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Where does Apache Flink come from ?
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Evolution Timeline of Flink
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Stratosphere: General Purpose Programming+Database Execution
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Stratosphere 0.4
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Stratosphere Optimizer
Pact API (Java)

Stratosphere Runtime

DataSet API (Scala)

Local Remote

Batch processing on a pipelining engine, with iterations … 



Eventually becomes Flink
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Batch Processing
process static and

historic data

Data Stream 
Processing
realtime results

from data streams

Event-driven
Applications
data-driven actions

and services

Stateful Computations Over Data Streams
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Original creators of
Apache Flink® 

dA Platform 2
Stream Processing for the 

Enterprise



dA platform
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Original creators of
Apache Flink® 

dA Platform 2
Stream Processing for the 

Enterprise



dA/ Ververica platform with Streaming Ledger 
supporting full ACID



Apache Flink in a Nutshell
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Queries

Applications

Devices

etc.

Database

Stream

File / Object
Storage

Stateful computations over streams
real-time and historic

fast, scalable, fault tolerant, in-memory,
event time, large state, exactly-once

Historic
Data

Streams

Application



Overview of the Apache Flink Architecture
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Everything Streams
Apache Flink handles everything as streams internally.

Continuous streaming and applications use "unbounded streams".
Batch processing and finite applications use "bounded streams".



Apache Flink v1.0’s Software Stack
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Dissecting
Flink
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Flink

Historic data

Kafka, RabbitMQ, ...

HDFS, JDBC, ...

ETL, Graphs,
Machine Learning
Relational, …

Low latency,
windowing, 
aggregations, ...

Event logs

Real-time data 
streams

What is Apache Flink?

(master)



Internal Execution Workflow of Flink
case class Path (from: Long, to:
Long)
val tc = edges.iterate(10) {

paths: DataSet[Path] =>
val next = paths

.join(edges)

.where("to")

.equalTo("from") {
(path, edge) =>

Path(path.from, edge.to)
}
.union(paths)
.distinct()

next
}

Cost-based 
optimizer

Type extraction 
stack

Task 
scheduling

Recovery
metadata

Pre-flight (Client)

MasterWorkers

DataSourc
e

orders.tbl

Filter
Map DataSourc

e
lineitem.tbl

Join
Hybrid Hash

buildH
T

probe

hash-part [0] hash-part [0]

GroupRed
sort

forward

Program

Dataflow
Graph

Memory 
manager

Out-of-core 
algos

Batch & 
Streaming

State & 
Checkpoints

deploy
operators

track
intermediate

results



Cornerstones of Flink Design
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Robust Algorithms on 
Managed Memory

Pipelined Execution
of Batch Programs

à Better shuffle performance

à No OutOfMemory Errors
à Scales to very large JVMs
à Efficient Checkpointing/ 

Recovery & Saved points Op.

Flexible Data
Streaming Engine

à Low Latency Stream Proc.
à Highly flexible windowing 

semantics (i.e. think Beam)

Native Iterations
à Very fast Graph Processing
à Stateful Iterations for ML

High-level APIs,
beyond key/value pairs

à Java, Scala, Python(beta only)
à Relational-style optimizer

à Storm Compatibility Library
à Graphs / ML Pipelines
à ML & Streaming ML (Catching up)

à Scales to very large groups
Additional Library Support



1. Failures and downtime
§ Checkpoints & savepoints
§ Exactly-once guarantees

2. Out of order and late data
§ Event time support
§ Watermarks 

3. Results when you need them
§ Low latency 
§ Triggers

4. Accurate modeling
§ True streaming engine
§ Sessions and flexible 

windows
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5. Batch + streaming
§ One engine
§ Dedicated APIs

6. Reprocessing
§ High throughput, event 

time support, and 
savepoints

7. Ecosystem
§ Rich connector 

ecosystem and 3rd party 
packages

8. Community support
§ One of the most active 

projects with over 200 
contributors

21

flink -s <savepoint> <job>



Feature Radar of Flink (circa 1Q2021)
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https://flink.apache.org/roadmap.html



Feature Radar of Flink (circa 1Q2021)
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Using 
(Programming with) 
Flink
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Layered Abstractions of Flink
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Process Function (events, state, time)

DataStream API (streams, windows)

Stream SQL / Tables (dynamic tables)

Stream- & Batch 
Data Processing

High-level
Analytics API

Stateful Event-
Driven Applications

val stats = stream
.keyBy("sensor")
.timeWindow(Time.seconds(5))
.sum((a, b) -> a.add(b))

def processElement(event: MyEvent, ctx: Context, out: Collector[Result]) = {
// work with event and state
(event, state.value) match { … }

out.collect(…) // emit events
state.update(…) // modify state

// schedule a timer callback
ctx.timerService.registerEventTimeTimer(event.timestamp + 500)

}

Layered abstractions to
navigate simple to complex use cases



Batch / Streaming APIs (Scala)



Batch & Streaming



Data sets and Operators



Flink’s set of Operators



Base-Operator: Map



Base-Operator: Reduce



Base-Operator: Cross



Base-Operator: Join



Base-Operator: CoGroup



DataSet and transformations (Java)
Input First SecondX Y

Operator X Operator Y

ExecutionEnvironment env = 
ExecutionEnvironment.getExecutionEnvironment();

DataSet<String> input = env.readTextFile(input);

DataSet<String> first = input
.filter (str -> str.contains(“Apache Flink“));

DataSet<String> second = first
.filter (str -> str.length() > 40);

second.print();
env.execute(); 35



WordCount in Java (with DataSet)



WordCount in Scala (with DataSet)



Another Example: Transitive Closure (Java)
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IterativeDataSet<Tuple2<Long,Long>> paths = edges.iterate (10);

DataSet<Tuple2<Long,Long>> nextPaths = paths
.join(edges).where(1).equalTo(0)
.with((left, right) -> return new Tuple2<Long, Long>(left.f0, right.f1);)
.union(paths)
.distinct();

DataSet<Tuple2<Long, Long>> tc = paths.closeWith(nextPaths);



Transitive Closure (Scala)
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case class Path (from: Long, to: Long)
val tc = edges.iterate(10) { paths: DataSet[Path] =>

val next = paths
.join(edges).where("to").equalTo("from") {

(path, edge) => Path(path.from, edge.to)
}
.union(paths).distinct()

next
}

Transitive Closure



More Details on the
Flink API
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DataSet
§ Central notion of the batch-based programming API

§ Files and other data sources are read into DataSets
• DataSet<String> text = env.readTextFile(…)

§ Transformations on DataSets produce DataSets
• DataSet<String> first = text.map(…)

§ DataSets are printed to files or on stdout
• first.writeAsCsv(…)

§ Execution is triggered with env.execute()
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Data Types
§ Basic Java Types
• String, Long, Integer, Boolean, …
• Arrays

§ Composite Types
• Tuple
• PoJo (Java Objects)
• Custom type
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Data Types - Tuples
§ Bean-style Java classes & field names
§ Tuples and position addressing
§ Any data type with key selector function
§ Easy, lightweight and generic way of encapsulating data in Flink

• Tuple1 upto Tuple25
Example: 

Tuple3<String, String, Integer> person =
new Tuple3<>(“Max”, “Magmum”, 42) ;

// zero-based index !
String firstName = person.f0 ; 
String secondName = person.f1 ; 
Integer age = person.f2 ; 
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Beyond Key/Value Pairs



Data types and grouping
public static class Access {

public int userId;
public String url;
...

}  

public static class User {
public int userId;
public int region;
public Date customerSince;
...

}  
DataSet<Tuple2<Access,User>> campaign = access.join(users)

.where(“userId“).equalTo(“userId“)

DataSet<Tuple3<Integer,String,String> someLog;
someLog.groupBy(0,1).reduceGroup(...);
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Long Operator Pipelines



Available transformations
§ map
§ flatMap
§ filter
§ reduce
§ reduceGroup
§ join
§ coGroup
§ aggregate

§ cross
§ project
§ distinct
§ union 
§ iterate 
§ iterateDelta
§ repartition
§ …
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Transformations: Map
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Transformations: Filter
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Transformations: Group and Reduce
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Transformations: GroupReduce
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Transformations: Joining 2 DataSets
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Transformations: Joining 2 DataSets
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Transformations: Join with join function
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Data Sources

Batch API
§ Files

• HDFS, Local file system, 
MapR file system

• Text, Csv, Avro, Hadoop input 
formats

§ JDBC
§ HBase
§ Collections

Stream API
§ Files
§ Socket streams
§ Kafka
§ RabbitMQ
§ Flume
§ Collections
§ Implement your own

• SourceFunction.collect
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Data Sources
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Data Sources: Collections
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Data Sources: File-based
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Data Sinks
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Data Sinks (lazy)
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Data Sinks (eager)
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More Details: WordCount’s main( ) in Java
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Execution Environment
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Data Sources
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Data Types
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Transformations
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User Functions
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DataSinks
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Execute !
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WordCount: Map
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WordCount: Map: Interface
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WordCount: Map: Types
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WordCount: Map: Collector
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WordCount: Reduce
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WordCount: Reduce: Interface
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WordCount: Reduce: Types
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WordCount: Reduce: Collector
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Real-time Streaming 
with Flink
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Flink Real-time Streaming overview
§ Historically, Flink first supported Batch (via PACT etc) and Streaming was 

added later on.

§ Streaming and Batch use same code paths in runtime

§ Differences
• Streaming does not use Flink’s memory management
• Streaming uses its own compiler/ optimizer

§ Alibaba has been working on unifying the Batch and Streaming APIs of 
Flink
• The plan is for Flink to just use a single Unified Streaming API for EVERYTHING

(but still work  in progress) !
• https://files.alicdn.com/tpsservice/8510c65ffa1fde57274595c5bb009347.pdf
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Feature Radar of Flink (circa 1Q2021)
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Feature Radar of Flink (circa 1Q2021)
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Current Flink API Stack (circa 1Q2019)
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Current real-time stream processing

83

StreamExecutionEnvironment env = 
StreamExecutionEnvironment.getExecutionEnvironment();

DataStream<String> tweets = env.socketTextStream(host,port);

DataStream<Tuple2<String,Integer>> filteredTweets = tweets
.flatMap(new SelectLanguageAndTokenize())
.partition(0)
.map(s -> new Tuple2<String,Integer>(s, 1))
.groupBy(0).sum(1)
.flatMap(new SelectMaxOccurence());

tweets.print();
env.execute();

DataStream instead of DataSet
StreamExecutionEnvironment instead of ExecutionEnvironment



Streaming operators
§ Most DataSet operators 

can be used
• map, filter, flatMap, 

reduce, reduceGroup, join, 
cross, coGroup, iterate, 
project, grouping, 
partitioning, aggregations,      
union (merge), …

§ DataStream-specific 
operators (snip)
• CoMap, CoReduce, etc: 

share state between 
streams

• Temporal binary ops: join, 
cross, …

• Windows: policy-based 
flexible windowing
• Time, Count, Delta
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Life of data streams

§ Create: create streams from event sources (machines, databases, logs, sensors, 
…)

§ Collect: collect and make streams available for consumption (e.g., Apache Kafka)

§ Process: process streams, possibly generating derived streams (e.g., Apache 
Flink)
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Example of a Stream Processing Application
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Anatomy of Stream Processing Application
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Stream Partitioning across Subtasks

§ Subtask output
• pipelined-bounded
• pipelined-unbounded
• Blocking

§ Scheduling type
• all at once
• next stage on complete output
• next stage on first output

§ Transport
• high throughput via buffers
• low latency via buffer timeout

Subtask 1

Subtask 2

Subtask 3

Subtask 4

Stream Partition

Abstraction over:



Another Example w/ Flink’s DataStream API
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Source

Transformation

Windowed Transformation 

Sink

val lines: DataStream[String] = env.addSource(new FlinkKafkaConsumer011(…))

val events: DataStream[Event] = lines.map((line) => parse(line))

val stats: DataStream[Statistic] = stream
.keyBy("sensor")
.timeWindow(Time.seconds(5))
.sum(new MyAggregationFunction())

stats.addSink(new RollingSink(path))

Streaming
Dataflow

Source Transform Window
(state read/write)

Sink



Rich Windowing semantics in Flink

§ Trigger policy
• When to trigger the computation on current window

§ Eviction policy
• When data points should leave the window
• Defines window width/size

§ E.g., count-based policy
• evict when #elements > n
• start a new window every n-th element

§ Built-in: Count, Time, Delta policies

Flink was the very 1st Open-source framework which supported the Generalized 
Streaming Model proposed by Google Dataflow/ Apache Beam 90



Windowing example
//Build new model every minute on the last 5 minutes
//worth of data
val model = trainingData

.window(Time.of(5,TimeUnit.MINUTES))

.every(Time.of(1,TimeUnit.MINUTES))

.reduceGroup(buildModel)

//Predict new data using the most up-to-date model
val prediction = newData

.connect(model)

.map(predict);

M

P

Training Data

New Data Prediction
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Window Join example

case class Name(id: Long, name: String) 
case class Age(id: Long, age: Int) 
case class Person(name: String, age: Int) 

val names = ...
val ages = ...

names.join(ages)
.onWindow(5, TimeUnit.SECONDS)
.where("id")
.equalTo("id") {(n, a) => Person(n.name, a.age)}
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Yet another example of Stream Processing/ 
Analysis with Flink

93More at: http://flink.apache.org/news/2015/02/09/streaming-example.html



On Batched vs. Streaming
(The world according to Flink)
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A.k.a.: If everything is
peachy streams, why is there

a DataSet API and where
will this end?
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A.k.a.: I have heard that
"batch is a special case of

streaming", so does
<stream processor x>
now own the world?



What changes faster? Data or Query?
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Data changes slowly
compared to fast
changing queries

ad-hoc queries, data exploration, 
ML training and

(hyper) parameter tuning
Batch Processing

Use Case

Data changes fast
application logic

is long-lived

continuous applications,
data pipelines, standing queries, 

anomaly detection, ML evaluation, …

Stream Processing
Use Case



Summary on Another View of Batched vs. Streaming

What Changes Fasters ? Your Code or Your Data ?

§ dData/dt >> dCode/dt => a Data Streaming problem

§ dCode/dt >> dData/dt => a Data Exploration problem
(and likely to become a Data Streaming problem later)

Src: Prof. Joe Hellerstein of UCBerkeley



What changes faster? Data or Query?
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Data changes slowly
compared to fast
changing queries

ad-hoc queries, data exploration, 
ML training and

(hyper) parameter tuning

Batch Processing
Use Case

Data changes fast
application logic

is long-lived

continuous applications,
data pipelines, standing queries, 

anomaly detection, ML evaluation, …

Stream Processing
Use CaseDataSet API DataStream API



Abstraction/APIs and Runtime
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Model, Semantics, APIs

Storage

Execution Runtime

Modelling
Applications

Modelling
Infrastructure

Running
Applications



Samentics/APIs: Everything Streams

101
✔Flink is good here…



Eventual goal of Flink, Not yet achieved as of Feb 2019
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Data changes slowly
compared to fast
changing queries

ad-hoc queries, data exploration, 
ML training and

(hyper) parameter tuning

Batch Processing
Use Case

Data changes fast
application logic

is long-lived

continuous applications,
data pipelines, standing queries, 

anomaly detection, ML evaluation, …

Stream Processing
Use CaseDataSet API DataStream API

DataStream API

UnboundedStream

DataStream API

BoundedStream



Latency vs. Completeness (in Tyler's words)
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Latency vs. Completeness
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Latency vs. Completeness
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Latency versus Completeness
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Bounded/
Batch

Unbounded/
Streaming

Data is as complete
as it gets within that

Batch Job

No fine latency control

Trade of latency
versus completeness



The Eventual Goal of Flink (WIP as of Apr 2021)
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Data changes slowly
compared to fast
changing queries

ad-hoc queries, data exploration, 
ML training and

(hyper) parameter tuning

Batch Processing
Use Case

Data changes fast
application logic

is long-lived

continuous applications,
data pipelines, standing queries, 

anomaly detection, ML evaluation, …

Stream Processing
Use CaseDataSet API DataStream API



The Eventual Goal of Flink (WIP as of Apr 2021)
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Data changes slowly
compared to fast
changing queries

ad-hoc queries, data exploration, 
ML training and

(hyper) parameter tuning

Batch Processing
Use Case

Data changes fast
application logic

is long-lived
continuous applications,

data pipelines, standing queries, 
anomaly detection, ML evaluation, …

Stream Processing
Use CaseDataSet API DataStream API✔



The Eventual Goal of Flink (WIP as of Apr 2021)
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Data changes slowly
compared to fast
changing queries

ad-hoc queries, data exploration, 
ML training and

(hyper) parameter tuning

Batch Processing
Use Case

Data changes fast
application logic

is long-lived

continuous applications,
data pipelines, standing queries, 

anomaly detection, ML evaluation, …

Stream Processing
Use CaseDataSet API DataStream API

DataStream API

UnboundedStream

DataStream API

BoundedStream
✔



The Eventual Goal of Flink (WIP as of Apr 2021)
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Data changes slowly
compared to fast
changing queries

ad-hoc queries, data exploration, 
ML training and

(hyper) parameter tuning

Batch Processing
Use Case

Data changes fast
application logic

is long-lived

continuous applications,
data pipelines, standing queries, 

anomaly detection, ML evaluation, …

Stream Processing
Use CaseDataSet API DataStream API

DataStream API

UnboundedStream

DataStream API

BoundedStream

DataStream API

BoundedStream

No latency SLA

Assume Data 
Completeness

DataStream API

UnboundedStream

Latency / 
Completeness 

Tradeoff✔



On the Runtime Side?

Streaming
§ Keep up with real time, some extra capacity for catch-up
§ Receive data roughly in order as produced
§ Latency is important

Batch
§ Fast forward through months/years of history
§ Massively parallel unordered reads
§ Throughput most important 111



Streaming Runtime

§ Time in data stream must be quasi monotonous, 
produce time progress (watermarks)

§ Always have close-to-latest
incremental results

§ Resource needs change over time
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Batch Runtime
§ Order of time in data does not matter (parallel 

unordered reads)

§ Bulk operations (2 phase hash/sort)

§ Longer time for recovery (no low latency SLA)

§ Resource requirements change fast throughout
the execution of a single job
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Ordered and unordered reads

114

read ordered
(low parallelism, per partition)

read unordered
(massively parallel splits)



What is Flink's take here?
§ Unique Network Stack, high throughput, low latency, memory 

speed

§ Unique Fault Tolerance Model that recovers batch and streaming 
with tunable cost / recovery-lag 

§ Sources can read streams and parallel input splits

§ Different Data Structures optimized for incremental results 
(DataStream API) and for batch results (DataSet API)

§ Most unified runtime, but more unification in Runtime still 
needed…
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Streams and Storage
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Kafka / PubSub /
Kinesis / …

HDFS, S3, GCS,
SAN, NAS, NFS, ECS,

Swift, Ceph, …

Apache
Pravega

(✔) getting there…



Summary of Batch on Streaming



Current Flink API Stack (circa 1Q2019)
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Proposed New Flink API Stack (WIP)

119
§ https://flink.apache.org/news/2019/02/13/unified-batch-streaming-blink.html

https://flink.apache.org/news/2019/02/13/unified-batch-streaming-blink.html


Goal: Stream Processor for all Applications



Gelly – Flink’s Graph Library (on its way out)

§ Library with graph operations
• Common graph stats, PageRank, SSSP, 

Connected Components, label propagation
• Vertex-centric API
• Gather-apply-scatter API
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Flink’s Native Support for Iteration
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Built-in vs. Driver-based Looping (Iteration) Support

123

Loop outside the system, in driver 
program

For/While loop in client submits one 
job per iteration step  
=> iterative program looks like many 
independent jobs

Data reuse by caching in memory 
and/or disk



Flink supports iterations in the Dataflow
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partial 
solution 

partial 
solution X 

other  
datasets 

Y 
initial 

solution 
iteration  

result 

Replace 

Step function 

§ Built-in operator to support looping over data
§ Apply Step-function to partial solution until convergence
§ Step-function can be arbitrary Flink program
§ Convergence via fixed number of iterations or custom convergence criteria.
§ Operator state is preserved across different iterations
§ Loop-invariant data is cached



Flink supports Iterations in the Dataflow
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partial 
solution 

partial 
solution X 

other  
datasets 

Y 
initial 

solution 
iteration  

result 

Replace 

Step function 

DataSet<Page> pages = ...
DataSet<Neighborhood> edges = ...

IterativeDataSet<Page> pagesIter = pages.iterate(maxIterations);
DataSet<Page> newRanks = update (pagesIter, edges);
DataSet<Page> result = pagesIter.closeWith(newRanks)



Iterate natively with deltas (i.e. Stateful Iterations)
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partial 
solution 

delta 
set X 

other  
datasets 

Y initial 
solution 

iteration  
result 

workset A B workset 

Merge deltas 

Replace 

initial 
workset 

§ Compute next workset and changes to partial solution until workset is empty.
§ Generalize vertex-centric computing model of Pregel and Graphlab
§ Efficient and fits well with Graph-based algorithms and ML applications



Iterate natively with deltas (i.e. Stateful Iterations)
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partial 
solution 

delta 
set X 

other  
datasets 

Y initial 
solution 

iteration  
result 

workset A B workset 

Merge deltas 

Replace 

initial 
workset 

DeltaIteration<...> pagesIter = pages.iterateDelta(initialDeltas, maxIterations, 0);
DataSet<...> newRanks = update (pagesIter, edges);
DataSet<...> newRanks = ...
DataSet<...> result = pagesIter.closeWith(newRanks, deltas)



Iterative processing example
val env = StreamExecutionEnvironment.getExecutionEnvironment

env.generateSequence(1, 10).iterate(incrementToTen, 1000).print

env.execute("Iterative example")

def incrementToTen(input: DataStream[Long]) = {
val incremented = input.map {_ + 1}
val split = incremented.split

{x => if (x >= 10) "out" else "feedback"}
(split.select("feedback"), split.select("out"))

}
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Number 
stream Map Reduce

Output 
stream

“out”

“feedback”



Optimizing Iterative Programs
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Yet another Example: Iterative processing
DataSet<Page> pages = ...
DataSet<Neighborhood> edges = ...
DataSet<Page> oldRanks = pages; DataSet<Page> newRanks;

for (i = 0; i < maxIterations; i++) {
newRanks = update(oldRanks, edges)
oldRanks = newRanks

}
DataSet<Page> result = newRanks;

DataSet<Page> update (DataSet<Page> ranks, DataSet<Neighborhood> adjacency) {
return oldRanks
.join(adjacency)
.where(“id“).equalTo(“id“)
.with ( (page, adj, out) -> {
for (long n : adj.neighbors) 
out.collect(new Page(n, df * page.rank / adj.neighbors.length))

})
.groupBy(“id“)
.reduce ( (a, b) -> new Page(a.id, a.rank + b.rank) );
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Factorizing a matrix with
28 billion ratings for
recommendations

(Scale of Netflix
or Spotify)

More at: http://data-artisans.com/computing-recommendations-with-flink.html

An Example (ML application) which needs 
Iterations in the Dataflow



Benefits with Delta Iterations
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Performance Comparison b/w
Native, Unrolling, and Delta
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Delta Iterations => Fast Graph analysis etc
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61 iterations and 30 iterations of 
PageRank on a Twitter follower 
graph with Hadoop MapReduce 
and Flink using bulk and delta 
iterations

30 iterations

61 iterations

… and mix and match
ETL-style and graph analysis
in one program

Performance competitive
with dedicated graph

analysis systems

More at: http://data-artisans.com/data-analysis-with-flink.html



Other API elements & tools
§ Accumulators and counters

• Int, Long, Double counters
• Histogram accumulator
• Define your own

§ Broadcast variables

§ Visualization

§ Local debugging/testing mode

135



Recall:  Layered Abstractions of Flink

136

Process Function (events, state, time)

DataStream API (streams, windows)

Stream SQL / Tables (dynamic tables)

Stream- & Batch 
Data Processing

High-level
Analytics API

Stateful Event-
Driven Applications

val stats = stream
.keyBy("sensor")
.timeWindow(Time.seconds(5))
.sum((a, b) -> a.add(b))

def processElement(event: MyEvent, ctx: Context, out: Collector[Result]) = {
// work with event and state
(event, state.value) match { … }

out.collect(…) // emit events
state.update(…) // modify state

// schedule a timer callback
ctx.timerService.registerEventTimeTimer(event.timestamp + 500)

}

Layered abstractions to
navigate simple to complex use cases



Low Level: Process Function
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Strength of DataStream API
§ Very expressive stream processing

• Transform data, update state, define windows, aggregate, 
etc

§ Highly customizable windowing logic
• Assigners, Triggers, Evictors, Lateness

§ Asynchronous I/O
• Improve communication to external systems

§ Low-level operations



Limitations of DataStream API
§ Writing Distributed programs is not easy

• Stream processing technology spreads/changes rapidly
• New Streaming concepts (time, state, …)

§ Require knowledge & skill 
• Continuous applications have special requirements
• Programming experience (Java/ Scala)

=> Learning curve can be steep

§ Most users want to focus on their business logic



Design Goals for Flink Table & SQL API

§ Easy, Declarative and concise Relational API
§ Tool for a wide range of use cases
§ Unification of Batch & Streaming with SAME 

semantics
§ Queries efficiently executed
• Let Flink handle state, time, and common 

mistakes



Apache Flink’s Relational API



Another Example of Table API

142

val customers = envreadCsvFile(…).as('id, 'mktSegment)
.filter( 'mktSegment === "AUTOMOBILE" )

val orders = env.readCsvFile(…)
.filter( o => dateFormat.parse(o.orderDate).before(date) )
.as('orderId, 'custId, 'orderDate, 'shipPrio)

val items = orders
.join(customers).where('custId === 'id)
.join(lineitems).where('orderId === 'id)
.select('orderId,'orderDate,'shipPrio,

'extdPrice * (Literal(1.0f) - 'discount) as 'revenue)

val result = items
.groupBy('orderId, 'orderDate, 'shipPrio)
.select('orderId, 'revenue.sum, 'orderDate, 'shipPrio)



High Level: SQL (ANSI)

143

SELECT 
campaign, 
TUMBLE_START(clickTime, INTERVAL ’1’ HOUR), 
COUNT(ip) AS clickCnt

FROM adClicks
WHERE clickTime > ‘2017-01-01’
GROUP BY campaign, TUMBLE(clickTime, INTERVAL ‘1’ HOUR)

Query

past futurenowstart of 
the stream



Features supporting Data Pipelines
§ Support for POJOs, maps, arrays, and other 

nested types
§ Large set of built-in functions (150+)
• LIKE, EXTRACT, TIMESTAMPADD, FROM_BASE64, 

MD5, STDDEV_POP, AVG, …
§ Support for custom UDFs (scalar, table, 

aggregate)



Query Translation



What if “Clicks” is a File ?



What if “Clicks” is a Stream ?



Latency vs. Throughput
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SQL Feature set in Flink 1.6.0



SQL Client



How to use Flink SQL



Submit Detached Queries



Extended JOIN support

§ Support for windowed outer equi-joins

§ Support for non-windowed inner joins

SELECT d.rideId, d.departureTime, a.arrivalTime
FROM Departures d LEFT OUTER JOIN Arrivals a

ON d.rideId = a.rideId
AND a.arrivalTime BETWEEN

d.deptureTime AND d.departureTime + '2' HOURS

SELECT u.name, u.address, o.productId, o.amount
FROM Users u JOIN Orders o

ON u.userId = o.userId



Streaming SQL and Batch SQL
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stream

stream

materialized
real-time view

K/V Store or
SQL Database

Streaming SQL
Query

continuous
queryDB

CDC

Appl.

View Materialization
Standing Query
STREAMING

Dashboard
Many short queries

BATCH



Flink SQL on Data Streams
§ Easy, Declarative and concise Relational API
§ Tool for a wide range of use cases
§ Unification of Batch & Streaming with SAME 

semantics
§ Queries efficiently executed

• Let Flink handle state, time, and common mistakes



SQL Semantics: Streaming = Batch
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input table result table

SQL
Query

(regular / bounded)
SQL Query

Streaming SQL Query
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A Special new Feature for Flink SQL (V1.6 
onward)

159
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A new Feature for Flink SQL (Beta Rel in V1.7) !
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Use Case: Data Pipelines
§ Transform, aggregate and move events in real-time
§ Low-latency ETL

• Convert and write streams to file systems, DBMS, K-V 
stores, indexes, …

• Ingest appearing files to produce streams



Use Case: Stream & Batch Analytics
§ Run analytical queries over bounded and unbounded 

data
§ Query and compare historic and real-time data
§ Compute and update data to visualize in real-time



Building a Dashboard Example



Dissecting
Flink
(aka Flink Internals)
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What is Apache Flink?
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Flink

Historic data

Kafka, RabbitMQ, ...

HDFS, JDBC, ...

ETL, Graphs,
Machine Learning
Relational, …

Low latency,
windowing, 
aggregations, ...

Event logs

Real-time data 
streams

What is Apache Flink?

(master)



Technologies inside Flink
case class Path (from: Long, to:
Long)
val tc = edges.iterate(10) {

paths: DataSet[Path] =>
val next = paths

.join(edges)

.where("to")

.equalTo("from") {
(path, edge) =>

Path(path.from, edge.to)
}
.union(paths)
.distinct()

next
}

Cost-based 
optimizer

Type extraction 
stack

Task 
scheduling

Recovery
metadata

Pre-flight (Client)

MasterWorkers

DataSourc
e

orders.tbl

Filter
Map DataSourc

e
lineitem.tbl

Join
Hybrid Hash

buildH
T

probe

hash-part [0] hash-part [0]

GroupRed
sort

forward

Program

Dataflow
Graph

Memory 
manager

Out-of-core 
algos

Batch & 
Streaming

State & 
Checkpoints

deploy
operators

track
intermediate

results



Architecture



Flink’s Pipelined Execution Model



Flink’s Execution Model



An Example



An Example (cont’d)



Benefits of Pipelined Data Transfer

§ True Stream and Batch Processing in one stack
§ Avoid materialization of large intermediate 

results
§ Better performance for many batch workloads

*Flink supports blocking data transfer as well !



Pipelined Data Transfer



Recap: DataSet
Input First SecondX Y

Operator X Operator Y

ExecutionEnvironment env = 
ExecutionEnvironment.getExecutionEnvironment();

DataSet<String> input = env.readTextFile(input);

DataSet<String> first = input
.filter (str -> str.contains(“Apache Flink“));

DataSet<String> second = first
.filter (str -> str.length() > 40);

second.print()
env.execute();



Common misconception

§ Programs are not executed eagerly
§ Instead, system compiles program to an 

execution plan and executes that plan

Input First SecondX Y
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Example: grep

Romeo, 
Romeo, 
where art 
thou Romeo?

Load Log

Search 
for str1

Search 
for str2

Search 
for str3

Grep 1

Grep 2

Grep 3

178



Staged (batch) execution

Romeo, 
Romeo, 
where art 
thou Romeo?

Load Log

Search 
for str1

Search 
for str2

Search 
for str3

Grep 1

Grep 2

Grep 3

Stage 1:
Create/cache Log

Subseqent stages:
Grep log for matches

Caching in-memory 
and disk if needed
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Pipelined execution

Romeo, 
Romeo, 
where art 
thou Romeo?

Load Log

Search 
for str1

Search 
for str2

Search 
for str3

Grep 1

Grep 2

Grep 3

001100110011001100110011

Stage 1:
Deploy and start operators

Data transfer in-
memory and disk if 

needed 180

Note: Log 
DataSet is never 
“created”!



Benefits of pipelining
§ 25 node cluster
§ Grep log for 3 terms
§ Scale data size from 

100GB to 1TB
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Drawbacks of pipelining

§ Long pipelines may be active at the same time leading to 
memory fragmentation
• FLINK-1101: Changes memory allocation from static to adaptive

§ Fault-tolerance harder to get right
• FLINK-986: Adds intermediate data sets (similar to RDDS) as first-

class citizen to Flink Runtime. Will lead to fine-grained fault-tolerance 
among other features.
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Support Heavy ETL Data Pipelines

184

Complex ETL programs



Internal data representation

185

JVM Heap

map

JVM Heap

reduce
O Romeo, 
Romeo, 
wherefore 
art thou 
Romeo?

00110011

00110011
00010111
01110001
01111010
00010111

art, 1
O, 1
Romeo, 1
Romeo, 1

00110011

Network transfer

Local sort

How is intermediate data internally represented? 



Internal data representation
§ Two options: Java objects or raw bytes
§ Java objects

• Easier to program
• Can suffer from GC overhead
• Hard to de-stage data to disk, may suffer from “out of memory exceptions”

§ Raw bytes
• Harder to program (customer serialization stack, more involved runtime 

operators)
• Solves most of memory and GC problems
• Overhead from object (de)serialization

§ Flink follows the raw byte approach
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Memory Management in Flink

187

§ Flink manages its own memory
§ User data stored in serialized byte arrays
§ In-memory caching and data processing happens in a dedicated memory fraction
§ Never break the JVM heap
§ Very efficient disk spilling and network transfer



Memory in Flink

public class WC {
public String word;
public int count;

}empty
page

Pool of Memory Pages

JVM Heap

Sorting, hashing, 
caching
Shuffling, 

broadcasts

User code objects
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U
nm
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Memory in Flink (2)
§ Internal memory management

• Flink initially allocates 70% of the free heap as byte[] segments
• Internal operators allocate() and release() these segments

§ Flink has its own serialization stack 
• All accepted data types serialized to data segments

§ Easy to reason about memory, (almost) no OutOfMemory
errors, reduces the pressure to the GC (smooth 
performance)

189



Operating on serialized data
Microbenchmark
§ Sorting 1GB worth of (long, double) tuples
§ 67,108,864 elements
§ Simple quicksort

190



Benefits of managed memory
§ More reliable and stable performance (less GC effects, easy to go to 

disk)

191



Smooth out-of-core performance

192More at: http://flink.apache.org/news/2015/03/13/peeking-into-Apache-Flinks-Engine-Room.html

Single-core join of 1KB Java objects beyond memory (4 GB)
Blue bars are in-memory, orange bars (partially) out-of-core



Network Stack



Flink Data Transport (logical)

§ Subtask output
• pipelined-bounded
• pipelined-unbounded
• Blocking

§ Scheduling type
• all at once
• next stage on complete output
• next stage on first output

§ Transport
• high throughput via buffers
• low latency via buffer timeout

Subtask 1

Subtask 2

Subtask 3

Subtask 4

Stream Partition

Abstraction over:



Flink Data Transport (physical)
Task Manager 1 Task Manager 2

Subtask 1

Subtask 2

Subtask 3

Subtask 4

TCP Connection
3

4

3

4

1

2

1

2

Buffer Pool

Buffer Pool

Buffer Pool

Buffer Pool
Empty
Buffer

Buffer with
Data in Queue



Flink Data Transport (physical)
Task Manager 1 Task Manager 2

Subtask 1

Subtask 2

Subtask 3

Subtask 4

TCP Connection
3

4

3

4

1

2

1

2

Buffer Pool

Buffer Pool

Buffer Pool

Buffer Pool

Backpressure



Flink Data Transport (physical)
Task Manager 1 Task Manager 2

Subtask 1

Subtask 2

Subtask 3

Subtask 4

TCP Connection
3
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3
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2

1
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Buffer Pool

Buffer Pool

Buffer Pool

Buffer Pool

Backpressure



Flink Data Transport (physical)
Task Manager 1 Task Manager 2

Subtask 1

Subtask 2

Subtask 3

Subtask 4

TCP Connection
3

4

3

4

1

2

1

2

Buffer Pool

Buffer Pool

Buffer Pool

Buffer PoolSender Receiver
Zoom in

Backpressure



Credit-based Flow Control (Flink 1.5)

■ Sender announces backlog.
■ Receiver attempts to allocate buffers.
■ Receiver gives credit for allocated buffers.
■ Result: Never blocks on the TCP connection.



Credit-based Flow Control (Flink 1.5)

§ Never blocks the TCP 
connection

§ Avoids overloading of 
slow receivers

§ Improves checkpoint 
alignment

Checkpoint Duration

Without Flow Control
With Flow Control



Reduced Overhead
▪ low latency via buffer timeout § high throughput through buffers

StreamExecutionEnvironment#setBufferTimeout() *100 nodes x 8 slots



Program optimization
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Recap: The Flink stack

203

Flink Optimizer Flink Stream Builder

Common API

Scala API Java API

Python API
(upcoming) Graph API Apache 

MRQL

Flink  Local Runtime
Embedded 

environment
(Java collections)

Local
Environment
(for debugging)

Remote environment
(Regular cluster execution) Apache Tez

Data 
storage

HDFS Files S3 JDBC RedisRabbit
MQKafkaAzure

tables …

Single node execution Standalone or YARN cluster



30 
30 

Flink Optimizer 

Common API 

Scala API Java API 

Python API 
(upcoming) Graph API Apache  

MRQL 

Flink Local Runtime Embedded  
environment 
(Java collections) Local  

Environment 
(for debugging) 

Remote environment 
(Regular cluster execution) Apache Tez 

Standalone or YARN cluster 

Data  
storage 

HDFS  Files  S3 JDBC Azure  
tables … 

Single node execution 

Program lifecycle

204

val source1 = …
val source2 = …
val maxed = source1

.map(v => (v._1,v._2,
math.max(v._1,v._2))

val filtered = source2
.filter(v => (v._1 > 4))

val result = maxed
.join(filtered).where(0).equalTo(0) 
.filter(_1 > 3)
.groupBy(0)
.reduceGroup {……}

1

3

4
5

2



30 
30 

Flink Optimizer 

Common API 

Scala API Java API 

Python API 
(upcoming) Graph API Apache  

MRQL 

Flink Local Runtime Embedded  
environment 
(Java collections) Local  

Environment 
(for debugging) 

Remote environment 
(Regular cluster execution) Apache Tez 

Standalone or YARN cluster 

Data  
storage 

HDFS  Files  S3 JDBC Azure  
tables … 

Single node execution 

§ The optimizer is the 
component that selects an 
execution plan for a Common 
API program

§ Think of an AI system 
manipulating your program 
for you J

§ But don’t be scared – it works
• Relational databases have 

been doing this for decades –
Flink ports the technology to 
API-based systems

Flink Optimizer
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Optimization/auto-tuning – A Key design feature 
of Flink from its VERY BEGINNING
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Flink automatically optimizes Execution Plan of a 
program 
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Flink’s Optimizer
§ Inspired by optimizers of parallel database systems

• Cost models and reasoning about interesting properties.

§ Physical optimization follows cost-based approach
• Select data shipping strategy (forward, partition, broadcast)
• Local execution (sort merge join/ hash join)
• Keep track of interesting properties such as sorting, grouping and 

partitioning

§ Optimization of Flink programs more difficult than in the relational case:
• No fully specified operator semantics due to UDFs
• Unknown UDFs complicate estimating intermediate result sizes
• No pre-defined schema present

208



Example of optimizing a Flink program

209

val orders = … 
val lineitems = …

val filteredOrders = orders
.filter(o => dataFormat.parse(l.shipDate).after(date))
.filter(o => o.shipPrio > 2)

val lineitemsOfOrders = filteredOrders
.join(lineitems)
.where(“orderId”).equalTo(“orderId”)
.apply((o,l) => new SelectedItem(o.orderDate, l.extdPrice))

val priceSums = lineitemsOfOrders
.groupBy(“orderDate”).sum(“l.extdPrice”);



Another Optimization Example

210



Two execution plans

211

DataSource
orders.tbl

Filter
Map DataSource

lineitem.tbl

Join
Hybrid Hash

buildHT probe

broadcast forward

Combine

GroupRed
sort

DataSource
orders.tbl

Filter
Map DataSource

lineitem.tbl

Join
Hybrid Hash

buildHT probe

hash-part [0] hash-part [0]

hash-part [0,1]

GroupRed
sort

forwardBest plan 
depends on
relative sizes 
of input files



Data Flow Optimizer
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Example: Flink’s Optimization on Transitive Closure



More Examples of Optimization
§ Task chaining

• Coalesce map/filter/etc tasks

§ Join optimizations
• Broadcast/partition, build/probe side, hash or sort-merge

§ Interesting properties
• Re-use partitioning and sorting for later operations

§ Automatic caching
• E.g., for iterations
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Yahoo! Benchmark Results (circa Dec 2015)



dataArtisan’s Benchmark Results
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Show me the (Performance) Numbers !
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Show me the (Performance) Numbers !
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Show me the (Performance) Numbers !
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Show me the (Performance) Numbers !



Comparing Engine Paradigms & Systems
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Engine Comparison
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Batch Comparison
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Streaming Comparison
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Deployment and Process Model



Diverse Deployment Scenarios

§ Many different deployment scenarios
• Yarn
• Mesos
• Docker/Kubernetes
• Standalone
• Etc.



Flink Improvement Proposal 6
§ Introduce generic building blocks

§ Compose blocks for different 
scenarios

§ Effort started by:

Flip-6 design document: 
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=65147077

https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=65147077


Flink’s Revamped Distributed Architecture
§ Motivation

• Resource Elasticity
• Support for Different Deployments
• REST interface for Client-Cluster communications

§ Introduce generic Building Blocks
§ Compose blocks for different scenarios



Different Usage Patterns
§ Few long running vs. many short running 

jobs
• Overhead of starting a Flink cluster

§ Job isolation vs. sharing resources
• Allowing to define per job credentials & secrets
• Efficient resource utilization by sharing them



Job & Session Mode
§ Session mode

• Shared cluster for multiple jobs
• Resources can be shared across jobs
• Cluster deployment and job submission 

separate actions

§ Job mode
• Dedicated cluster for a single job
• Job should be part of the cluster deployment
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The Building Blocks

• ClusterManager-specific
• May live across jobs
• Manages available Containers/TaskManagers
• Acquires / releases resources

ResourceManager

TaskManagerJobManager

• Registers at ResourceManager
• Gets tasks from one or more 

JobManagers

• Single job only, started per job
• Thinks in terms of "task slots"
• Deploys and monitors job/task execution

Dispatcher

• Lives across jobs
• Touch-point for job submissions
• Spawns JobManagers



The Building Blocks

ResourceManager

(3) Request slots
TaskManager

JobManager

(4) Start TaskManager

(5) Register

(7) Deploy Tasks

Dispatcher

Client

(1) Submit Job

(2) Start 
JobManager

(6) Offer slots



Building YARN PER-JOB MODE
YARN

ResourceManager

YARN Cluster

YARN 
Cluster 
Client

(1) Submit YARN App.
(JobGraph / JARs)

Cluster Entrypoint
Flink-YARN

ResourceManager

JobManager TaskManager

TaskManager

TaskManager

(2) Spawn 
Application Master

(5) Start
TaskManagers

(7) Deploy 
Tasks

(6) Register(4) Request slots

MiniDispatcher

(3) Spawn job



Differences to old YARN Per-job mode

§ User JARs in classpath of all components
• Fewer class loading issues

§ Dynamic resources allocation
• No longer necessary to specify number of containers 

at start-up

§ No two phase job submission



BUILDING YARN Session MODE

Cluster Entrypoint
Flink-YARN

ResourceManager
(5) 

Request 
slots

JobManager
(A)

JobManager
(B)

Dispatcher

(4) Start
JobMngr

YARN
ResourceManager

YARN Cluster

Client

(1) Submit YARN App.
(FLINK – session)

TaskManager

TaskManager

TaskManager

(2) Spawn 
Application Master

(6) Start
TaskManagers

(8, 12) Deploy 
Tasks

(7) Register
(3) Submit

Job A (11) 
Request 
slots

(10) Start
JobMngr

(9) Submit
Job B



Flink Mesos Integration



Building Flink-on-Mesos (Job mode)



Latency vs. Throughput
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Deploying Flink as a Framework vs. as a Library

240

Standing Processes / Endpoints,
Dynamic Control over Resources

Long running application
under the control of your

container manager



Deployment Model Wrap up
§ New distributed architecture allows Flink to 

support many different deployment 
scenarios

§ Flink now supports a native “job” mode as 
well as the “session” mode

§ Support for full resource elasticity

§ REST interface for easy cluster 
communication



Visualization tools
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Visualization tools
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Visualization tools
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Recapping the 
Evolution of Flink
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Evolution Timeline of Flink
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Where does Apache Flink come from ?
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Where does Apache Flink come from ?
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Where does Apache Flink come from ?
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Where does Apache Flink come from ?
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Where does Apache Flink come from ?
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Where does Apache Flink come from ?

254

Evolution Timeline of Flink



Latency vs. Throughput
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Latency vs. Throughput
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Latency vs. Throughput
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Latency vs. Throughput
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Evolution Timeline of Flink



Latency vs. Throughput
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Latency vs. Throughput
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Evolution Timeline of Flink



Latency vs. Throughput
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Evolution Timeline of Flink (by v1.5)

May 2018



Latency vs. Throughput
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Flink 1.5 in a nutshell



New in Flink 1.5
§ FLIP-6

• Tighter integration with the resource manager (YARN, Mesos, Kubernetes)
• Enables dynamic management of resources
• Rework of the client/cluster communication to be REST-based

§ Localised Failure Recovery
• Failures don‘t require restoring all state from distributed storage
• TaskManagers keep state on machines
• Failures that are not caused by machine failures lead to faster recovery

§ 50% Network Stack Rewrite
• Better throughput at very low latencies
• Much improved backpressure handling



New in Flink 1.5 (cont‘d)
§ Broadcast State

• API that enables new use cases such as applying dynamic CEP patterns on a stream or join

§ SQL CLI
• An interactive command-line interface for executing SQL queries on Flink

§ Unified Table Sources
• A new interface for defining sources for a Table API/SQL program that allows defining

sources from a configuration file

§ Loads more automated testing/release verification
• Streamlined testing which will lead to lower overhead for releases



Flink 1.6 and Beyond
v1.6 released in Aug 2018, 
v1.7 in Nov 2018



What’s new in Flink 1.6
§ Autoscaling

• Automatic and dynamic changes in the parallelism of Flink programs
and individual operators

§ Hot-standby replication
• Replication of the state of operations to multiple machines so that

we can instantly migrate computation in case of failures

§ Zero-downtime scaling and upgrades
• Parallelism changes, framework upgrades and user-code updates

without any downtime



§ More Table API/SQL connectors, integration with data bases
• Dynamic Tables based on a data base, not a stream

§ End-to-end batch/streaming integration
• Unification of the DataStream and DataSet APIs
• Efficient execution of batch programs and streaming programs
• Dynamic switching of execution modes based on workload

§ Support for more programming languages
• Upcoming: Python and Go (via Apache Beam)
• Tensorflow for Machine Learning and AI (also via Apache Beam) 

What’s new in Flink 1.6 (cont’d)



What’s new in Flink 1.6 (cont’d)
§ Java 9 (FLINK-8033) and Scala 2.12 (FLINK-7811)
§ Improvements for container environments,

e.g. K8s (FLINK-9495)
§ Full job submission through REST (FLINK-9280)
§ State back-ends for timers (FLINK-9485)
§ State back-ends for operator state

https://issues.apache.org/jira/browse/FLINK-8033
https://issues.apache.org/jira/browse/FLINK-7811
https://issues.apache.org/jira/browse/FLINK-9495
https://issues.apache.org/jira/browse/FLINK-9280
https://issues.apache.org/jira/browse/FLINK-9485


§ BucketingSink with Flink file systems (including S3)
§ State evolution: support type conversion on snapshot 

restore
§ Stream SQL:

• support “update by key” Table Sources
• more table sources and sinks (Kafka, Kinesis, Files, K/V stores)

§ CEP
• Integrate CEP and SQL via MATCH_RECOGNIZE (FLINK-7062)
• Improve CEP performance of SharedBuffer on RocksDB

(FLINK-9418)

What’s new in Flink 1.6 (cont’d)

https://issues.apache.org/jira/browse/FLINK-7062
https://issues.apache.org/jira/browse/FLINK-9418


Major New Features in Flink 1.7
§ Support of State (Schema) Evolution
§ Exactly-Once support with AWS S3-streaming
§ MATCH_RECOGNIZE support in Streaming SQL
§ Temporal Tables and Temporal Joins in Streaming 

SQL
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More Details on New Features in 
Flink 1.5 and Beyond
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Latency vs. Throughput
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Latency vs. Throughput
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Latency vs. Throughput
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Latency vs. Throughput
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Powered by Apache Flink



Retail, e-commerce
§ Better product 

recommendations
§ Process monitoring
§ Inventory 

management

Finance
§ Differentiation 

via tech
§ Push-based 

products
§ Fraud detection

Telco, IoT, 
Infrastructure
§ Infrastructure 

monitoring
§ Anomaly 

detection

Internet & mobile
§ Personalization
§ User behavior 

monitoring
§ Analytics
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30 Flink applications in production for more than 
one year. 10 billion events (2TB) processed daily

Complex jobs of > 30 operators running 24/7, 
processing 30 billion events daily, maintaining 
state of 100s of GB with exactly-once guarantees

Largest job has > 20 operators, runs on > 5000 
vCores in 1000-node cluster, processes millions of 
events per second

282

Flink in Practice (by  Sept 2016)



Flink in Practice: more sample applications
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Athena X Streaming SQL
Platform Service

Streaming Platform as a Service

Fraud detection
Streaming Analytics Platform

100s jobs, 1000s nodes, TBs state
metrics, analytics, real time ML
Streaming SQL as a platform



How Large (or Small) can Flink get?



Blink is Alibaba's
Flink-based System



Keystone Routing Pipeline at Netflix
(as presented at Flink Forward San Francisco, 2018)



Small Flink
§ Can run in single process

§ Some users run it on IoT Gateways

§ Also runs with zero dependencies in IDE



Future Direction for Flink
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What’s Next: True Batch/ Stream Unification



291

Other Ongoing Objectives 
for Flink



§ Provide state of the art streaming capabilities 

§ Operate in the largest infrastructures of the world

§ Open up to a wider set of enterprise users

§ Broaden the scope of stream processing

292

Other Ongoing Objectives for Flink



Authoritative Free Books on Apache Flink

Available at: 
https://mapr.com/introduction-to-apache-flink/
https://info.lightbend.com/rs/558-NCX-702/images/preview-apache-flink.pdf

https://mapr.com/introduction-to-apache-flink/
https://info.lightbend.com/rs/558-NCX-702/images/preview-apache-flink.pdf


Backup Slides



Flink runtime 
features
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30 
30 

Flink Optimizer 

Common API 

Scala API Java API 

Python API 
(upcoming) Graph API Apache  

MRQL 

Flink Local Runtime Embedded  
environment 
(Java collections) Local  

Environment 
(for debugging) 

Remote environment 
(Regular cluster execution) Apache Tez 

Standalone or YARN cluster 

Data  
storage 

HDFS  Files  S3 JDBC Azure  
tables … 

Single node execution 

Flink Local Runtime
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§ Local runtime, not 
the distributed 
execution engine

§ Aka: what happens 
inside every 
parallel task



Flink runtime operators
§ Sorting and hashing data
• Necessary for grouping, aggregation, reduce, join, 

cogroup, delta iterations

§ Flink contains tailored implementations of hybrid 
hashing and external sorting in Java 
• Scale well with both abundant and restricted 

memory sizes
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30 
30 

Flink Optimizer 

Common API 

Scala API Java API 

Python API 
(upcoming) Graph API Apache  

MRQL 

Flink Local Runtime Embedded  
environment 
(Java collections) Local  

Environment 
(for debugging) 

Remote environment 
(Regular cluster execution) Apache Tez 

Standalone or YARN cluster 

Data  
storage 

HDFS  Files  S3 JDBC Azure  
tables … 

Single node execution 

Flink distributed execution

298

§ Pipelined
• Same engine for 

Flink and Flink
streaming

§ Pluggable
• Local runtime can be 

executed on other 
engines

• E.g., Java collections 
and Apache Tez

Coordination built on Akka library



Task 
Manager

Job 
Manager

Task 
Manager

Flink Client &
Optimizer

DataSet<String> text = env.readTextFile(input);

DataSet<Tuple2<String, Integer>> result = text
.flatMap((str, out) -> {

for (String token : value.split("\\W")) {
out.collect(new Tuple2<>(token, 1));

})
.groupBy(0)
.aggregate(SUM, 1);

O Romeo, 
Romeo, 
wherefore 
art thou 
Romeo?

O, 1
Romeo, 3
wherefore, 1
art, 1
thou, 1 

Apache Flink
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Nor arm, 
nor face, 
nor any 
other part

nor, 3
arm, 1
face, 1,
any, 1,
other, 1
part, 1



If you need to know one
thing about Flink is that 
you don’t need to know 

the internals of Flink.
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Philosophy

§ Flink “hides” its internal workings from the user
§ This is good
• User does not worry about how jobs are executed
• Internals can be changed without breaking changes

§ … and bad
• Execution model more complicated to explain 

compared to MapReduce or Spark RDD
301



Parallel Stateful
Streaming Execution



Stateful Event & Stream Processing

303

Source Filter /
Transform

State
read/write Sink



Stateful Event & Stream Processing

304

Scalable embedded state 

Access at memory speed &
scales with parallel operators



Stateful Event & Stream Processing
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Re-load state

Reset positions
in input streams

Rolling back computation
Re-processing



Event Sourcing + Memory Image
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event log
persists events
(temporarily)

event /
command

Process

main memory

update local
variables/structures

periodically snapshot 
the memory



Event Sourcing + Memory Image
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Recovery: Restore snapshot and replay events 
since snapshot

event log
persists events
(temporarily)

Process



Stateful Event & Stream Processing
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Checkpointing &  Recovery



What is State in a Streaming Application ?
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Maintaining and Checkpointing State

311



Checkpointing / Recovery
§ Flink acknowledges batches of records

• Less overhead in failure-free case
• Currently tied to fault tolerant data sources (e.g., Kafka)

§ Flink operators can keep state
• State is checkpointed
• Checkpointing and record acks go together

§ Exactly one semantics for state

312



Checkpointing / Recovery

313
Chandy-Lamport Algorithm for consistent asynchronous distributed snapshots

Pushes checkpoint barriers
through the data flow

Operator checkpoint
starting

Checkpoint done

Data Stream
barrier

Before barrier =
part of the snapshot

After barrier =
Not in snapshot

Checkpoint done

checkpoint in progress

(backup till next snapshot)



Take state snapshot

Flink State and Distributed Snapshots

Stateful
Operation

Source

"Asynchronous Barrier Snapshotting“

Stable Storage



Synchronously trigger 
state snapshot

(e.g. copy-on-write)

Flink State and Distributed Snapshots

Stateful
Operation

Source

Take state snapshot



Processing pipeline continues

Durably persist
full snapshots

asynchronously

Flink State and Distributed Snapshots

Stateful
Operation

Source

Stable Storage



Task Local Recovery



Recovery From Failure

Stateful
Operation

Source

Stable Storage



Recovery From Failure

Stateful
Operation

Source

Stable Storage

Resume to checkpoint offset

Restore State

Restore State



Local Recovery (Flink 1.5)

Source

Stable Storage

Resume to checkpoint offset

Local Snapshot

Local Snapshot Corresponding 
snapshot,

but physical 
representation 

can differ



Local Recovery (TM survived)

Source

Stable Storage

Resume to checkpoint offset

Local Snapshot

Local Snapshot

Restore State
(local)

Restore State
(local)



Local Recovery (TM lost)

Source

Stable Storage

Resume to checkpoint offset

Restore State
(remote)

Restore State
(local)

Local Snapshot



Localized State Recovery (since Flink 1.5)
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Piggybags on internal Multi-version
data structures:
• LSM Tree (RocksDB)
• MV Hashtable (Fs / Mem State Backend)

Setup:
• 500 MB state per node
• Checkpoints to S3
• Soft failure (Flink fails, machine survives)
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Having fun
with snapshots



Creating periodic Snapshots

325

time



Replay from Savepoints to Drill Down
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time
Incident of Interest

"Debug Job"
(modified version of original Job)

Filter
(events of interest only)

Extra sink for
trace output



Pause / Resume style execution
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time
Bursty Event Stream (events only at only end-of-day )



Pause / Resume style execution

328

time
Bursty Event Stream (events only at only end-of-day )

Checkpoint / Savepoint
Store



Resource Elastisticity



Dynamic Scaling Flink applications
§ Relatively Straightforward to Scale Stateless Jobs:



Dynamic Scaling Stateful Flink applications

§ Problem: Which State(s) to assign to new task(s) ?



Repartitioning of Operator States
§ Breaking Operator States up into Finer 

Granularity
• State has to contain multiple entries
• Automatic re-partitioning w.r.t. granularity

§ Example: Kafka Source
• Store Offset for each Partition
• Individual entries are repartitionable



Keyed vs. Operator State



Repartitioning of Keyed States



Repartitioning of Keyed States (cont’d)



Automatic Scaling



Broadcast State



Why Broadcast State?

Evaluate a global, changing Set of Rules over a
(non-) keyed stream of events.



How to use Broadcast State

Stream A: data

Stream B: rules



How to use Broadcast State

Stream A: data

keyBy

Stream B: rules



How to use Broadcast State

Stream A: data

Keyed State

keyBy

Stream B: rules



How to use Broadcast State

Stream A: data

keyBy

broadcast

Stream B: rules



How to use Broadcast State

Stream A: data

Broadcast State

keyBy

broadcast

Stream B: rules



How to use Broadcast State

Stream A: data

keyBy

broadcast

Stream B: rules

connect



How to use Broadcast State

Stream A: data

keyBy

broadcast

Stream B: rules

connect



Broadcast State Wrap up
§ Partition elements by key
§ State associated to a key
§ Broadcast elements
§ State to store the broadcasted elements

• Non-keyed
• Identical on all tasks even after restoring/rescaling

§ Ability to connect the two streams and react to incoming 
elements
• Connect keyed with non-keyed stream
• Have access to respective states

https://ci.apache.org/projects/flink/flink-docs-release-1.5/dev/stream/state/broadcast_state.html

https://ci.apache.org/projects/flink/flink-docs-release-1.5/dev/stream/state/broadcast_state.html


Backup/ Excess



1. Failures and downtime
§ Checkpoints & savepoints
§ Exactly-once guarantees

2. Out of order and late data
§ Event time support
§ Watermarks 

3. Results when you need them
§ Low latency 
§ Triggers

4. Accurate modeling
§ True streaming engine
§ Sessions and flexible 

windows

348



5. Batch + streaming
§ One engine
§ Dedicated APIs

6. Reprocessing
§ High throughput, event 

time support, and 
savepoints

7. Ecosystem
§ Rich connector 

ecosystem and 3rd party 
packages

8. Community support
§ One of the most active 

projects with over 200 
contributors

349

flink -s <savepoint> <job>



Summary: Cornerpoints of Flink Design
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Robust Algorithms on 
Managed Memory

Pipelined Execution
of Batch Programs

à Better shuffle performance

à No OutOfMemory Errors
à Scales to very large JVMs
à Efficient Checkpointing/ 

Recovery & Saved points Op.

Flexible Data
Streaming Engine

à Low Latency Stream Proc.
à Highly flexible windowing 

semantics (i.e. think Beam)

Native Iterations
à Very fast Graph Processing
à Stateful Iterations for ML

High-level APIs,
beyond key/value pairs

à Java, Scala, Python(beta only)
à Relational-style optimizer

à Storm Compatibility Library
à Graphs / ML Pipelines
à ML & Streaming ML (catching up)

à Scales to very large groups
Additional Library Support



What is Flink's unique contribution in the 
streaming data ecosystem?
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Before Flink, users had to make hard choices
between volume, latency, and accuracy
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Flink eliminates these tradeoffs

§ 10s of millions events per second for stateful
applications

§ Sub-second latency, as low as single-digit 
milliseconds

§ Accurate computation results
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A broader definition of accuracy: the results that I 
want when I want them

1. Accurate under failures and downtime
2. Accurate under out of order data
3. Results when you need them
4. Accurate modeling of the world
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355

Having a dependable framework enables 
more stateful applications to run as 

streaming applications


