
IERG4330/ IEMS5730

Apache Flink

Prof. Wing C. Lau
Department of Information Engineering

wclau@ie.cuhk.edu.hk

Most of the Slides in this talk have been adapted from the following sources:
§ Kostas Tzoumas, TU-Berlin, “Analyzing and Linking Big Data with Stratosphere,” June 2012.
§ Kostas Tzoumas, Co-founder and CEO of dataArtisans, Apache Flink Committer, “Apache Flink”, Jan 2015.
§ Stephen Ewen, Co-founder and CTO of dataArtisans, Apache Flink Committer, “Apache Flink”, Jan 2015.
§ Christoph Boden, “Introduction to Flink,” Technologie-Workshop Big Data, FZI Karlsruhe, June, 2015.
§ Kostas Tzoumas, Co-founder and CEO of dataArtisans, Apache Flink Committer, “Apache Flink: State of the Union and What’s Next”, Strata+Hadoop

World, NYC, Sept 2016.
§ Tzu-Li Tai of dataArtisans, “Stateful Stream Processing with Apache Flink,” Flink Meetup@Idealo GmbH, June 2017
§ Prof. Volker Markl, BBDC, TU-Berlin, “Big Data: Challenges and some Solutions: Stratosphere, Apache Flink and Beyond,” Nov. 2017
§ Stephen Ewen, CTO of dataArtisans, “Apache Flink and Stateful Stream Processing,” Qcon London, Mar 2018.
§ P. Nowojski, “Apache Flink: Better, Faster & Uncut,” Big Data Technology Summit, Warsaw, 2018
§ N. Kruber of dataArtisans, “What’s new in Stateful Stream Processing with Apache Flink 1.5 and beyond,” Flink Forward, SF, June 2018
§ A. Krettek, Till Rohrmann, Co-founders and Engineering Managers of dataArtisans, “The Past, Present and Future of Apache Flink,” Flink Forward, Berlin,

Sept 2018.
§ Timo Walther, “Introduction to SQL on Apache Flink,” Flink Forward, Berlin, Sept 2018.
§ Fabian Hueske, “SQL on Data Streams,” Flink Forward, Berlin, Sept 2018.
§ Timo Walther, “Flink’s Table API & SQL Ecosystem,” Flink Forward, Berlin, Sept 2018.
§ A. Zagrebin, of dataArtisans, “Introduction to Apache Flink,” Nov. 2018.
§ Flink Forward,Beijing, Dec 2018,
§ Till Rohrmann, Engineering Lead at dataArtisans, “Apache Flink 1.7 and Beyond,” Flink Forward, Beijing, Dec 2018.
§ Fabian Hueske, “Apache Flink SQL in Action,” Feb 2019.
§ Fabian Hueske, Vasiliki Kalavri, Streaming Processing with Apache Flink (Early Access Edition), 1st Edition to be published by O’Reilly Publishers in April

2019.
Copyright belongs to the original authors.

2

Acknowledgements

Where does Apache Flink come from ?

3

Evolution Timeline of Flink

4

Stratosphere: General Purpose Programming+Database Execution

5

Stratosphere 0.4

6

Stratosphere Optimizer
Pact API (Java)

Stratosphere Runtime

DataSet API (Scala)

Local Remote

Batch processing on a pipelining engine, with iterations …

Eventually becomes Flink

7

Batch Processing
process static and

historic data

Data Stream
Processing
realtime results

from data streams

Event-driven
Applications
data-driven actions

and services

Stateful Computations Over Data Streams

8

Original creators of
Apache Flink®

dA Platform 2
Stream Processing for the

Enterprise

dA platform

10

Original creators of
Apache Flink®

dA Platform 2
Stream Processing for the

Enterprise

dA/ Ververica platform with Streaming Ledger
supporting full ACID

Apache Flink in a Nutshell

12

Queries

Applications

Devices

etc.

Database

Stream

File / Object
Storage

Stateful computations over streams
real-time and historic

fast, scalable, fault tolerant, in-memory,
event time, large state, exactly-once

Historic
Data

Streams

Application

Overview of the Apache Flink Architecture

13

Everything Streams
Apache Flink handles everything as streams internally.

Continuous streaming and applications use "unbounded streams".
Batch processing and finite applications use "bounded streams".

Apache Flink v1.0’s Software Stack

15

Py
th
on

G
el
ly

Ta
bl
e

M
L

SA
M
O
A

Flink Optimizer

DataSet (Java/Scala) DataStream (Java/Scala)

Stream Builder H
ad

oo
p
M
/R

Local Remote Yarn Tez Embedded

D
at
af
lo
w

D
at
af
lo
w

Flink Dataflow Runtime

HDFS

HBase

Kafka
RabbitMQ

Flume

HCatalog

JDBC

Dissecting
Flink

16

Flink

Historic data

Kafka, RabbitMQ, ...

HDFS, JDBC, ...

ETL, Graphs,
Machine Learning
Relational, …

Low latency,
windowing,
aggregations, ...

Event logs

Real-time data
streams

What is Apache Flink?

(master)

Internal Execution Workflow of Flink
case class Path (from: Long, to:
Long)
val tc = edges.iterate(10) {

paths: DataSet[Path] =>
val next = paths

.join(edges)

.where("to")

.equalTo("from") {
(path, edge) =>

Path(path.from, edge.to)
}
.union(paths)
.distinct()

next
}

Cost-based
optimizer

Type extraction
stack

Task
scheduling

Recovery
metadata

Pre-flight (Client)

MasterWorkers

DataSourc
e

orders.tbl

Filter
Map DataSourc

e
lineitem.tbl

Join
Hybrid Hash

buildH
T

probe

hash-part [0] hash-part [0]

GroupRed
sort

forward

Program

Dataflow
Graph

Memory
manager

Out-of-core
algos

Batch &
Streaming

State &
Checkpoints

deploy
operators

track
intermediate

results

Cornerstones of Flink Design

19

Robust Algorithms on
Managed Memory

Pipelined Execution
of Batch Programs

à Better shuffle performance

à No OutOfMemory Errors
à Scales to very large JVMs
à Efficient Checkpointing/

Recovery & Saved points Op.

Flexible Data
Streaming Engine

à Low Latency Stream Proc.
à Highly flexible windowing

semantics (i.e. think Beam)

Native Iterations
à Very fast Graph Processing
à Stateful Iterations for ML

High-level APIs,
beyond key/value pairs

à Java, Scala, Python(beta only)
à Relational-style optimizer

à Storm Compatibility Library
à Graphs / ML Pipelines
à ML & Streaming ML (Catching up)

à Scales to very large groups
Additional Library Support

1. Failures and downtime
§ Checkpoints & savepoints
§ Exactly-once guarantees

2. Out of order and late data
§ Event time support
§ Watermarks

3. Results when you need them
§ Low latency
§ Triggers

4. Accurate modeling
§ True streaming engine
§ Sessions and flexible

windows

20

5. Batch + streaming
§ One engine
§ Dedicated APIs

6. Reprocessing
§ High throughput, event

time support, and
savepoints

7. Ecosystem
§ Rich connector

ecosystem and 3rd party
packages

8. Community support
§ One of the most active

projects with over 200
contributors

21

flink -s <savepoint> <job>

Feature Radar of Flink (circa 1Q2021)

22

https://flink.apache.org/roadmap.html

Feature Radar of Flink (circa 1Q2021)

23

Using
(Programming with)
Flink

24

Layered Abstractions of Flink

25

Process Function (events, state, time)

DataStream API (streams, windows)

Stream SQL / Tables (dynamic tables)

Stream- & Batch
Data Processing

High-level
Analytics API

Stateful Event-
Driven Applications

val stats = stream
.keyBy("sensor")
.timeWindow(Time.seconds(5))
.sum((a, b) -> a.add(b))

def processElement(event: MyEvent, ctx: Context, out: Collector[Result]) = {
// work with event and state
(event, state.value) match { … }

out.collect(…) // emit events
state.update(…) // modify state

// schedule a timer callback
ctx.timerService.registerEventTimeTimer(event.timestamp + 500)

}

Layered abstractions to
navigate simple to complex use cases

Batch / Streaming APIs (Scala)

Batch & Streaming

Data sets and Operators

Flink’s set of Operators

Base-Operator: Map

Base-Operator: Reduce

Base-Operator: Cross

Base-Operator: Join

Base-Operator: CoGroup

DataSet and transformations (Java)
Input First SecondX Y

Operator X Operator Y

ExecutionEnvironment env =
ExecutionEnvironment.getExecutionEnvironment();

DataSet<String> input = env.readTextFile(input);

DataSet<String> first = input
.filter (str -> str.contains(“Apache Flink“));

DataSet<String> second = first
.filter (str -> str.length() > 40);

second.print();
env.execute(); 35

WordCount in Java (with DataSet)

WordCount in Scala (with DataSet)

Another Example: Transitive Closure (Java)

38

IterativeDataSet<Tuple2<Long,Long>> paths = edges.iterate (10);

DataSet<Tuple2<Long,Long>> nextPaths = paths
.join(edges).where(1).equalTo(0)
.with((left, right) -> return new Tuple2<Long, Long>(left.f0, right.f1);)
.union(paths)
.distinct();

DataSet<Tuple2<Long, Long>> tc = paths.closeWith(nextPaths);

Transitive Closure (Scala)

39

case class Path (from: Long, to: Long)
val tc = edges.iterate(10) { paths: DataSet[Path] =>

val next = paths
.join(edges).where("to").equalTo("from") {

(path, edge) => Path(path.from, edge.to)
}
.union(paths).distinct()

next
}

Transitive Closure

More Details on the
Flink API

40

DataSet
§ Central notion of the batch-based programming API

§ Files and other data sources are read into DataSets
• DataSet<String> text = env.readTextFile(…)

§ Transformations on DataSets produce DataSets
• DataSet<String> first = text.map(…)

§ DataSets are printed to files or on stdout
• first.writeAsCsv(…)

§ Execution is triggered with env.execute()

41

Data Types
§ Basic Java Types
• String, Long, Integer, Boolean, …
• Arrays

§ Composite Types
• Tuple
• PoJo (Java Objects)
• Custom type

42

Data Types - Tuples
§ Bean-style Java classes & field names
§ Tuples and position addressing
§ Any data type with key selector function
§ Easy, lightweight and generic way of encapsulating data in Flink

• Tuple1 upto Tuple25
Example:

Tuple3<String, String, Integer> person =
new Tuple3<>(“Max”, “Magmum”, 42) ;

// zero-based index !
String firstName = person.f0 ;
String secondName = person.f1 ;
Integer age = person.f2 ;

43

Beyond Key/Value Pairs

Data types and grouping
public static class Access {

public int userId;
public String url;
...

}

public static class User {
public int userId;
public int region;
public Date customerSince;
...

}
DataSet<Tuple2<Access,User>> campaign = access.join(users)

.where(“userId“).equalTo(“userId“)

DataSet<Tuple3<Integer,String,String> someLog;
someLog.groupBy(0,1).reduceGroup(...);

45

Long Operator Pipelines

Available transformations
§ map
§ flatMap
§ filter
§ reduce
§ reduceGroup
§ join
§ coGroup
§ aggregate

§ cross
§ project
§ distinct
§ union
§ iterate
§ iterateDelta
§ repartition
§ …

47

Transformations: Map

48

Transformations: Filter

49

Transformations: Group and Reduce

50

Transformations: GroupReduce

51

Transformations: Joining 2 DataSets

52

Transformations: Joining 2 DataSets

53

Transformations: Join with join function

54

Data Sources

Batch API
§ Files

• HDFS, Local file system,
MapR file system

• Text, Csv, Avro, Hadoop input
formats

§ JDBC
§ HBase
§ Collections

Stream API
§ Files
§ Socket streams
§ Kafka
§ RabbitMQ
§ Flume
§ Collections
§ Implement your own

• SourceFunction.collect

55

Data Sources

56

Data Sources: Collections

57

Data Sources: File-based

58

Data Sinks

59

Data Sinks (lazy)

60

Data Sinks (eager)

61

More Details: WordCount’s main() in Java

62

Execution Environment

63

Data Sources

64

Data Types

65

Transformations

66

User Functions

67

DataSinks

68

Execute !

69

WordCount: Map

70

WordCount: Map: Interface

71

WordCount: Map: Types

72

WordCount: Map: Collector

73

WordCount: Reduce

74

WordCount: Reduce: Interface

75

WordCount: Reduce: Types

76

WordCount: Reduce: Collector

77

Real-time Streaming
with Flink

78

Flink Real-time Streaming overview
§ Historically, Flink first supported Batch (via PACT etc) and Streaming was

added later on.

§ Streaming and Batch use same code paths in runtime

§ Differences
• Streaming does not use Flink’s memory management
• Streaming uses its own compiler/ optimizer

§ Alibaba has been working on unifying the Batch and Streaming APIs of
Flink
• The plan is for Flink to just use a single Unified Streaming API for EVERYTHING

(but still work in progress) !
• https://files.alicdn.com/tpsservice/8510c65ffa1fde57274595c5bb009347.pdf

79

Feature Radar of Flink (circa 1Q2021)

80

Feature Radar of Flink (circa 1Q2021)

81

Current Flink API Stack (circa 1Q2019)

82

Current real-time stream processing

83

StreamExecutionEnvironment env =
StreamExecutionEnvironment.getExecutionEnvironment();

DataStream<String> tweets = env.socketTextStream(host,port);

DataStream<Tuple2<String,Integer>> filteredTweets = tweets
.flatMap(new SelectLanguageAndTokenize())
.partition(0)
.map(s -> new Tuple2<String,Integer>(s, 1))
.groupBy(0).sum(1)
.flatMap(new SelectMaxOccurence());

tweets.print();
env.execute();

DataStream instead of DataSet
StreamExecutionEnvironment instead of ExecutionEnvironment

Streaming operators
§ Most DataSet operators

can be used
• map, filter, flatMap,

reduce, reduceGroup, join,
cross, coGroup, iterate,
project, grouping,
partitioning, aggregations,
union (merge), …

§ DataStream-specific
operators (snip)
• CoMap, CoReduce, etc:

share state between
streams

• Temporal binary ops: join,
cross, …

• Windows: policy-based
flexible windowing
• Time, Count, Delta

84

Life of data streams

§ Create: create streams from event sources (machines, databases, logs, sensors,
…)

§ Collect: collect and make streams available for consumption (e.g., Apache Kafka)

§ Process: process streams, possibly generating derived streams (e.g., Apache
Flink)

85

Example of a Stream Processing Application

86

Anatomy of Stream Processing Application

87

Stream Partitioning across Subtasks

§ Subtask output
• pipelined-bounded
• pipelined-unbounded
• Blocking

§ Scheduling type
• all at once
• next stage on complete output
• next stage on first output

§ Transport
• high throughput via buffers
• low latency via buffer timeout

Subtask 1

Subtask 2

Subtask 3

Subtask 4

Stream Partition

Abstraction over:

Another Example w/ Flink’s DataStream API

89

Source

Transformation

Windowed Transformation

Sink

val lines: DataStream[String] = env.addSource(new FlinkKafkaConsumer011(…))

val events: DataStream[Event] = lines.map((line) => parse(line))

val stats: DataStream[Statistic] = stream
.keyBy("sensor")
.timeWindow(Time.seconds(5))
.sum(new MyAggregationFunction())

stats.addSink(new RollingSink(path))

Streaming
Dataflow

Source Transform Window
(state read/write)

Sink

Rich Windowing semantics in Flink

§ Trigger policy
• When to trigger the computation on current window

§ Eviction policy
• When data points should leave the window
• Defines window width/size

§ E.g., count-based policy
• evict when #elements > n
• start a new window every n-th element

§ Built-in: Count, Time, Delta policies

Flink was the very 1st Open-source framework which supported the Generalized
Streaming Model proposed by Google Dataflow/ Apache Beam 90

Windowing example
//Build new model every minute on the last 5 minutes
//worth of data
val model = trainingData

.window(Time.of(5,TimeUnit.MINUTES))

.every(Time.of(1,TimeUnit.MINUTES))

.reduceGroup(buildModel)

//Predict new data using the most up-to-date model
val prediction = newData

.connect(model)

.map(predict);

M

P

Training Data

New Data Prediction

91

Window Join example

case class Name(id: Long, name: String)
case class Age(id: Long, age: Int)
case class Person(name: String, age: Int)

val names = ...
val ages = ...

names.join(ages)
.onWindow(5, TimeUnit.SECONDS)
.where("id")
.equalTo("id") {(n, a) => Person(n.name, a.age)}

92

Yet another example of Stream Processing/
Analysis with Flink

93More at: http://flink.apache.org/news/2015/02/09/streaming-example.html

On Batched vs. Streaming
(The world according to Flink)

95

A.k.a.: If everything is
peachy streams, why is there

a DataSet API and where
will this end?

96

A.k.a.: I have heard that
"batch is a special case of

streaming", so does
<stream processor x>
now own the world?

What changes faster? Data or Query?

97

Data changes slowly
compared to fast
changing queries

ad-hoc queries, data exploration,
ML training and

(hyper) parameter tuning
Batch Processing

Use Case

Data changes fast
application logic

is long-lived

continuous applications,
data pipelines, standing queries,

anomaly detection, ML evaluation, …

Stream Processing
Use Case

Summary on Another View of Batched vs. Streaming

What Changes Fasters ? Your Code or Your Data ?

§ dData/dt >> dCode/dt => a Data Streaming problem

§ dCode/dt >> dData/dt => a Data Exploration problem
(and likely to become a Data Streaming problem later)

Src: Prof. Joe Hellerstein of UCBerkeley

What changes faster? Data or Query?

99

Data changes slowly
compared to fast
changing queries

ad-hoc queries, data exploration,
ML training and

(hyper) parameter tuning

Batch Processing
Use Case

Data changes fast
application logic

is long-lived

continuous applications,
data pipelines, standing queries,

anomaly detection, ML evaluation, …

Stream Processing
Use CaseDataSet API DataStream API

Abstraction/APIs and Runtime

100

Model, Semantics, APIs

Storage

Execution Runtime

Modelling
Applications

Modelling
Infrastructure

Running
Applications

Samentics/APIs: Everything Streams

101
✔Flink is good here…

Eventual goal of Flink, Not yet achieved as of Feb 2019

102

Data changes slowly
compared to fast
changing queries

ad-hoc queries, data exploration,
ML training and

(hyper) parameter tuning

Batch Processing
Use Case

Data changes fast
application logic

is long-lived

continuous applications,
data pipelines, standing queries,

anomaly detection, ML evaluation, …

Stream Processing
Use CaseDataSet API DataStream API

DataStream API

UnboundedStream

DataStream API

BoundedStream

Latency vs. Completeness (in Tyler's words)

103

Latency vs. Completeness

104

1977 1980 1983 1999 2002 2005 2015

Processing Time

Episode
IV

Episode
V

Episode
VI

Episode
I

Episode
II

Episode
III

Episode
VII

Event Time

2016

Rogue
One
III.5

2017

Episode
VIII

The Rise of
Skywalker

Latency vs. Completeness

105

1977 1980 1983 1999 2002 2005 2015

Processing Time

Episode
IV

Episode
V

Episode
VI

Episode
I

Episode
II

Episode
III

Episode
VII

Event Time

2016

Rogue
One
III.5

2017

Episode
VIII

The Rise of
Skywalker

Latency versus Completeness

106

Bounded/
Batch

Unbounded/
Streaming

Data is as complete
as it gets within that

Batch Job

No fine latency control

Trade of latency
versus completeness

The Eventual Goal of Flink (WIP as of Apr 2021)

107

Data changes slowly
compared to fast
changing queries

ad-hoc queries, data exploration,
ML training and

(hyper) parameter tuning

Batch Processing
Use Case

Data changes fast
application logic

is long-lived

continuous applications,
data pipelines, standing queries,

anomaly detection, ML evaluation, …

Stream Processing
Use CaseDataSet API DataStream API

The Eventual Goal of Flink (WIP as of Apr 2021)

108

Data changes slowly
compared to fast
changing queries

ad-hoc queries, data exploration,
ML training and

(hyper) parameter tuning

Batch Processing
Use Case

Data changes fast
application logic

is long-lived
continuous applications,

data pipelines, standing queries,
anomaly detection, ML evaluation, …

Stream Processing
Use CaseDataSet API DataStream API✔

The Eventual Goal of Flink (WIP as of Apr 2021)

109

Data changes slowly
compared to fast
changing queries

ad-hoc queries, data exploration,
ML training and

(hyper) parameter tuning

Batch Processing
Use Case

Data changes fast
application logic

is long-lived

continuous applications,
data pipelines, standing queries,

anomaly detection, ML evaluation, …

Stream Processing
Use CaseDataSet API DataStream API

DataStream API

UnboundedStream

DataStream API

BoundedStream
✔

The Eventual Goal of Flink (WIP as of Apr 2021)

110

Data changes slowly
compared to fast
changing queries

ad-hoc queries, data exploration,
ML training and

(hyper) parameter tuning

Batch Processing
Use Case

Data changes fast
application logic

is long-lived

continuous applications,
data pipelines, standing queries,

anomaly detection, ML evaluation, …

Stream Processing
Use CaseDataSet API DataStream API

DataStream API

UnboundedStream

DataStream API

BoundedStream

DataStream API

BoundedStream

No latency SLA

Assume Data
Completeness

DataStream API

UnboundedStream

Latency /
Completeness

Tradeoff✔

On the Runtime Side?

Streaming
§ Keep up with real time, some extra capacity for catch-up
§ Receive data roughly in order as produced
§ Latency is important

Batch
§ Fast forward through months/years of history
§ Massively parallel unordered reads
§ Throughput most important 111

Streaming Runtime

§ Time in data stream must be quasi monotonous,
produce time progress (watermarks)

§ Always have close-to-latest
incremental results

§ Resource needs change over time

112

Batch Runtime
§ Order of time in data does not matter (parallel

unordered reads)

§ Bulk operations (2 phase hash/sort)

§ Longer time for recovery (no low latency SLA)

§ Resource requirements change fast throughout
the execution of a single job

113

Ordered and unordered reads

114

read ordered
(low parallelism, per partition)

read unordered
(massively parallel splits)

What is Flink's take here?
§ Unique Network Stack, high throughput, low latency, memory

speed

§ Unique Fault Tolerance Model that recovers batch and streaming
with tunable cost / recovery-lag

§ Sources can read streams and parallel input splits

§ Different Data Structures optimized for incremental results
(DataStream API) and for batch results (DataSet API)

§ Most unified runtime, but more unification in Runtime still
needed…

115

Streams and Storage

116

Kafka / PubSub /
Kinesis / …

HDFS, S3, GCS,
SAN, NAS, NFS, ECS,

Swift, Ceph, …

Apache
Pravega

(✔) getting there…

Summary of Batch on Streaming

Current Flink API Stack (circa 1Q2019)

118

Proposed New Flink API Stack (WIP)

119
§ https://flink.apache.org/news/2019/02/13/unified-batch-streaming-blink.html

https://flink.apache.org/news/2019/02/13/unified-batch-streaming-blink.html

Goal: Stream Processor for all Applications

Gelly – Flink’s Graph Library (on its way out)

§ Library with graph operations
• Common graph stats, PageRank, SSSP,

Connected Components, label propagation
• Vertex-centric API
• Gather-apply-scatter API

121

Flink’s Native Support for Iteration

122

Built-in vs. Driver-based Looping (Iteration) Support

123

Loop outside the system, in driver
program

For/While loop in client submits one
job per iteration step
=> iterative program looks like many
independent jobs

Data reuse by caching in memory
and/or disk

Flink supports iterations in the Dataflow

124

partial
solution

partial
solution X

other
datasets

Y
initial

solution
iteration

result

Replace

Step function

§ Built-in operator to support looping over data
§ Apply Step-function to partial solution until convergence
§ Step-function can be arbitrary Flink program
§ Convergence via fixed number of iterations or custom convergence criteria.
§ Operator state is preserved across different iterations
§ Loop-invariant data is cached

Flink supports Iterations in the Dataflow

125

partial
solution

partial
solution X

other
datasets

Y
initial

solution
iteration

result

Replace

Step function

DataSet<Page> pages = ...
DataSet<Neighborhood> edges = ...

IterativeDataSet<Page> pagesIter = pages.iterate(maxIterations);
DataSet<Page> newRanks = update (pagesIter, edges);
DataSet<Page> result = pagesIter.closeWith(newRanks)

Iterate natively with deltas (i.e. Stateful Iterations)

126

partial
solution

delta
set X

other
datasets

Y initial
solution

iteration
result

workset A B workset

Merge deltas

Replace

initial
workset

§ Compute next workset and changes to partial solution until workset is empty.
§ Generalize vertex-centric computing model of Pregel and Graphlab
§ Efficient and fits well with Graph-based algorithms and ML applications

Iterate natively with deltas (i.e. Stateful Iterations)

127

partial
solution

delta
set X

other
datasets

Y initial
solution

iteration
result

workset A B workset

Merge deltas

Replace

initial
workset

DeltaIteration<...> pagesIter = pages.iterateDelta(initialDeltas, maxIterations, 0);
DataSet<...> newRanks = update (pagesIter, edges);
DataSet<...> newRanks = ...
DataSet<...> result = pagesIter.closeWith(newRanks, deltas)

Iterative processing example
val env = StreamExecutionEnvironment.getExecutionEnvironment

env.generateSequence(1, 10).iterate(incrementToTen, 1000).print

env.execute("Iterative example")

def incrementToTen(input: DataStream[Long]) = {
val incremented = input.map {_ + 1}
val split = incremented.split

{x => if (x >= 10) "out" else "feedback"}
(split.select("feedback"), split.select("out"))

}

128

Number
stream Map Reduce

Output
stream

“out”

“feedback”

Optimizing Iterative Programs

129

Yet another Example: Iterative processing
DataSet<Page> pages = ...
DataSet<Neighborhood> edges = ...
DataSet<Page> oldRanks = pages; DataSet<Page> newRanks;

for (i = 0; i < maxIterations; i++) {
newRanks = update(oldRanks, edges)
oldRanks = newRanks

}
DataSet<Page> result = newRanks;

DataSet<Page> update (DataSet<Page> ranks, DataSet<Neighborhood> adjacency) {
return oldRanks
.join(adjacency)
.where(“id“).equalTo(“id“)
.with ((page, adj, out) -> {
for (long n : adj.neighbors)
out.collect(new Page(n, df * page.rank / adj.neighbors.length))

})
.groupBy(“id“)
.reduce ((a, b) -> new Page(a.id, a.rank + b.rank));

130

131

Factorizing a matrix with
28 billion ratings for
recommendations

(Scale of Netflix
or Spotify)

More at: http://data-artisans.com/computing-recommendations-with-flink.html

An Example (ML application) which needs
Iterations in the Dataflow

Benefits with Delta Iterations

132

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

45000000

1 6 11 16 21 26 31 36 41 46 51 56 61

of

 e
le

m
en

ts
 u

pd
at

ed

iteration

Performance Comparison b/w
Native, Unrolling, and Delta

133

Delta Iterations => Fast Graph analysis etc

134

0

10

20

30

40

50

60

Hadoop Flink bulk Flink delta

Ti
m

e
(m

in
ut

es
)

61 iterations and 30 iterations of
PageRank on a Twitter follower
graph with Hadoop MapReduce
and Flink using bulk and delta
iterations

30 iterations

61 iterations

… and mix and match
ETL-style and graph analysis
in one program

Performance competitive
with dedicated graph

analysis systems

More at: http://data-artisans.com/data-analysis-with-flink.html

Other API elements & tools
§ Accumulators and counters

• Int, Long, Double counters
• Histogram accumulator
• Define your own

§ Broadcast variables

§ Visualization

§ Local debugging/testing mode

135

Recall: Layered Abstractions of Flink

136

Process Function (events, state, time)

DataStream API (streams, windows)

Stream SQL / Tables (dynamic tables)

Stream- & Batch
Data Processing

High-level
Analytics API

Stateful Event-
Driven Applications

val stats = stream
.keyBy("sensor")
.timeWindow(Time.seconds(5))
.sum((a, b) -> a.add(b))

def processElement(event: MyEvent, ctx: Context, out: Collector[Result]) = {
// work with event and state
(event, state.value) match { … }

out.collect(…) // emit events
state.update(…) // modify state

// schedule a timer callback
ctx.timerService.registerEventTimeTimer(event.timestamp + 500)

}

Layered abstractions to
navigate simple to complex use cases

Low Level: Process Function

137

Strength of DataStream API
§ Very expressive stream processing

• Transform data, update state, define windows, aggregate,
etc

§ Highly customizable windowing logic
• Assigners, Triggers, Evictors, Lateness

§ Asynchronous I/O
• Improve communication to external systems

§ Low-level operations

Limitations of DataStream API
§ Writing Distributed programs is not easy

• Stream processing technology spreads/changes rapidly
• New Streaming concepts (time, state, …)

§ Require knowledge & skill
• Continuous applications have special requirements
• Programming experience (Java/ Scala)

=> Learning curve can be steep

§ Most users want to focus on their business logic

Design Goals for Flink Table & SQL API

§ Easy, Declarative and concise Relational API
§ Tool for a wide range of use cases
§ Unification of Batch & Streaming with SAME

semantics
§ Queries efficiently executed
• Let Flink handle state, time, and common

mistakes

Apache Flink’s Relational API

Another Example of Table API

142

val customers = envreadCsvFile(…).as('id, 'mktSegment)
.filter('mktSegment === "AUTOMOBILE")

val orders = env.readCsvFile(…)
.filter(o => dateFormat.parse(o.orderDate).before(date))
.as('orderId, 'custId, 'orderDate, 'shipPrio)

val items = orders
.join(customers).where('custId === 'id)
.join(lineitems).where('orderId === 'id)
.select('orderId,'orderDate,'shipPrio,

'extdPrice * (Literal(1.0f) - 'discount) as 'revenue)

val result = items
.groupBy('orderId, 'orderDate, 'shipPrio)
.select('orderId, 'revenue.sum, 'orderDate, 'shipPrio)

High Level: SQL (ANSI)

143

SELECT
campaign,
TUMBLE_START(clickTime, INTERVAL ’1’ HOUR),
COUNT(ip) AS clickCnt

FROM adClicks
WHERE clickTime > ‘2017-01-01’
GROUP BY campaign, TUMBLE(clickTime, INTERVAL ‘1’ HOUR)

Query

past futurenowstart of
the stream

Features supporting Data Pipelines
§ Support for POJOs, maps, arrays, and other

nested types
§ Large set of built-in functions (150+)
• LIKE, EXTRACT, TIMESTAMPADD, FROM_BASE64,

MD5, STDDEV_POP, AVG, …
§ Support for custom UDFs (scalar, table,

aggregate)

Query Translation

What if “Clicks” is a File ?

What if “Clicks” is a Stream ?

Latency vs. Throughput

148

SQL Feature set in Flink 1.6.0

SQL Client

How to use Flink SQL

Submit Detached Queries

Extended JOIN support

§ Support for windowed outer equi-joins

§ Support for non-windowed inner joins

SELECT d.rideId, d.departureTime, a.arrivalTime
FROM Departures d LEFT OUTER JOIN Arrivals a

ON d.rideId = a.rideId
AND a.arrivalTime BETWEEN

d.deptureTime AND d.departureTime + '2' HOURS

SELECT u.name, u.address, o.productId, o.amount
FROM Users u JOIN Orders o

ON u.userId = o.userId

Streaming SQL and Batch SQL

154

stream

stream

materialized
real-time view

K/V Store or
SQL Database

Streaming SQL
Query

continuous
queryDB

CDC

Appl.

View Materialization
Standing Query
STREAMING

Dashboard
Many short queries

BATCH

Flink SQL on Data Streams
§ Easy, Declarative and concise Relational API
§ Tool for a wide range of use cases
§ Unification of Batch & Streaming with SAME

semantics
§ Queries efficiently executed

• Let Flink handle state, time, and common mistakes

SQL Semantics: Streaming = Batch

156

input table result table

SQL
Query

(regular / bounded)
SQL Query

Streaming SQL Query

157

158

A Special new Feature for Flink SQL (V1.6
onward)

159

160

A new Feature for Flink SQL (Beta Rel in V1.7) !

161

Use Case: Data Pipelines
§ Transform, aggregate and move events in real-time
§ Low-latency ETL

• Convert and write streams to file systems, DBMS, K-V
stores, indexes, …

• Ingest appearing files to produce streams

Use Case: Stream & Batch Analytics
§ Run analytical queries over bounded and unbounded

data
§ Query and compare historic and real-time data
§ Compute and update data to visualize in real-time

Building a Dashboard Example

Dissecting
Flink
(aka Flink Internals)

165

What is Apache Flink?

166

Py
th
on

G
el
ly

Ta
bl
e

M
L

SA
M
O
A

Flink Optimizer

DataSet (Java/Scala) DataStream (Java/Scala)

Stream Builder H
ad

oo
p
M
/R

Local Remote Yarn Tez Embedded

D
at
af
lo
w

D
at
af
lo
w

Flink Dataflow Runtime

HDFS

HBase

Kafka
RabbitMQ

Flume

HCatalog

JDBC

Flink

Historic data

Kafka, RabbitMQ, ...

HDFS, JDBC, ...

ETL, Graphs,
Machine Learning
Relational, …

Low latency,
windowing,
aggregations, ...

Event logs

Real-time data
streams

What is Apache Flink?

(master)

Technologies inside Flink
case class Path (from: Long, to:
Long)
val tc = edges.iterate(10) {

paths: DataSet[Path] =>
val next = paths

.join(edges)

.where("to")

.equalTo("from") {
(path, edge) =>

Path(path.from, edge.to)
}
.union(paths)
.distinct()

next
}

Cost-based
optimizer

Type extraction
stack

Task
scheduling

Recovery
metadata

Pre-flight (Client)

MasterWorkers

DataSourc
e

orders.tbl

Filter
Map DataSourc

e
lineitem.tbl

Join
Hybrid Hash

buildH
T

probe

hash-part [0] hash-part [0]

GroupRed
sort

forward

Program

Dataflow
Graph

Memory
manager

Out-of-core
algos

Batch &
Streaming

State &
Checkpoints

deploy
operators

track
intermediate

results

Architecture

Flink’s Pipelined Execution Model

Flink’s Execution Model

An Example

An Example (cont’d)

Benefits of Pipelined Data Transfer

§ True Stream and Batch Processing in one stack
§ Avoid materialization of large intermediate

results
§ Better performance for many batch workloads

*Flink supports blocking data transfer as well !

Pipelined Data Transfer

Recap: DataSet
Input First SecondX Y

Operator X Operator Y

ExecutionEnvironment env =
ExecutionEnvironment.getExecutionEnvironment();

DataSet<String> input = env.readTextFile(input);

DataSet<String> first = input
.filter (str -> str.contains(“Apache Flink“));

DataSet<String> second = first
.filter (str -> str.length() > 40);

second.print()
env.execute();

Common misconception

§ Programs are not executed eagerly
§ Instead, system compiles program to an

execution plan and executes that plan

Input First SecondX Y

177

Example: grep

Romeo,
Romeo,
where art
thou Romeo?

Load Log

Search
for str1

Search
for str2

Search
for str3

Grep 1

Grep 2

Grep 3

178

Staged (batch) execution

Romeo,
Romeo,
where art
thou Romeo?

Load Log

Search
for str1

Search
for str2

Search
for str3

Grep 1

Grep 2

Grep 3

Stage 1:
Create/cache Log

Subseqent stages:
Grep log for matches

Caching in-memory
and disk if needed

179

Pipelined execution

Romeo,
Romeo,
where art
thou Romeo?

Load Log

Search
for str1

Search
for str2

Search
for str3

Grep 1

Grep 2

Grep 3

001100110011001100110011

Stage 1:
Deploy and start operators

Data transfer in-
memory and disk if

needed 180

Note: Log
DataSet is never
“created”!

Benefits of pipelining
§ 25 node cluster
§ Grep log for 3 terms
§ Scale data size from

100GB to 1TB

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

0 100 200 300 400 500 600 700 800 900 1000

Ti
m

e
to

 co
m

pl
et

e
gr

ep
(s

ec
)

Data size (GB)

Stag
ed exe

cu
tio

n w
ith

 Spark
Pipelined with Flink

Cluster memory
exceeded 181

182

Drawbacks of pipelining

§ Long pipelines may be active at the same time leading to
memory fragmentation
• FLINK-1101: Changes memory allocation from static to adaptive

§ Fault-tolerance harder to get right
• FLINK-986: Adds intermediate data sets (similar to RDDS) as first-

class citizen to Flink Runtime. Will lead to fine-grained fault-tolerance
among other features.

183

Support Heavy ETL Data Pipelines

184

Complex ETL programs

Internal data representation

185

JVM Heap

map

JVM Heap

reduce
O Romeo,
Romeo,
wherefore
art thou
Romeo?

00110011

00110011
00010111
01110001
01111010
00010111

art, 1
O, 1
Romeo, 1
Romeo, 1

00110011

Network transfer

Local sort

How is intermediate data internally represented?

Internal data representation
§ Two options: Java objects or raw bytes
§ Java objects

• Easier to program
• Can suffer from GC overhead
• Hard to de-stage data to disk, may suffer from “out of memory exceptions”

§ Raw bytes
• Harder to program (customer serialization stack, more involved runtime

operators)
• Solves most of memory and GC problems
• Overhead from object (de)serialization

§ Flink follows the raw byte approach

186

Memory Management in Flink

187

§ Flink manages its own memory
§ User data stored in serialized byte arrays
§ In-memory caching and data processing happens in a dedicated memory fraction
§ Never break the JVM heap
§ Very efficient disk spilling and network transfer

Memory in Flink

public class WC {
public String word;
public int count;

}empty
page

Pool of Memory Pages

JVM Heap

Sorting, hashing,
caching
Shuffling,

broadcasts

User code objects

N
et

w
or

k
bu

ffe
rs

M
an

ag
ed

he
ap

U
nm

an
ag

ed
he

ap

188

Memory in Flink (2)
§ Internal memory management

• Flink initially allocates 70% of the free heap as byte[] segments
• Internal operators allocate() and release() these segments

§ Flink has its own serialization stack
• All accepted data types serialized to data segments

§ Easy to reason about memory, (almost) no OutOfMemory
errors, reduces the pressure to the GC (smooth
performance)

189

Operating on serialized data
Microbenchmark
§ Sorting 1GB worth of (long, double) tuples
§ 67,108,864 elements
§ Simple quicksort

190

Benefits of managed memory
§ More reliable and stable performance (less GC effects, easy to go to

disk)

191

Smooth out-of-core performance

192More at: http://flink.apache.org/news/2015/03/13/peeking-into-Apache-Flinks-Engine-Room.html

Single-core join of 1KB Java objects beyond memory (4 GB)
Blue bars are in-memory, orange bars (partially) out-of-core

Network Stack

Flink Data Transport (logical)

§ Subtask output
• pipelined-bounded
• pipelined-unbounded
• Blocking

§ Scheduling type
• all at once
• next stage on complete output
• next stage on first output

§ Transport
• high throughput via buffers
• low latency via buffer timeout

Subtask 1

Subtask 2

Subtask 3

Subtask 4

Stream Partition

Abstraction over:

Flink Data Transport (physical)
Task Manager 1 Task Manager 2

Subtask 1

Subtask 2

Subtask 3

Subtask 4

TCP Connection
3

4

3

4

1

2

1

2

Buffer Pool

Buffer Pool

Buffer Pool

Buffer Pool
Empty
Buffer

Buffer with
Data in Queue

Flink Data Transport (physical)
Task Manager 1 Task Manager 2

Subtask 1

Subtask 2

Subtask 3

Subtask 4

TCP Connection
3

4

3

4

1

2

1

2

Buffer Pool

Buffer Pool

Buffer Pool

Buffer Pool

Backpressure

Flink Data Transport (physical)
Task Manager 1 Task Manager 2

Subtask 1

Subtask 2

Subtask 3

Subtask 4

TCP Connection
3

4

3

4

1

2

1

2

Buffer Pool

Buffer Pool

Buffer Pool

Buffer Pool

Backpressure

Flink Data Transport (physical)
Task Manager 1 Task Manager 2

Subtask 1

Subtask 2

Subtask 3

Subtask 4

TCP Connection
3

4

3

4

1

2

1

2

Buffer Pool

Buffer Pool

Buffer Pool

Buffer PoolSender Receiver
Zoom in

Backpressure

Credit-based Flow Control (Flink 1.5)

■ Sender announces backlog.
■ Receiver attempts to allocate buffers.
■ Receiver gives credit for allocated buffers.
■ Result: Never blocks on the TCP connection.

Credit-based Flow Control (Flink 1.5)

§ Never blocks the TCP
connection

§ Avoids overloading of
slow receivers

§ Improves checkpoint
alignment

Checkpoint Duration

Without Flow Control
With Flow Control

Reduced Overhead
▪ low latency via buffer timeout § high throughput through buffers

StreamExecutionEnvironment#setBufferTimeout() *100 nodes x 8 slots

Program optimization

202

Recap: The Flink stack

203

Flink Optimizer Flink Stream Builder

Common API

Scala API Java API

Python API
(upcoming) Graph API Apache

MRQL

Flink Local Runtime
Embedded

environment
(Java collections)

Local
Environment
(for debugging)

Remote environment
(Regular cluster execution) Apache Tez

Data
storage

HDFS Files S3 JDBC RedisRabbit
MQKafkaAzure

tables …

Single node execution Standalone or YARN cluster

30
30

Flink Optimizer

Common API

Scala API Java API

Python API
(upcoming) Graph API Apache

MRQL

Flink Local Runtime Embedded
environment
(Java collections) Local

Environment
(for debugging)

Remote environment
(Regular cluster execution) Apache Tez

Standalone or YARN cluster

Data
storage

HDFS Files S3 JDBC Azure
tables …

Single node execution

Program lifecycle

204

val source1 = …
val source2 = …
val maxed = source1

.map(v => (v._1,v._2,
math.max(v._1,v._2))

val filtered = source2
.filter(v => (v._1 > 4))

val result = maxed
.join(filtered).where(0).equalTo(0)
.filter(_1 > 3)
.groupBy(0)
.reduceGroup {……}

1

3

4
5

2

30
30

Flink Optimizer

Common API

Scala API Java API

Python API
(upcoming) Graph API Apache

MRQL

Flink Local Runtime Embedded
environment
(Java collections) Local

Environment
(for debugging)

Remote environment
(Regular cluster execution) Apache Tez

Standalone or YARN cluster

Data
storage

HDFS Files S3 JDBC Azure
tables …

Single node execution

§ The optimizer is the
component that selects an
execution plan for a Common
API program

§ Think of an AI system
manipulating your program
for you J

§ But don’t be scared – it works
• Relational databases have

been doing this for decades –
Flink ports the technology to
API-based systems

Flink Optimizer

205

Optimization/auto-tuning – A Key design feature
of Flink from its VERY BEGINNING

206

Flink automatically optimizes Execution Plan of a
program

207

Flink’s Optimizer
§ Inspired by optimizers of parallel database systems

• Cost models and reasoning about interesting properties.

§ Physical optimization follows cost-based approach
• Select data shipping strategy (forward, partition, broadcast)
• Local execution (sort merge join/ hash join)
• Keep track of interesting properties such as sorting, grouping and

partitioning

§ Optimization of Flink programs more difficult than in the relational case:
• No fully specified operator semantics due to UDFs
• Unknown UDFs complicate estimating intermediate result sizes
• No pre-defined schema present

208

Example of optimizing a Flink program

209

val orders = …
val lineitems = …

val filteredOrders = orders
.filter(o => dataFormat.parse(l.shipDate).after(date))
.filter(o => o.shipPrio > 2)

val lineitemsOfOrders = filteredOrders
.join(lineitems)
.where(“orderId”).equalTo(“orderId”)
.apply((o,l) => new SelectedItem(o.orderDate, l.extdPrice))

val priceSums = lineitemsOfOrders
.groupBy(“orderDate”).sum(“l.extdPrice”);

Another Optimization Example

210

Two execution plans

211

DataSource
orders.tbl

Filter
Map DataSource

lineitem.tbl

Join
Hybrid Hash

buildHT probe

broadcast forward

Combine

GroupRed
sort

DataSource
orders.tbl

Filter
Map DataSource

lineitem.tbl

Join
Hybrid Hash

buildHT probe

hash-part [0] hash-part [0]

hash-part [0,1]

GroupRed
sort

forwardBest plan
depends on
relative sizes
of input files

Data Flow Optimizer

212

Example: Flink’s Optimization on Transitive Closure

More Examples of Optimization
§ Task chaining

• Coalesce map/filter/etc tasks

§ Join optimizations
• Broadcast/partition, build/probe side, hash or sort-merge

§ Interesting properties
• Re-use partitioning and sorting for later operations

§ Automatic caching
• E.g., for iterations

214

Yahoo! Benchmark Results (circa Dec 2015)

dataArtisan’s Benchmark Results

217

Show me the (Performance) Numbers !

218

Show me the (Performance) Numbers !

219

Show me the (Performance) Numbers !

220

Show me the (Performance) Numbers !

Comparing Engine Paradigms & Systems

221

Engine Comparison

222

Batch Comparison

223

Streaming Comparison

224

Deployment and Process Model

Diverse Deployment Scenarios

§ Many different deployment scenarios
• Yarn
• Mesos
• Docker/Kubernetes
• Standalone
• Etc.

Flink Improvement Proposal 6
§ Introduce generic building blocks

§ Compose blocks for different
scenarios

§ Effort started by:

Flip-6 design document:
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=65147077

https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=65147077

Flink’s Revamped Distributed Architecture
§ Motivation

• Resource Elasticity
• Support for Different Deployments
• REST interface for Client-Cluster communications

§ Introduce generic Building Blocks
§ Compose blocks for different scenarios

Different Usage Patterns
§ Few long running vs. many short running

jobs
• Overhead of starting a Flink cluster

§ Job isolation vs. sharing resources
• Allowing to define per job credentials & secrets
• Efficient resource utilization by sharing them

Job & Session Mode
§ Session mode

• Shared cluster for multiple jobs
• Resources can be shared across jobs
• Cluster deployment and job submission

separate actions

§ Job mode
• Dedicated cluster for a single job
• Job should be part of the cluster deployment

231

The Building Blocks

• ClusterManager-specific
• May live across jobs
• Manages available Containers/TaskManagers
• Acquires / releases resources

ResourceManager

TaskManagerJobManager

• Registers at ResourceManager
• Gets tasks from one or more

JobManagers

• Single job only, started per job
• Thinks in terms of "task slots"
• Deploys and monitors job/task execution

Dispatcher

• Lives across jobs
• Touch-point for job submissions
• Spawns JobManagers

The Building Blocks

ResourceManager

(3) Request slots
TaskManager

JobManager

(4) Start TaskManager

(5) Register

(7) Deploy Tasks

Dispatcher

Client

(1) Submit Job

(2) Start
JobManager

(6) Offer slots

Building YARN PER-JOB MODE
YARN

ResourceManager

YARN Cluster

YARN
Cluster
Client

(1) Submit YARN App.
(JobGraph / JARs)

Cluster Entrypoint
Flink-YARN

ResourceManager

JobManager TaskManager

TaskManager

TaskManager

(2) Spawn
Application Master

(5) Start
TaskManagers

(7) Deploy
Tasks

(6) Register(4) Request slots

MiniDispatcher

(3) Spawn job

Differences to old YARN Per-job mode

§ User JARs in classpath of all components
• Fewer class loading issues

§ Dynamic resources allocation
• No longer necessary to specify number of containers

at start-up

§ No two phase job submission

BUILDING YARN Session MODE

Cluster Entrypoint
Flink-YARN

ResourceManager
(5)

Request
slots

JobManager
(A)

JobManager
(B)

Dispatcher

(4) Start
JobMngr

YARN
ResourceManager

YARN Cluster

Client

(1) Submit YARN App.
(FLINK – session)

TaskManager

TaskManager

TaskManager

(2) Spawn
Application Master

(6) Start
TaskManagers

(8, 12) Deploy
Tasks

(7) Register
(3) Submit

Job A (11)
Request
slots

(10) Start
JobMngr

(9) Submit
Job B

Flink Mesos Integration

Building Flink-on-Mesos (Job mode)

Latency vs. Throughput

239

Deploying Flink as a Framework vs. as a Library

240

Standing Processes / Endpoints,
Dynamic Control over Resources

Long running application
under the control of your

container manager

Deployment Model Wrap up
§ New distributed architecture allows Flink to

support many different deployment
scenarios

§ Flink now supports a native “job” mode as
well as the “session” mode

§ Support for full resource elasticity

§ REST interface for easy cluster
communication

Visualization tools

242

Visualization tools

243

Visualization tools

244

Recapping the
Evolution of Flink

245

Evolution Timeline of Flink

246

Where does Apache Flink come from ?

247

Evolution Timeline of Flink

Where does Apache Flink come from ?

248

Where does Apache Flink come from ?

249

Evolution Timeline of Flink

Where does Apache Flink come from ?

250

Where does Apache Flink come from ?

251

Where does Apache Flink come from ?

252

Where does Apache Flink come from ?

253

Where does Apache Flink come from ?

254

Evolution Timeline of Flink

Latency vs. Throughput

255

Latency vs. Throughput

256
256

Latency vs. Throughput

257
257

Latency vs. Throughput

258
258

Evolution Timeline of Flink

Latency vs. Throughput

259
259

Latency vs. Throughput

260
260

Evolution Timeline of Flink

Latency vs. Throughput

261
261

Evolution Timeline of Flink (by v1.5)

May 2018

Latency vs. Throughput

262 262

Flink 1.5 in a nutshell

New in Flink 1.5
§ FLIP-6

• Tighter integration with the resource manager (YARN, Mesos, Kubernetes)
• Enables dynamic management of resources
• Rework of the client/cluster communication to be REST-based

§ Localised Failure Recovery
• Failures don‘t require restoring all state from distributed storage
• TaskManagers keep state on machines
• Failures that are not caused by machine failures lead to faster recovery

§ 50% Network Stack Rewrite
• Better throughput at very low latencies
• Much improved backpressure handling

New in Flink 1.5 (cont‘d)
§ Broadcast State

• API that enables new use cases such as applying dynamic CEP patterns on a stream or join

§ SQL CLI
• An interactive command-line interface for executing SQL queries on Flink

§ Unified Table Sources
• A new interface for defining sources for a Table API/SQL program that allows defining

sources from a configuration file

§ Loads more automated testing/release verification
• Streamlined testing which will lead to lower overhead for releases

Flink 1.6 and Beyond
v1.6 released in Aug 2018,
v1.7 in Nov 2018

What’s new in Flink 1.6
§ Autoscaling

• Automatic and dynamic changes in the parallelism of Flink programs
and individual operators

§ Hot-standby replication
• Replication of the state of operations to multiple machines so that

we can instantly migrate computation in case of failures

§ Zero-downtime scaling and upgrades
• Parallelism changes, framework upgrades and user-code updates

without any downtime

§ More Table API/SQL connectors, integration with data bases
• Dynamic Tables based on a data base, not a stream

§ End-to-end batch/streaming integration
• Unification of the DataStream and DataSet APIs
• Efficient execution of batch programs and streaming programs
• Dynamic switching of execution modes based on workload

§ Support for more programming languages
• Upcoming: Python and Go (via Apache Beam)
• Tensorflow for Machine Learning and AI (also via Apache Beam)

What’s new in Flink 1.6 (cont’d)

What’s new in Flink 1.6 (cont’d)
§ Java 9 (FLINK-8033) and Scala 2.12 (FLINK-7811)
§ Improvements for container environments,

e.g. K8s (FLINK-9495)
§ Full job submission through REST (FLINK-9280)
§ State back-ends for timers (FLINK-9485)
§ State back-ends for operator state

https://issues.apache.org/jira/browse/FLINK-8033
https://issues.apache.org/jira/browse/FLINK-7811
https://issues.apache.org/jira/browse/FLINK-9495
https://issues.apache.org/jira/browse/FLINK-9280
https://issues.apache.org/jira/browse/FLINK-9485

§ BucketingSink with Flink file systems (including S3)
§ State evolution: support type conversion on snapshot

restore
§ Stream SQL:

• support “update by key” Table Sources
• more table sources and sinks (Kafka, Kinesis, Files, K/V stores)

§ CEP
• Integrate CEP and SQL via MATCH_RECOGNIZE (FLINK-7062)
• Improve CEP performance of SharedBuffer on RocksDB

(FLINK-9418)

What’s new in Flink 1.6 (cont’d)

https://issues.apache.org/jira/browse/FLINK-7062
https://issues.apache.org/jira/browse/FLINK-9418

Major New Features in Flink 1.7
§ Support of State (Schema) Evolution
§ Exactly-Once support with AWS S3-streaming
§ MATCH_RECOGNIZE support in Streaming SQL
§ Temporal Tables and Temporal Joins in Streaming

SQL

270

More Details on New Features in
Flink 1.5 and Beyond

272

273

274

275

Latency vs. Throughput

276

Latency vs. Throughput

277

Latency vs. Throughput

278

Latency vs. Throughput

279

Powered by Apache Flink

Retail, e-commerce
§ Better product

recommendations
§ Process monitoring
§ Inventory

management

Finance
§ Differentiation

via tech
§ Push-based

products
§ Fraud detection

Telco, IoT,
Infrastructure
§ Infrastructure

monitoring
§ Anomaly

detection

Internet & mobile
§ Personalization
§ User behavior

monitoring
§ Analytics

281

30 Flink applications in production for more than
one year. 10 billion events (2TB) processed daily

Complex jobs of > 30 operators running 24/7,
processing 30 billion events daily, maintaining
state of 100s of GB with exactly-once guarantees

Largest job has > 20 operators, runs on > 5000
vCores in 1000-node cluster, processes millions of
events per second

282

Flink in Practice (by Sept 2016)

Flink in Practice: more sample applications

283

Athena X Streaming SQL
Platform Service

Streaming Platform as a Service

Fraud detection
Streaming Analytics Platform

100s jobs, 1000s nodes, TBs state
metrics, analytics, real time ML
Streaming SQL as a platform

How Large (or Small) can Flink get?

Blink is Alibaba's
Flink-based System

Keystone Routing Pipeline at Netflix
(as presented at Flink Forward San Francisco, 2018)

Small Flink
§ Can run in single process

§ Some users run it on IoT Gateways

§ Also runs with zero dependencies in IDE

Future Direction for Flink

289

290

What’s Next: True Batch/ Stream Unification

291

Other Ongoing Objectives
for Flink

§ Provide state of the art streaming capabilities

§ Operate in the largest infrastructures of the world

§ Open up to a wider set of enterprise users

§ Broaden the scope of stream processing

292

Other Ongoing Objectives for Flink

Authoritative Free Books on Apache Flink

Available at:
https://mapr.com/introduction-to-apache-flink/
https://info.lightbend.com/rs/558-NCX-702/images/preview-apache-flink.pdf

https://mapr.com/introduction-to-apache-flink/
https://info.lightbend.com/rs/558-NCX-702/images/preview-apache-flink.pdf

Backup Slides

Flink runtime
features

295

30
30

Flink Optimizer

Common API

Scala API Java API

Python API
(upcoming) Graph API Apache

MRQL

Flink Local Runtime Embedded
environment
(Java collections) Local

Environment
(for debugging)

Remote environment
(Regular cluster execution) Apache Tez

Standalone or YARN cluster

Data
storage

HDFS Files S3 JDBC Azure
tables …

Single node execution

Flink Local Runtime

296

§ Local runtime, not
the distributed
execution engine

§ Aka: what happens
inside every
parallel task

Flink runtime operators
§ Sorting and hashing data
• Necessary for grouping, aggregation, reduce, join,

cogroup, delta iterations

§ Flink contains tailored implementations of hybrid
hashing and external sorting in Java
• Scale well with both abundant and restricted

memory sizes

297

30
30

Flink Optimizer

Common API

Scala API Java API

Python API
(upcoming) Graph API Apache

MRQL

Flink Local Runtime Embedded
environment
(Java collections) Local

Environment
(for debugging)

Remote environment
(Regular cluster execution) Apache Tez

Standalone or YARN cluster

Data
storage

HDFS Files S3 JDBC Azure
tables …

Single node execution

Flink distributed execution

298

§ Pipelined
• Same engine for

Flink and Flink
streaming

§ Pluggable
• Local runtime can be

executed on other
engines

• E.g., Java collections
and Apache Tez

Coordination built on Akka library

Task
Manager

Job
Manager

Task
Manager

Flink Client &
Optimizer

DataSet<String> text = env.readTextFile(input);

DataSet<Tuple2<String, Integer>> result = text
.flatMap((str, out) -> {

for (String token : value.split("\\W")) {
out.collect(new Tuple2<>(token, 1));

})
.groupBy(0)
.aggregate(SUM, 1);

O Romeo,
Romeo,
wherefore
art thou
Romeo?

O, 1
Romeo, 3
wherefore, 1
art, 1
thou, 1

Apache Flink

299

Nor arm,
nor face,
nor any
other part

nor, 3
arm, 1
face, 1,
any, 1,
other, 1
part, 1

If you need to know one
thing about Flink is that
you don’t need to know

the internals of Flink.
300

Philosophy

§ Flink “hides” its internal workings from the user
§ This is good
• User does not worry about how jobs are executed
• Internals can be changed without breaking changes

§ … and bad
• Execution model more complicated to explain

compared to MapReduce or Spark RDD
301

Parallel Stateful
Streaming Execution

Stateful Event & Stream Processing

303

Source Filter /
Transform

State
read/write Sink

Stateful Event & Stream Processing

304

Scalable embedded state

Access at memory speed &
scales with parallel operators

Stateful Event & Stream Processing

305

Re-load state

Reset positions
in input streams

Rolling back computation
Re-processing

Event Sourcing + Memory Image

306

event log
persists events
(temporarily)

event /
command

Process

main memory

update local
variables/structures

periodically snapshot
the memory

Event Sourcing + Memory Image

307

Recovery: Restore snapshot and replay events
since snapshot

event log
persists events
(temporarily)

Process

Stateful Event & Stream Processing

308

Checkpointing & Recovery

What is State in a Streaming Application ?

310

Maintaining and Checkpointing State

311

Checkpointing / Recovery
§ Flink acknowledges batches of records

• Less overhead in failure-free case
• Currently tied to fault tolerant data sources (e.g., Kafka)

§ Flink operators can keep state
• State is checkpointed
• Checkpointing and record acks go together

§ Exactly one semantics for state

312

Checkpointing / Recovery

313
Chandy-Lamport Algorithm for consistent asynchronous distributed snapshots

Pushes checkpoint barriers
through the data flow

Operator checkpoint
starting

Checkpoint done

Data Stream
barrier

Before barrier =
part of the snapshot

After barrier =
Not in snapshot

Checkpoint done

checkpoint in progress

(backup till next snapshot)

Take state snapshot

Flink State and Distributed Snapshots

Stateful
Operation

Source

"Asynchronous Barrier Snapshotting“

Stable Storage

Synchronously trigger
state snapshot

(e.g. copy-on-write)

Flink State and Distributed Snapshots

Stateful
Operation

Source

Take state snapshot

Processing pipeline continues

Durably persist
full snapshots

asynchronously

Flink State and Distributed Snapshots

Stateful
Operation

Source

Stable Storage

Task Local Recovery

Recovery From Failure

Stateful
Operation

Source

Stable Storage

Recovery From Failure

Stateful
Operation

Source

Stable Storage

Resume to checkpoint offset

Restore State

Restore State

Local Recovery (Flink 1.5)

Source

Stable Storage

Resume to checkpoint offset

Local Snapshot

Local Snapshot Corresponding
snapshot,

but physical
representation

can differ

Local Recovery (TM survived)

Source

Stable Storage

Resume to checkpoint offset

Local Snapshot

Local Snapshot

Restore State
(local)

Restore State
(local)

Local Recovery (TM lost)

Source

Stable Storage

Resume to checkpoint offset

Restore State
(remote)

Restore State
(local)

Local Snapshot

Localized State Recovery (since Flink 1.5)

323

Piggybags on internal Multi-version
data structures:
• LSM Tree (RocksDB)
• MV Hashtable (Fs / Mem State Backend)

Setup:
• 500 MB state per node
• Checkpoints to S3
• Soft failure (Flink fails, machine survives)

324

Having fun
with snapshots

Creating periodic Snapshots

325

time

Replay from Savepoints to Drill Down

326

time
Incident of Interest

"Debug Job"
(modified version of original Job)

Filter
(events of interest only)

Extra sink for
trace output

Pause / Resume style execution

327

time
Bursty Event Stream (events only at only end-of-day)

Pause / Resume style execution

328

time
Bursty Event Stream (events only at only end-of-day)

Checkpoint / Savepoint
Store

Resource Elastisticity

Dynamic Scaling Flink applications
§ Relatively Straightforward to Scale Stateless Jobs:

Dynamic Scaling Stateful Flink applications

§ Problem: Which State(s) to assign to new task(s) ?

Repartitioning of Operator States
§ Breaking Operator States up into Finer

Granularity
• State has to contain multiple entries
• Automatic re-partitioning w.r.t. granularity

§ Example: Kafka Source
• Store Offset for each Partition
• Individual entries are repartitionable

Keyed vs. Operator State

Repartitioning of Keyed States

Repartitioning of Keyed States (cont’d)

Automatic Scaling

Broadcast State

Why Broadcast State?

Evaluate a global, changing Set of Rules over a
(non-) keyed stream of events.

How to use Broadcast State

Stream A: data

Stream B: rules

How to use Broadcast State

Stream A: data

keyBy

Stream B: rules

How to use Broadcast State

Stream A: data

Keyed State

keyBy

Stream B: rules

How to use Broadcast State

Stream A: data

keyBy

broadcast

Stream B: rules

How to use Broadcast State

Stream A: data

Broadcast State

keyBy

broadcast

Stream B: rules

How to use Broadcast State

Stream A: data

keyBy

broadcast

Stream B: rules

connect

How to use Broadcast State

Stream A: data

keyBy

broadcast

Stream B: rules

connect

Broadcast State Wrap up
§ Partition elements by key
§ State associated to a key
§ Broadcast elements
§ State to store the broadcasted elements

• Non-keyed
• Identical on all tasks even after restoring/rescaling

§ Ability to connect the two streams and react to incoming
elements
• Connect keyed with non-keyed stream
• Have access to respective states

https://ci.apache.org/projects/flink/flink-docs-release-1.5/dev/stream/state/broadcast_state.html

https://ci.apache.org/projects/flink/flink-docs-release-1.5/dev/stream/state/broadcast_state.html

Backup/ Excess

1. Failures and downtime
§ Checkpoints & savepoints
§ Exactly-once guarantees

2. Out of order and late data
§ Event time support
§ Watermarks

3. Results when you need them
§ Low latency
§ Triggers

4. Accurate modeling
§ True streaming engine
§ Sessions and flexible

windows

348

5. Batch + streaming
§ One engine
§ Dedicated APIs

6. Reprocessing
§ High throughput, event

time support, and
savepoints

7. Ecosystem
§ Rich connector

ecosystem and 3rd party
packages

8. Community support
§ One of the most active

projects with over 200
contributors

349

flink -s <savepoint> <job>

Summary: Cornerpoints of Flink Design

350

Robust Algorithms on
Managed Memory

Pipelined Execution
of Batch Programs

à Better shuffle performance

à No OutOfMemory Errors
à Scales to very large JVMs
à Efficient Checkpointing/

Recovery & Saved points Op.

Flexible Data
Streaming Engine

à Low Latency Stream Proc.
à Highly flexible windowing

semantics (i.e. think Beam)

Native Iterations
à Very fast Graph Processing
à Stateful Iterations for ML

High-level APIs,
beyond key/value pairs

à Java, Scala, Python(beta only)
à Relational-style optimizer

à Storm Compatibility Library
à Graphs / ML Pipelines
à ML & Streaming ML (catching up)

à Scales to very large groups
Additional Library Support

What is Flink's unique contribution in the
streaming data ecosystem?

351

Before Flink, users had to make hard choices
between volume, latency, and accuracy

352

Flink eliminates these tradeoffs

§ 10s of millions events per second for stateful
applications

§ Sub-second latency, as low as single-digit
milliseconds

§ Accurate computation results

353

A broader definition of accuracy: the results that I
want when I want them

1. Accurate under failures and downtime
2. Accurate under out of order data
3. Results when you need them
4. Accurate modeling of the world

354

355

Having a dependable framework enables
more stateful applications to run as

streaming applications

