152
SHA3-256 256 (5x5x64) 1088
SHA3-384 384 832
SHA3-512 512 576
SHAKE128 | d (arbitrary) 1344

SHAKE256 | d (arbitrary) 1088

Rounds

4

(16 operations
in each round) | Add (mod 232)

80

64

80

24/45]

Operations

And, Xor, Or,
Rot,

And, Xor, Or,
Rot,
Add (mod 232)

And, Xor, Or,
Rot, Shr,
Add (mod 232)

And, Xor, Or,
Rot, Shr,
Add (mod 254)

And, Xor, Rot,
Not

Security
against
collision
attacks
(bits)

<18
(collisions
found)“?!

<34
(collisions
found)

<63
(collisions
found)“?!

112
128

192
256

112
128

112
128
192
256

min(d/2, 128)
min(d/2, 256)

Security
against
length
extension
attacks
(bits)

32
0

128
0l44]

288
256

448
512
768
1024

256
512

Performance on

Skylake (median cpb)
[41]

Long

messages 8 bytes
4.99 55.00

=~ SHA-1 =~ SHA-1

3.47 52.00
7.62 84.50
7.63 85.25
5.12 135.75
5.06 135.50

~ SHA-384 | ~ SHA-384
8.12 154.25
8.59 155.50
11.06 164.00
15.88 164.00
7.08 155.25
8.59 155.50

First
published

1992

1993

1995

2004
2001

2001
2001
2012

2015

The Future of Hash Security is Diversity

Security Claim Fixed prefix Chosen attack
SHA-1 MD
SHA-256 MD 2128
SHA-3 Sponge 212 2=
BLAKE HAIFA 2128 2256

Research at Google https://shattered.io

const,

HMAC

key 0

=D T-«

const,

message

HMAC(key, message)

By XORing key with
constl and const2,
we have pseudo-
randomly generated
two new keys from
the original key

HMAC

Effort to develop a MAC derived from a cryptographic hash codes
such as SHA-256

Executes faster in software

No export restrictions

Relies on a secret key

RFC 2104 list design objectives and

Provable security properties

Used in IPsec, TLS

Can use different digest functions as a component, e.g.
HMAC-SHA256 , HMAC-SHAS ;

Informational RFC6151 (circa 2011) concluded that: Although the
security of MD5 hash function itself is severely compromised, the
currently known “attacks on HMAC-MDS5 do not seem to indicate a
practical vulnerability when used as a message authentication code,’
but “for new protocol design, a ciphersuite with HMAC-MD5 should
NOT be included.”

The Nostradamus Project (circa 2007)

m https://marc-stevens.nl/research/hashclash/Nostradamus/index.html

m Predicting the 2008 US Presidential Election Result using PS3 and
MD5:

Announcement We have used a Sony Playstation 3 to correctly predict the outcome of the
2008 US presidential elections. In order not to influence the voters we keep
our prediction secret, but commit to it by publishing its cryptographic hash on
this website. The document with the correct prediction and matching hash will
be revealed after the elections.

m To illustrate another Common Application of Secure Hash Function:
To Commit a Secret

https://marc-stevens.nl/research/hashclash/Nostradamus/index.html
https://marc-stevens.nl/research/hashclash/Nostradamus/index.html

