
IEMS5730/IERG4330/ESTR4316
Spring 2024

The CAP Theorem, ACID vs. BASE
Prof. Wing C. Lau

Department of Information Engineering
wclau@ie.cuhk.edu.hk

NoSQL 2

Acknowledgements
n The slides used in this chapter are adapted from the following

sources:
n CS5412 Cloud Computing, by Ken Birman, Cornell

n CS498 Cloud Computing, by Roy Campbell and Reza
Farivar, UIUC.

n CS525 Advanced Distributed Systems, by Indranil Gupta,
UIUC

n Slides by Daniel J. Abadi, Yale University

n Perry Hoekstra, Jiaheng Lu, Avinash Lakshman, Prashant
Malik, and Jimmy Lin, “NoSQL and Big Data Processing,
BigTable, Hbase, Cassandra, Hive and Pig”

n All copyrights belong to the original authors of the materials.

NoSQL 3

The MIT Theorem

Friends Sleep

Grades

NoSQL 4

Eric Brewer’s Conjecture

4

n In a famous 2000 keynote talk at ACM PODC, Eric
Brewer (Berkeley) proposed that “you can have just
two of the Consistency, Availability and Partition
Tolerance”
n He argues that data centers need very snappy response,

hence availability is paramount
n And they should be responsive even if a transient fault

makes it hard to reach some service. So they should
use cached data to respond faster even if the cached
entry can’t be validated and might be stale!

n Conclusion: weaken consistency for faster
response

NoSQL 5

Brewer’s Conjecture became The CAP Theorem
n Started as a conjecture, in 2002 was “proven”* and

became a theorem, but some researchers still argue that
the “proof” is incomplete^

The CAP theorem, also known as Brewer’s theorem, states
that it is impossible for a distributed system to
simultaneously provide all three of the following
guarantees:

n Consistency (all nodes see the same data at the same
time)

n Availability (a guarantee that every request to a non-failing
node receives a response about whether it was successful
or failed)

n Partition tolerance (the system continues to operate
despite arbitrary message loss or failure of part of the
system)

* Nancy Lynch and Seth Gilbert, “Brewer's conjecture and the feasibility of consistent, available, partition-
tolerant web services”, ACM SIGACT News, Volume 33 Issue 2 (2002), pg. 51-59.

^ Mark Burgess, "Deconstructing the `CAP theorem' for CM and DevOps”

NoSQL 6

NoSQL 7

NoSQL 8

Intuition Behind Proof

DB 1 DB 2

network
partition

NoSQL 9

Idea of the Proof for the CAP theorem

n Suppose a data center service is active in two parts
of the country with a wide-area Internet link between
them

n We temporarily cut the link (“partitioning” the
network)

n And present the service with conflicting requests
n The replicas can’t talk to each other so can’t sense

the conflict
n If they respond at this point, inconsistency arises

NoSQL 10

NoSQL 11

Partial List of Managed NoSQL services

Source: Felix Gessert, “Cloud Databases in Research and Practice,” Apr 2014, baqend.com/nosql.pdf

NoSQL 12

Partial List of Proprietary Database Service

Source: Felix Gessert, “Cloud Databases in Research and Practice,” Apr 2014, baqend.com/nosql.pdf

NoSQL 13

Wait a Minute – Something doesn’t seem right !
n The proof of the CAP Theorem actually only states:

n If Network Partition occurs then one cannot get both
Consistency and Availability at the same time, i.e.

n (Network Partition) => not (Consistency and Availability)
n It does not say anything when there is NO network partition

n CA and CP systems are indistinguishable in practice (read
the description in the edges of the triangle of the previous
slide carefully): both behave the same without network
partition ; but both show un-availability during partition

=> There are not really 3 different (i.e. CA, CP, AP)
choices in practice

n Actual choice put forth by the Thm is AP vs. CA/CP
n The frequently quoted “At-most-2-out-of-3” claim of the CAP

Theorem maybe slick but quite misleading*.
*Daniel J. Abadi, “Problems with CAP and Yahoo’s little known NoSQL system,”

http://dbmsmusings.blogspot.hk/2010/04/problems-with-cap-and-yahoos-little.html

NoSQL 14

Problems with CAP
n Not as elegant as the MIT theorem

n There are not three different choices!
n CA and CP are indistinguishable

n Source of Confusion: Asymmetry of CAP properties
n Some are properties of the system in general
n Some are properties of the system only when there is a

partition
n In any case, the CAP Theorem is frequently used

as an excuse/justification to not bother with
consistency
n “Availability is really important to me, so CAP says I

have to get rid of consistency”

NoSQL 15

CAP Examples
n CA/CP: Any consensus algorithm or state machine

replication with a quorum required for service
n Always consistent, even in a partition.
n But the smaller (minority) partition will not be available

during network partition.
n AP:

n Always available if any replica is up and reachable, even
during network partition.

n But may not be consistent even without a partition.

NoSQL 16

Does CAP apply deeper in the cloud?
n The principle of wanting speed and scalability

certainly is universal
n But many cloud services have strong consistency

guarantees that we take for granted but depend on
n Marvin Theimer at Amazon explains:

n Avoid costly guarantees that aren’t even needed
n But sometimes you just need to guarantee something
n Then, be clever and engineer it to scale
n And expect to revisit it each time you scale out 10x

NoSQL 17

Cloud services and their properties

Service Properties it guarantees
Memcached No special guarantees
Google’s
GFS

File is current if locking is used

BigTable Shared key-value store with many consistency
properties

Dynamo Amazon’s shopping cart: eventual consistency
Databases Snapshot isolation with log-based mirroring (a fancy

form of the ACID guarantees)
MapReduce Uses a “functional” computing model within which

offers very strong guarantees
Zookeeper Yahoo! file system with sophisticated properties
PNUTS Yahoo! database system, sharded data, spectrum of

consistency options
Chubby Locking service… very strong guarantees

NoSQL 18

Is there a conclusion to draw?
n One thing to notice about those services…

n Most of them cost 10’s or 100’s of millions to create!
n Huge investment required to build strongly consistent

and scalable and high performance solutions
n Oracle’s current parallel database: billions invested

n CAP isn’t about telling Oracle how to build a
database product…
n CAP is a warning to you that strong properties can easily

lead to slow services
n But thinking in terms of weak properties is often a

successful strategy that yields a good solution and
requires less effort

NoSQL 19

Going beyond CAP: PACELC*
n There are other costs to consistency (besides

availability in the face of network partitions)
n Overhead of synchronization schemes
n Latency

n If workload is geographically partitionable
n Latency is not so bad

n Otherwise
n No way to get around at least one round-trip message

n PACELC
n In the case of a partition (P), does the system choose

availability (A) or consistency (C)?
n Else (E), does the system choose latency (L) or

consistency (C)?
*Daniel J. Abadi, “Consistency tradeoffs in modern distributed database system design,”

IEEE Computer Magazine, Feb. 2012.

NoSQL 20

Examples
n PA/EL

n Dynamo, SimpleDB, Cassandra, Riptano, CouchDB,
Cloudant

n PC/EC
n ACID compliant database systems

n PA/EC
n GenieDB
n See CIDR paper from Wada, Fekete, et. al.

n Indicates that Google App Engine data store (eventual consistent
option) falls under this category

n PC/EL: Existence is debatable
n Strengthening (instead of weakening) consistency when

there is a partition doesn’t seem to make sense

NoSQL 21

Core problem?

n When can we safely sweep consistency under the
rug?
n If we weaken a property in a safety critical context,

something bad can happen!
n Amazon and eBay do well with weak guarantees

because many applications just didn’t need strong
guarantees to start with!

n By embracing their weaker nature, we reduce
synchronization and so get better response behavior

n But what happens when a wave of high assurance
applications starts to transition to cloud-based
models?

NoSQL 22

Scalable Cloud Services
often have a Tiered Architecture

n Tier 1: Very lightweight, responsive “web page builders”
that can also route (or handle) “web services” method
invocations. Limited to “soft state”.

n Tier 2: (key,value) stores and similar services that
support Tier 1. Basically, various forms of caches.

n Inner tiers: Online services that handle requests not
handled in Tier 1. These can store persistent files, run
transactional services. But we shield them from load.

n Back end: Runs offline services that do things like
indexing the web overnight for use by tomorrow
morning’s Tier-1 services.

NoSQL 23

Is inconsistency a bad thing?
n How much consistency is really needed in the first

tier (front-end portion) of the cloud?
n Think about YouTube videos. Would consistency be an

issue here?
n What about the Amazon “number of units available”

counters. Will people notice if those are a bit off?
n Puzzle: can you come up with a general policy for

knowing how much consistency a given thing
needs?

NoSQL 24

Consistency: Two “views”
n Client sees a snapshot of the database

that is internally consistent and “might” be valid

n Internally, database is genuinely consistent, but the
states clients saw aren’t tracked and might
sometimes become invalidated by an update

n Inconsistency is tolerated because it yields such
big speedups, although some clients see “wrong”
results

NoSQL 25

A picture of how this works

Core

Cached
replica

Cached
replica

read only
transaction can

safely execute on
cache

(1) update
transaction

runs on
cache first

(2) Simplified
transaction lists

versions to validate,
then values to write

for updates

(3) If successful,
Core reports

commit

NoSQL 26

Core issue: How much contention?
n Root challenge is to understand

n How many updates will occur
n How often those updates conflict with concurrent reads

or with concurrent updates
n In most of today’s really massive cloud applications

either contention is very rare, in which case
transactional database solutions work, or we end
up cutting corners and relaxing consistency

n This has resulted in many practitioners declaring
consistency in clouds dead!

The Wisdom of the Sages

NoSQL 28

eBay’s Five Commandments
n As described by Randy Shoup at LADIS 2008

Thou shalt…
1. Partition Everything

2. Use Asynchrony Everywhere

3. Automate Everything

4. Remember: Everything Fails

5. Embrace Inconsistency

NoSQL 29

Vogels at the Helm

n Werner Vogels is CTO at Amazon.com…
n He was involved in building a new shopping cart

service
n The old one used strong consistency for replicated data
n New version was build over a DHT, like Chord, and has

weak consistency with eventual convergence

n This weakens guarantees… but
n Speed matters more than correctness

NoSQL 30

James Hamilton’s advice
n Key to scalability is decoupling,

loosest possible synchronization
n Any synchronized mechanism is a risk

n His approach: create a committee
n Anyone who wants to deploy a highly consistent

mechanism needs committee approval

…. They don’t meet very often

NoSQL 31

Consistency

Consistency
technologies just don’t

scale!

NoSQL 32

Consistency

n Two kinds of consistency:
n Strong consistency – ACID(Atomicity Consistency

Isolation Durability)

n Weak consistency – BASE(Basically Available Soft-
state Eventual consistency)

NoSQL 33
33

ACID Transactions

n A traditional DBMS is expected to support “ACID
transactions,” processes that are:
n Atomic : Either the whole process is done or none is.
n Consistent : Database constraints are preserved.
n Isolated : It appears to the user as if only one process

executes at a time.
n Durable : Effects of a process do not get lost if the

system crashes.

NoSQL 34

Eventual Consistency
n When no updates occur for a long period of time,

eventually all updates will propagate through the
system and all the nodes will be consistent

n For a given accepted update and a given node,
eventually either the update reaches the node or
the node is removed from service

n Known as BASE (Basically Available, Soft state,
Eventual consistency), as opposed to ACID

NoSQL 35

All ACID implementations have costs
n Locking mechanisms involve competing for locks

and there are overheads associated with how long
they are held and how they are released at Commit

n Snapshot isolation mechanisms using locking for
updates but also have an additional version based
way of handling reads
n Forces database to keep a history of each data item
n As a transaction executes, picks the versions of each

item on which it will run

n So… there are costs, not so small

NoSQL 36

Dangers of Replication

n Investigated the costs of transactional ACID model
on replicated data in “typical” settings
n Found two cases

n Embarrassingly easy ones: transactions that don’t conflict at all
(like Facebook updates by a single owner to a page that others
might read but never change)

n Conflict-prone ones: transactions that sometimes interfere and in
which replicas could be left in conflicting states if care isn’t taken
to order the updates

n Scalability for the latter case will be terrible

n Solutions they recommend involve sharding and
coding transactions to favor the first case

[The Dangers of Replication and a Solution . Jim Gray, Pat Helland,
Dennis Shasha. Proc. 1996 ACM SIGMOD.]

NoSQL 37

Approach?
n They do a paper-and-pencil analysis

n Estimate how much work will be done as transactions
execute, roll-back

n Count costs associated with doing/undoing operations
and also delays due to lock conflicts that force waits

n Show that even under very optimistic assumptions
slowdown will be O(n2) in size of replica set (shard)

n If approach is naïve, O(n5) slowdown is possible!

NoSQL 38

This motivates BASE

n Proposed by eBay researchers
n Found that many eBay employees came from

transactional database backgrounds and were used
to the transactional style of “thinking”

n But the resulting applications didn’t scale well and
performed poorly on their cloud infrastructure

n Goal was to guide that kind of programmer to a
cloud solution that performs much better
n BASE reflects experience with real cloud applications
n “Opposite” of ACID

[D. Pritchett. BASE: An Acid Alternative. ACM Queue, July 28, 2008.]

NoSQL 39

A “methodology”
n BASE involves step-by-step transformation of a

transactional application into one that will be far
more concurrent and less rigid
n But it doesn’t guarantee ACID properties
n Argument parallels (and actually cites) CAP: they believe

that ACID is too costly and often, not needed
n BASE stands for “Basically Available Soft-State

Services with Eventual Consistency”.

NoSQL 40

Terminology
n Basically Available: Like CAP, goal is to promote

rapid responses.
n BASE papers point out that in data centers partitioning

faults are very rare and are mapped to crash failures by
forcing the isolated machines to reboot

n But we may need rapid responses even when some
replicas can’t be contacted on the critical path

NoSQL 41

Terminology
n Basically Available: Fast response even if some

replicas are slow or crashed
n Soft State Service: Runs in first tier

n Can’t store any permanent data
n Restarts in a “clean” state after a crash
n To remember data either replicate it in memory in

enough copies to never lose all in any crash or pass it to
some other service that keeps “hard state”

NoSQL 42

Terminology
n Basically Available: Fast response even if some

replicas are slow or crashed
n Soft State Service: No durable memory
n Eventual Consistency: OK to send “optimistic”

answers to the external client
n Could use cached data (without checking for staleness)
n Could guess at what the outcome of an update will be
n Might skip locks, hoping that no conflicts will happen
n Later, if needed, correct any inconsistencies in an offline

cleanup activity

NoSQL 43

Before BASE… and after
n Code was often much too slow, and scaled poorly,

and end-user waited a long time for responses

n With BASE
n Code itself is way more concurrent, hence faster
n Elimination of locking, early responses, all make end-

user experience snappy and positive
n But we do sometimes notice oddities when we look hard

NoSQL 44

BASE side-effects
n Suppose an eBay auction is running fast and

furious
n Does every single bidder necessarily see every bid?
n And do they see them in the identical order?

n Clearly, everyone needs to see the winning bid

n But slightly different bidding histories shouldn’t hurt
much, and if this makes eBay 10x faster, the speed
may be worth the slight change in behavior!

NoSQL 45

BASE side-effects
n Upload a YouTube video, then search for it

n You may not see it immediately

n Change the “initial frame” (they let you pick)
n Update might not be visible for an hour

n Access a FaceBook page when your friend says
she’s posted a photo from the party
n You may see an X

