
ESTR4316 Spring 2024

Consistency Models

Prof. Wing C. Lau
Department of Information Engineering

wclau@ie.cuhk.edu.hk



2

Acknowledgements

n The slides used in this chapter are adapted from the following 
source(s):
n Prof. Srini Seshan, CMU
n Roy Campell, “Paxos and ZooKeeper,” Lecture notes of 

CS498 Cloud Computing, UIUC course, Spring 2014.
n Shaz Qadeer, “Review: Linearizability”, Microsoft Research, 

2011
n Consistency Models: https://jepsen.io/consistency
n Martin Kleppmann, Distributed Systems Lecture series, 

Cambridge University, 2021:
n https://www.cl.cam.ac.uk/teaching/2122/ConcDisSys/materials.html
n https://www.youtube.com/playlist?list=PLeKd45zvjcDFUEv_ohr_HdU

Fe97RItdiB
n Steve Ko, University of Buffalo (SUNY Buffalo), CSE 

486/586, Distributed Systems
n Indranil Gupta, UIUC, Distributed Systems course

https://jepsen.io/consistency
https://www.cl.cam.ac.uk/teaching/2122/ConcDisSys/materials.html
https://www.youtube.com/playlist?list=PLeKd45zvjcDFUEv_ohr_HdUFe97RItdiB


3

Consistency Models



Data Replication
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• Consider that this is a distributed storage system that 
serves read/write requests.

• Multiple copies of a same object stored at different 
servers



Why do we need Data Replication ? 
• Why replicate?
• Increased availability of service. When servers fail or 

when the network is partitioned.
– P:  probability that one server fails= 1 – P= availability of 

service. e.g. P = 5% => service is available 95% of the time.
– Pn:  probability that n servers fail= 1 – Pn= availability of 

service. e.g. P = 5%, n = 3 => service available 99.875% of 
the time

• Fault tolerance
– Under the fail-stop model, if up to f of f+1 servers crash, at 

least one is alive.
• Load balancing

– One approach: Multiple server IPs can be assigned to the 
same name in DNS, which returns answers round-robin.
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Consistency with Data Replicas
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• Consider that this is a distributed storage system that 
serves read/write requests.

• Multiple copies of a same object stored at different 
servers

• Question: How to maintain consistency across different 
data replicas?



Consistency Models
• Consistency Model is a contract between processes 

and a data store
– if processes follow certain rules, then store will work 

“correctly”
• Needed for understanding how concurrent reads and 

writes behave with respect to shared data
• Relevant for shared memory multiprocessors 

– cache coherence algorithms
• Shared databases, files

– independent operations
» our main focus in the rest of the lecture

– transactions
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Taxonomy of 
Consistency Models
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Data-centric Consistency Models
¢ Strict consistency
¢ Sequential consistency
¢ Linearizability
¢ Causal consistency
¢ FIFO consistency
¢ Weak consistency
¢ Release consistency
¢ Entry consistency

¢ Notation: 
l Wi(x)a à process i writes value a to location x  
l Ri(x)a à process i reads value a from location x

9

use explicit synchronization 
operations
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Strict Consistency

Behavior of two processes, operating on the same data item.

A strictly consistent store A store that is not strictly consistent.

Any read on a data item x returns a value corresponding to 
the result  of the most recent write on x. “All writes are 
instantaneously visible to all processes”

The problem with strict consistency is that it relies on absolute 
global time and is impossible to implement in a distributed system.

time



Outline
• We will look at different consistency guarantees 

(models).
• We’ll start from the practically strongest guarantee, 

and gradually relax the guarantees.
– Linearizability (or sometimes called strong consistency)
– Sequential consistency
– Causal consistency
– FIFO consistency
– Eventual consistency

• Different applications need different consistency 
guarantees.

• This is all about client-side perception.
– When a read occurs, what do you return?

• First
– Linearizability: we’ll look at the concept first, then how to 

implement it later. 11



Our Expectation with Data
• Consider a single process using a filesystem 
• What do you expect to read?

• Our expectation (as a user or a developer)
• A read operation returns the most recent write.
• This forms our basic expectation from any file or storage 

system.
• Linearizability meets this basic expectation.

• But it extends the expectation to handle multiple 
processes…

• …and multiple replicas.
• The strongest consistency model

12

P1
x.write(2) x.read() ?



Expectation with Multiple Processes 
• What do you expect to read?

– A single filesystem with multiple processes

• Our expectation (as a user or a developer)
• A read operation returns the most recent write, regardless 

of the clients.
• We expect that a read operation returns the most recent 

write according to the single actual-time order.
• In other words, read/write should behave as if there were a 

single (combined) client making all the requests.
• It’s easiest to understand and program for a developer if 

your storage appears to process one request at a time.

13

P1
x.write(5)

P2
x.write(2) x.read() ?



Expectation with Multiple Copies
• What do you expect to read?

– A single process with multiple servers with copies

• Our expectation (as a user or a developer)
• A read operation returns the most recent write, regardless 

of how many copies there are.
• Read/write should behave as if there were a single copy.

14

P1
x.write(2) x.read() ?



Linearizability
• Three aspects

– A read operation returns the most recent write,
– …regardless of the clients,
– …according to the single actual-time ordering of requests.

• Or, put it differently, read/write should behave as if 
there were,

– …a single client making all the (combined) requests in their 
original actual-time order (i.e., with a single stream of ops),

– …over a single copy.
• You can say that your storage system guarantees 

linearizability when it provides single-client, single-
copy semantics where a read returns the most recent 
write.

– It should appear to all clients that there is a single order 
(actual-time order) that your storage uses to process all 
requests. 15



Linearizability Exercise
• Assume that the following happened with object x 

over a linearizable storage.
– C1: x.write(A)
– C2: x.write(B)
– C3: x.read() à B, x.read() à A
– C4: x.read() à B, x.read() à A

• What would be an actual-time ordering of the 
events?

– One possibility: C2 (write B) -> C3 (read B) -> C4 (read B) -> 
C1 (write A) -> C3 (read A) -> C4 (read A)

• How about the following?
– C1: x.write(A)
– C2: x.write(B)
– C3: x.read() à B, x.read() à A
– C4: x.read() à A, x.read() à B

16



Linearizability Subtleties
• Notice any problem with the representation?

17North CarolinaCalifornia

You (NY)
x.write(5)

Friend (CA)
x.write(2) read(x) ?



Linearizability Subtleties
• A read/write operation is never a dot!

– It takes time. Many things are involved, e.g., network, 
multiple disks, etc.

– Read/write latency: the time measured right before the call 
and right after the call from the client making the call.

• Clear-cut (e.g., black---write & red---read)

• Not-so-clear-cut (parallel)
– Case 1:

– Case 2:

– Case 3:
18



Linearizability Subtleties
• With a single process and a single copy, can 

overlaps happen?
– No, these are cases that do not arise with a single process 

and a single copy.
– “Most recent write” becomes unclear when there are 

overlapping operations.
– We don’t necessarily have any “natural” expectation for this 

behavior.
• Thus, linearizability defines a reasonable thing:

– As long as it appears to all clients that there is a single, 
interleaved ordering for all (overlapping and non-
overlapping) operations that your implementation uses to 
process all requests, it’s fine.

– You can pick an ordering for processing, and there you need 
to show that you’re returning the most recent write.

19



Linearizability Subtleties
• Definite guarantee

• Relaxed guarantee when overlap
• Case 1

• Case 2

• Case 3

20



Example 1: Multi-thread access to the 
System Stack data-structure

• The following history is linearizable.

Thread 1
Push(10)

TIME

Push(20) OkOk

Thread 2
TryPop () 10

Thread 2
FailTryPop()



Example 1: Stack

• The following history is linearizable.

Thread 1
Push(10)

TIME

Push(20) OkOk

Thread 2
TryPop () 10

Thread 2
TryPop() Fail



Definition of Linearizability

• Given some component C (say, a class or a data object)
• And some operations O1, O2, .. (say, methods)
• An operation is linearizable if it always appears to take 

effect at a single instant of time (called the commit point) 
which happens sometime after the operation is called and 
before it returns.

• Linearizable operations are sometimes called atomic, but 
that term is overused 

– (e.g. Not to confuse this “atomic” with the “All-or-nothing atomic” 
nature of multiple operations within a Database Transaction !!)



Example 2: Stack
• The following history is not linearizable.

TIME

Thread 1
Push(10) TryPop() 10Ok

Thread 2
TryPop () FailPush(10) Ok



Example 2: Stack
• The following history is not linearizable.

TIME

Thread 1
Push(10) TryPop() 10Ok

Thread 2
TryPop () FailPush(10) Ok

At this point, both pushes have 
taken effect. So there cannot be less
Than 1 element in the stack.



Linearizability Subtleties
• Definite guarantee

• Relaxed guarantee when overlap
• Case 1

• Case 2

• Case 3

26



Linearizability Examples
• Example 1: if your system behaves this way…

• Example 2: if your system behaves this way…

27

a.write(x)
a.read() -> x

a.write(x)
a.read() -> 0

a.read() -> x

a.read() -> x

a.read() -> x
If this were 
a.read() -> 0, 
would it support 
linearizability?

No



Linearizability Examples
• In example 2, what are the constraints?

• Constraints
– a.read() à 0 happens before a.read() àx (you need to be 

able to explain why that happens that way).
– a.read() à x happens before a.read() àx (you need to be 

able to explain why that happens that way).
– The rest are up for grabs.

• Scenario
– a.write(x) gets propagated to (last client’s) a.read() -> x first.
– a.write(x) gets propagated to (the second process’s) a.read() 

-> x, right after a.read() -> 0 is done.
28

a.write(x)
a.read() -> 0

a.read() -> x

a.read() -> x



Linearizability Examples
• In example 2, why would a.read() return 0 and x 

when they’re overlapping?

• This assumes that there’s a particular storage 
system that shows this behavior.

• At some point between a read/write request sent and 
returned, the result becomes visible.

– E.g., you read a value from physical storage, prepare it for 
return (e.g., putting it in a return packet, i.e., making it 
visible), and actually return it.

– Or you actually write a value to a physical disk, making it 
visible (out of multiple disks, which might actually write at 
different points).

29

a.write(x)
a.read() -> 0

a.read() -> x

a.read() -> x



Linearizability Examples
• Example 3

• Constraints
– a.read() à x and a.read() à x: we cannot change these.
– a.read() à y and a.read() à x: we cannot change these.
– The rest is up for grabs.

30

a.write(x)

a.read() -> x

a.read() -> y

a.read() -> x

a.write(y)



Linearizability (Textbook Definition) 
• Let the sequence of read and update operations that 

client i performs in some execution be oi1, oi2,….
– "Program order" for the client

• A replicated shared object service is linearizable if for 
any execution (real), there is some interleaving of 
operations (virtual) issued by all clients that: 

– meets the specification of a single correct copy of objects
– is consistent with the actual times at which each operation 

occurred during the execution 
• Main goal: any client will see (at any point of time) a 

copy of the object that is correct and consistent
• The strongest form of consistency

31



Summary
• Linearizability

– Single-client, Single-copy semantics
• A read operation returns the most recent write, 

regardless of the clients, according to their actual-
time ordering.

32
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Consistency Models
Part II



Recap: Linearizability
• Linearizability

– Should provide the behavior of a single client and a single 
copy

– A read operation returns the most recent write, regardless of 
the clients according to their original actual-time order.

• Complication
– In the presence of concurrency, read/write operations 

overlap.
– There, you should be able to show that you’re using some 

ordering of requests, where you return the most recent write 
(every time there’s a read).

34



Linearizability Examples
• Example 1

• Example 2

35

a.write(x)
a.read() -> x

a.write(x)
a.read() -> 0

a.read() -> x

a.read() -> x

a.read() -> x
If this were 
a.read() -> 0, it 
wouldn’t support 
linearizability.



Linearizability Examples
• Example 3

36

a.write(x)

a.read() -> x

a.read() -> y

a.read() -> x

a.write(y)



Linearizability
• Linearizability is all about client-side perception.

– The same goes for all consistency models for that matter.
• If you write a program that works with a linearizable 

storage, it works as you expect it to work.
• There’s no surprise.

37



Implementing Linearizability
• Will this be difficult to implement? Any strategy?

38North CarolinaCalifornia

You (NY)
x.write(5)

Friend (CA)
x.write(2) read(x) à 5



Implementing Linearizability
• Will this be difficult to implement?

– It depends on what you want to provide.

• How about:
– All clients send all read/write to CA datacenter.
– CA datacenter propagates to NC datacenter.
– A request never returns until all propagation is done.
– Correctness (linearizability)? yes
– Performance? No

39

You (NY)
x.write(5)

Friend (CA)
x.write(2) read(x) à 5



Implementing Linearizability
• Importance of latency

– Amazon: every 100ms of latency costs them 1% in sales.
– Google: an extra .5 seconds in search page generation time 

dropped traffic by 20%.
• Linearizability typically requires complete

synchronization of multiple copies before a write 
operation returns.

– So that any read over any copy can return the most recent 
write.

– No room for asynchronous writes (i.e., a write operation 
returns before all updates are propagated.)

• It makes less sense in a global setting.
– Inter-datecenter latency: ~10s ms to ~100s ms

• It might still makes sense in a local setting (e.g., 
within a single data center).

40



Passive (Primary-Backup) 
Replication

• Request Communication: the request is issued to the 
primary RM and carries a unique request id.

• Coordination: Primary takes requests atomically, in 
order, checks id (resends response if not new id.)

• Execution: Primary executes & stores the response  
• Agreement: If update, primary sends updated 

state/result, req-id and response to all backup RMs 
(1-phase commit enough).

• Response: primary sends result to the front end

41
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Chain Replication
• One technique to provide linearizability with better 

performance
– All writes go to the head.
– All reads go to the tail.

• Linearizability?
– Clear-cut cases: straightforward
– Overlapping ops?

42

N0 N1 N2

Reads RepliesWrites

Head Tail



Chain Replication

• What ordering does this have for overlapping ops?
– We have freedom to impose an order.
– Case 1: A write is at either N0 or N1, and a read is at N2. 

The ordering we’re imposing is read then write.
– Case 2: A write is at N2 and a read is also at N2. The 

ordering we’re imposing is write then read.
• Linearizability

– Once a write becomes visible (at the tail), all following reads 
get the write result.

43

N0 N1 N2

Reads RepliesWrites

Head Tail



Relaxing the Guarantees
• Do we need linearizability?

• Does it matter if I see some posts some time later?
• Does everyone need to see these in this particular 

order?
44



Relaxing the Guarantees
• Linearizability advantages

– It behaves as expected.
– There’s really no surprise.
– Application developers do not need any additional logic.

• Linearizability disadvantages
– It’s difficult to provide high-performance (low latency).
– It might be more than what is necessary.

• Relaxed consistency guarantees
– Sequential consistency
– Causal consistency
– Eventual consistency

• It is still all about client-side perception.
– When a read occurs, what do you return?

45



Sequential Consistency

46

Definition of Sequential consistency: 

The result of any execution is the same as if the read and write 
operations by all processes were executed in some (but the same) 
sequential order and the operations of each individual process 
appear in this sequence in the order specified by its program 
[Lamport, 1979].

i.e. any valid interleaving for instructions from different processes is 
legal but all processes must see the same interleaving.



Examples of Sequential Consistency
Process P1 Process P2 Process P3

x = 1;
print ( y, z);

y = 1;
print (x, z);

z = 1;
print (x, y);

x = 1;

print (y, z);

y = 1;

print (x, z);

z = 1;
print (x, y);

Prints:  001011

(a)

x = 1;

y = 1;

print (x,z);

print(y, z);

z = 1;
print (x, y);

Prints: 101011

(b)

y = 1;

z = 1;

print (x, y);

print (x, z);

x = 1;
print (y, z);

Prints: 010111

(c)

y = 1;

x = 1;

z = 1;

print (x, z);

print (y, z);
print (x, y);

Prints: 111111

(d)

(a)-(d) are all legal interleavings.



Sequential Consistency

• A little weaker than linearizability, but still quite strong
– Essentially linearizability, except that it allows writes from 

other processes to show up later.
• It still captures some reasonable expectation, but not 

the most natural one (which is captured by 
linearizability).

• For the remaining discussion,
– Let’s assume that there are multiple processes.
– Let’s also assume that each write has a unique value (just 

for the same of illustration).

48



Sequential Consistency
• Scenario 1: does this meet our natural expectation?

• Scenario 2: does this meet our natural expectation?

– No. Why? Not the most recent write.
– Another way to put it: we expect that a program order for a 

process is preserved.
• Sequential consistency at least preserves this 

expectation (each process’s program order).

49

P1
x.write(2) x.read() à 3x.write(3)

P1
x.write(2) x.read() à 2x.write(3)



Sequential Consistency
• Scenario 3: what if this happens (remember, there 

are multiple processes)?

– We’ll think that there must be a write after the last write.
• Would we care which of these were true?

50

P2
x.write(5)

P1
x.write(2) x.read() à 5x.write(3)

P1
x.write(2) x.read() à 5x.write(3)

P2
x.write(5)

P1
x.write(2) x.read() à 5x.write(3)

Case 1:

Or

Case 2:

The gist of sequential consistency is that it allows Case 2. Linearizability doesn’t.
The reason is that if P1 does not know anything about P2, then it is fine. 
(e.g., P1 is a web browser and P2 is another web browser used by two different people), 
P1 will just think that something must have happened between its write and read. Doesn’t really matter when exactly that happened.



Sequential Consistency
• In both cases, the logical ordering is this:

• Sequential consistency: Your storage should appear
to process all requests in a single interleaved 
ordering, where…

– …each and every process’s program order is preserved,
– …and each process’s program order is only logically 

preserved w.r.t. other processes’ program orders, i.e., it 
doesn’t need to preserve its physical-time ordering.

• It works as if all clients are reading out of a single 
copy.

– This meets the expectation from a (isolated) client, working 
with a single copy.

51

x.write(5)
P

x.write(2) x.read() à 5x.write(3)

N.B. Linearizabilty is based on physical time ordering. Sequential consistency is based on logical time ordering. 
In both models, as long as we can come up with one ordering, where we show that we’re definitely returning the most recent write, we’re fine. 
In linearizability, that’s physical time ordering. In sequential consistency, that’s logical ordering.



Sequential Consistency Examples
• Example 1: Can a sequentially consistent storage 

show this behavior? (I.e., can you come up with an 
interleaving that behaves like a single copy?)

– P1: a.write(A)
– P2:                 a.write(B)
– P3:                                 a.read()->B        a.read()->A
– P4:                                               a.read()->B       a.read()->A

• Example 2
– P1: a.write(A)
– P2:                 a.write(B)
– P3:                                 a.read()->B        a.read()->A
– P4:                                               a.read()->A       a.read()->B

52



Implementing Sequential 
Consistency
• In what implementation would the following happen?

– P1: a.write(A)
– P2:                 a.write(B)
– P3:                                 a.read()->B        a.read()->A
– P4:                                               a.read()->A       a.read()->B

• Possibility
– P3 and P4 use different copies.
– In P3’s copy, P2’s write arrives first and gets applied.
– In P4’s copy, P1’s write arrives first and gets applied.
– Writes are applied in different orders across copies.
– This doesn’t provide sequential consistency.

53



Implementing Sequential 
Consistency
• Typical implementation

– You’re not obligated to make the most recent write 
(according to actual time) visible (i.e., applied to all copies) 
right away.

– But you are obligated to apply all writes in the same order
for all copies. This order should be FIFO-total.

54



Active Replication

• A front end FIFO-orders all reads and writes.
• A read can be done completely with any single replica.
• Writes are totally-ordered and asynchronous (after at 

least one write completes, it returns).
– Total ordering doesn’t guarantee when to deliver events, i.e., 

writes can happen at different times at different replicas.
• Sequential consistency, not linearizability

– Read/write ops from the same client will be ordered at the front 
end (program order preservation).

– Writes are applied in the same order by total ordering (single 
copy).

– No guarantee that a read will read the most recent write based 
on actual time. 55

Client Front End RM

RM

Client Front End RM

….



Summary: Sequential Consistency

a) A sequentially consistent data store.
b) A data store that is not sequentially 

consistent.

Sequential consistency: the result of any execution is the same as if 
the read and write operations by all processes were executed in 
some (but the same) sequential order and the operations of each 
individual process appear in this sequence in the order specified by 
its program [Lamport, 1979].
Note: Any valid interleaving is legal but all processes must see the 
same interleaving.

P3 and P4 disagree 
on the order of the writes



Two More Consistency Models
• Even more relaxed

– We don’t even care about providing an illusion of a single 
copy.

• Causal consistency
– We care about ordering causally related write operations 

correctly.
• FIFO consistency

– Writes done by a single process are seen by all other 
processes in the order in which they were issued ;

– BUT Writes from different processes may be seen in a 
different order by different processes.

• Eventual consistency
– As long as we can say all replicas converge to the same 

copy eventually, we’re fine.

57
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Causal Consistency

This sequence is allowed with a causally-consistent store, but not with 
sequentially or strictly consistent store.

Can be implemented with vector clocks.

• Necessary condition: For “Writes” that are potentially causally related, 
they (and thus their results) must be seen by all processes in the 
same order.  

• Concurrent writes may be seen in a different order on different 
machines. concurrent since no 

causal relationship
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Causal Consistency (cont’d)

a) A violation of a causally-consistent store.  The two writes 
are NOT concurrent because of the R2(x)a.

b) A correct sequence of events in a causally-consistent 
store (W1(x)a and W2(x)b are concurrent).



FIFO Consistency

A valid sequence of events of FIFO consistency.  Only requirement in 
this example is that  P2’s writes are seen in the correct order.  FIFO 
consistency is easy to implement.

Necessary Condition: Writes done by a single process 
are seen by all other processes in the order in which 
they were issued, but Writes from different processes 
may be seen in a different order by different processes.



Summary
• Linearizability

– The ordering of operations is determined by time.
– Primary-backup can provide linearizability.
– Chain replication can also provide linearizability.

• Sequential consistency
– The ordering of operations preserves the program order of 

each client.
– Active replication can provide sequential consistency.

61



Summary of Some Common
Consistency Models

62

Consistency Description

Strict Absolute time ordering of all shared accesses matters.

Linearizability
All processes must see all shared accesses in the same 
order.  Accesses are furthermore ordered according to a 
(loosely synchronized, non-unique) global timestamp

Sequential All processes see all shared accesses in the same order.  
Accesses are not ordered in time

Causal All processes see causally-related shared accesses in the 
same order.

FIFO
All processes see writes from each other in the order they 
were used.  Writes from different processes may not 
always be seen in that order
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Recap: ZooKeeper Service

n All servers store a copy of the data, logs, snapshots on disk
and use an in memory database

n A leader is elected at startup
n Followers service clients
n Update responses are sent when a majority of servers have 

persisted the change

ZooKeeper Service

ServerServer ServerServerServerServer
Leader

Client ClientClientClientClient ClientClient
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**Properties Guaranteed** by ZooKeeper 
n FIFO per Client Order

n All requests  of the same client will be applied/ processed in the order 
they were sent.

n Ordering of notifications and state changes to a Client are also 
guaranteed 

n Linearizability for all requests that change Zookeeper states
n i.e. Linearizability for Writes (only): All Clients will observe  “parallel” 

writes issued by different Clients in the same order ; the exact order is 
determined by time-stamps of a global, loosely synchronized clock. 

n Linearized writes is realized using the Zookeeper Atomic Broadcast 
(ZAB) protocol/ algorithm ( http://research.yahoo.com/files/ladis08.pdf) 

n ZAB is inspired by, but different from, the Paxos algorithm
n Reads issued by different clients are not linearized !

n Atomicity - updates either Succeed or Fail, no partial results
n File API without partial reads/writes
n Simple wait free data objects organized hierarchically as in filesystem.
n “Multi-hop” construct to support atomic (i.e. all or nothing) execution of 

a block of multiple requests

http://research.yahoo.com/files/ladis08.pdf


67

**Properties Guaranteed** by ZooKeeper
n Single System Image

n The SAME client will see the same view of the service no matter 
which server it connects to ; (Different Clients may see a different 
(delayed) version of the view though ;

n Durability - once an update has been applied, it will persist from that 
time forward until a client overwrites the update.

n High Availability - 2F+1 servers can tolerate F crash failures
n Timeliness – The client’s view of the system is guaranteed to be up-

to-date within a certain bound delay. 
n By setting the “watch” flag in a Read request,  a client will get 

notified of a change to data it is watching within a bounded period of 
time.

n Either system changes will be seen by a client within this bound or 
the client will detect a service outage

n There are corner cases that intermediate  state-changes can be 
missed by a particular client due to the “one-time-trigger” notion of 
watch (see p.g. 70 of the ZK book)



68

Recap: Taxonomy of Consistency Models
https://jepsen.io/consistency
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Unavailable

Sticky Available

Total Available

Not available during some types of network failures. Some 
or all nodes must pause operations in order to ensure safety.

Available on every non-faulty node, so long as clients only 
talk to the same servers, instead of switching to new ones.

Available on every non-faulty node, even when the network 
is completely down.

Strict Serializable

LinearizableSerializable

Repeatable
Read

Snapshot
Isolation

Causal

Sequential

PRAM

Writes
Follow
Reads

Monotonic
Writes

Read
Your
Writes

Cursor
Stability

Monotonic
Atomic View

Read
Committed

Read
Uncommitted

Monotonic
Reads

Legend

Concern about 
consistency of 
(multiple replicas of) 
a data object when 
multiple distributed 
read/write 
operations are 
performed on the 
object in parallel by 
different players 

Concern about 
consistency of 
outcome (results) 
produced by 
multiple 
interleaving/ parallel 
transactions which 
may access some 
common set of data 
objects



Why do we need Serializability ?

n Simple example: Accounting system in a bank
n Maintains the current balance of each customer's 

account
n Customers can transfer money to other customers
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void transferMoney(customer A, customer B, int amount) 
{
showMessage("Transferring "+amount+" to "+B);
int balanceA = getBalance(A);

int balanceB = getBalance(B);
setBalance(B, balanceB + amount);
setBalance(A, balanceA - amount);
showMessage("Your new balance: "+(balanceA-amount));

}



Why do we need Serializability ?

n What can happen if these 2 programs run concurrently 
according to the following interlaced pattern (which is a 
valid outcome under sequential consistency) ?
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1) B=Balance(Bob)
2) A=Balance(Alice)
3) SetBalance(Bob,B+100)
4) SetBalance(Alice,A-100)

1) A=Balance(Alice)
2) B=Balance(Bob)
3) SetBalance(Alice,A+500)
4) SetBalance(Bob,B-500)

Alice Bob

$100

$500

Time

Alice's balance:
Bob's balance:

1 2

$200
$800

1 2

3 4

43
$200
$900

$700
$900

$700
$300

$100
$300



Recall: Sequential Consistency example
Process P1 Process P2 Process P3

x = 1;
print ( y, z);

y = 1;
print (x, z);

z = 1;
print (x, y);

x = 1;

print (y, z);

y = 1;

print (x, z);

z = 1;
print (x, y);

Prints:  001011

(a)

x = 1;

y = 1;

print (x,z);

print(y, z);

z = 1;
print (x, y);

Prints: 101011

(b)

y = 1;

z = 1;

print (x, y);

print (x, z);

x = 1;
print (y, z);

Prints: 010111

(c)

y = 1;

x = 1;

z = 1;

print (x, z);

print (y, z);
print (x, y);

Prints: 111111

(d)

(a)-(d) are all legal interleavings.



Problem: Race Condition

n What happened?
n Race condition: Result of the computation depends on the 

exact timing of the two threads of execution, i.e., the order 
in which the instructions are executed

n Reason: Concurrent updates to the same state
n Can you get a race condition when all the threads are reading the 

data, and none of them are updating it ?
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void transferMoney(customer A, customer B, int amount) 
{
showMessage("Transferring "+amount+" to "+B);
int balanceA = getBalance(A);

int balanceB = getBalance(B);
setBalance(B, balanceB + amount);
setBalance(A, balanceA - amount);
showMessage("Your new balance: "+(balanceA-amount));

}

Alice's and Bob's
threads of execution



Goal: To Get a “Consistent” outcome 
n What should have happened?

n Intuition: It shouldn't make a difference whether the 
requests are executed concurrently or not

n How can we formalize this?
n Need a consistency model that specifies how the system 

should behave in the presence of concurrency
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A Common approach: 
Serializable executions of Transactions

n A “serial” execution is one in which there is at most 
one transaction running at a time, and it always 
completes via commit or abort before another 
starts

n “Serializability” is the “illusion” of a serial execution
n Transactions execute concurrently and their operations 

interleave at the level of the database files
n Yet database is designed to guarantee an outcome 

identical to some serial executions of the transactions: it 
masks concurrency

n In past they used locking; these days “snapshot 
isolation”



Serialize Concurrent Transactions
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T1 T3 T6
T2 T4 T5Core #1:

Core #2:
Time

Time
Single core: T1 T2 T3 T4 T5T6

Same start
state

Same 
result

Actual
execution

Hypothetical
execution



Serialize Concurrent Transactions via 
Locking/ Mutual exclusion

n How can we achieve better consistency?
n Key insight: Code has a critical section where accesses 

from other codes (transactions) to the same resources will 
cause problems

n Approach: Mutual exclusion
n Enforce restriction that only one core (or machine) can 

execute the critical section at any given time
n What does this mean for scalability? 76

void transferMoney(customer A, customer B, int amount) 
{
showMessage("Transferring "+amount+" to "+B);
int balanceA = getBalance(A);
int balanceB = getBalance(B);
setBalance(B, balanceB + amount);
setBalance(A, balanceA - amount);
showMessage("Your new balance: "+(balanceA-amount));

}

Critical section



Locking

n Idea: Implement locks
n If LOCK(X) is called and X is not locked, lock X and continue
n If LOCK(X) is called and X is locked, wait until X is unlocked
n If UNLOCK(X) is called and X is locked, unlock X

n How many locks, and where do we put them?
n Option #1: One lock around the critical section
n Option #2: One lock per variable (A's and B's balance)
n Pros and cons? Other options? 77

void transferMoney(customer A, customer B, int amount) 
{
showMessage("Transferring "+amount+" to "+B);
int balanceA = getBalance(A);
int balanceB = getBalance(B);
setBalance(B, balanceB + amount);
setBalance(A, balanceA - amount);
showMessage("Your new balance: "+(balanceA-amount));

}

Critical section



Locking helps!
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1) LOCK(Bob)
2) LOCK(Alice)
3) B=Balance(Bob)
4) A=Balance(Alice)
5) SetBalance(Bob,B+100)
6) SetBalance(Alice,A-100)
7) UNLOCK(Alice)
8) UNLOCK(Bob)

1) LOCK(Alice)
2) LOCK(Bob)
3) A=Balance(Alice)
4) B=Balance(Bob)
5) SetBalance(Alice,A+500)
6) SetBalance(Bob,B-500)
7) UNLOCK(Bob)
8) UNLOCK(Alice)

Alice Bob

$100

$500

Time

Alice's balance:
Bob's balance:

1 2

$200
$800

52

3 4

43
$200
$900

$100
$900

$600
$400

$600
$900

5 6 7

1 1 2

8

6 7 8
blocked



Problem of Locking: Deadlock
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1) LOCK(Bob)
2) LOCK(Alice)
3) B=Balance(Bob)
4) A=Balance(Alice)
5) SetBalance(Bob,B+100)
6) SetBalance(Alice,A-100)
7) UNLOCK(Alice)
8) UNLOCK(Bob)

1) LOCK(Alice)
2) LOCK(Bob)
3) A=Balance(Alice)
4) B=Balance(Bob)
5) SetBalance(Alice,A+500)
6) SetBalance(Bob,B-500)
7) UNLOCK(Bob)
8) UNLOCK(Alice)

Alice Bob

$100

$500

Time

1 2

1 2
blocked (waiting for lock on Bob)

blocked (waiting for lock on Alice)

n Neither processor can make progress!



The dining philosophers problem
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Philosopher:

repeat
think
pick up left fork
pick up right fork
eat
put down forks

forever

Philosophers



What to do about deadlocks
n Many possible solutions, including:

n Lock manager: Hire a waiter and require that philosophers 
must ask the waiter before picking up any forks

n Consequences for scalability?
n Resource hierarchy: Number forks 1-5 and require that 

each philosopher pick up the fork with the lower number 
first

n Problem?
n Chandy/Misra solution:

n Forks can either be dirty or clean; initially all forks are dirty
n After the philosopher has eaten, all his forks are dirty
n When a philosopher needs a fork he can't get, he asks his 

neighbor
n If a philosopher is asked for a dirty fork, he cleans it and gives it up
n If a philosopher is asked for a clean fork, he keeps it 81


