
A Generalized Model for Stream Processing 
and

Apache Beam



Most of the Slides in this talk have been adapted from the following sources:

§ Frances Perry, Tyler Akidau, of Google, Apache Beam Committers, 
“Fundamentals of Stream Processing with Apache Beam”, QCon, San Francisco, 
Nov. 2016, https://goo.gl/yzvLXe

§ Kenneth Knowles of Google, Apache Beam PMC, “Unified, Portable, Efficient 
Batch and Stream Processing with Apache Beam,” Strata San Jose, CA, 2017, 
https://goo.gl/sRxNxF

§ https://2021.beamsummit.org/sessions/state-apache-beam/

Copyright belongs to the original authors. 2

Acknowledgements

https://goo.gl/yzvLXe
https://goo.gl/sRxNxF


How to deal with Infinite, Delayed, Out-of-Order 
Data Streams (e.g. from Global, Distributed Sources?)



Incoming!

Score per 
user?

4



Data Can be Unbounded, Delayed, Out of Order...

9:008:00 14:0013:0012:0011:0010:00

8:00

8:008:00



Different Ways to Organize the Data Streams

6

8:00

8:00

8:00



7

1977 1980 1983 1999 2002 2005 2015

Processing Time

Episode
IV
Episode

V
Episode
VI
Episode

I
Episode

II
Episode

III
Episode
VII

Event Time

2016

Rogue
One
III.5

2017

Episode
VIII

Event Time vs. Processing Time

The Rise of 
Skywalker



8

1977 1980 1983 1999 2002 2005 2015

Processing Time

Episode
IV
Episode

V
Episode
VI
Episode

I
Episode

II
Episode

III
Episode
VII

Event Time

2016

Rogue
One
III.5

2017

Episode
VIII

Event Time vs. Processing Time

The Rise of 
Skywalker



Aggregating via Event-Time Windows

Event Time

Processing 
Time 11:0010:00 15:0014:0013:0012:00

11:0010:00 15:0014:0013:0012:00

Input

Output



Aggregating via Processing-Time Windows

13:00 14:008:00 9:00 10:00 11:00 12:00 Processing 
Time



Historical analysis

11

Tuesday
Wednesday

Thursday



Completeness Latency Cost

$$$

Data Processing Tradeoffs

12



What is important for your application?

Completeness Low Latency Low Cost

Important

Not Important

$$$
13



Monthly Billing

Completeness Low Latency Low Cost

Important

Not Important

$$$
14



Billing estimate

Completeness Low Latency Low Cost

Important

Not Important

$$$
15



Abuse Detection

Completeness Low Latency Low Cost

Important

Not Important

$$$
16



Historical Analysis

Completeness Low Latency Low Cost

Important

Not Important

$$$
17



20142004 2006 2008 2010 2012 20162005 2007 2009 2013 20152011

MapReduce
(paper)

Apache 
Hadoop

Dataflow Model
(paper)

See also: Tyler Akidau's talk on Evolution of Massive-Scale Data Processing

MillWheel
(paper)

Heron

Apache
Spark

Apache
Storm

Apache 
Gearpump 

(incubating)
Apache 

Apex

Apache 
Flink

Cloud 
Dataflow

FlumeJava
(paper)

Apache Beam

Choices abound

Apache 
Samza



The Generalized Streaming Model (aka the Dataflow/ Beam model)

What are you computing?

Where in event time?

When in processing time are results produced?

How do refinements relate?

19



What are you computing? 

Where in event time? 

When in processing time are results produced?

How do refinements relate?

The Beam Model: Asking the Right Questions 

20

Aggregations, 
transformations, 
…



The Beam Model: What are you computing?

Sum Per 
User

21



The Beam Model: What are you computing?

Sum Per Key

22

input.apply(Sum.integersPerKey())
.apply(BigQueryIO.Write.to(...));

Java

input | Sum.PerKey()
| Write(BigQuerySink(...))

Python



What are you computing? 

What Where When How

Element-Wise Aggregating Composite



An example: Element-wise transformations

13:00 14:008:00 9:00 10:00 11:00 12:00 Processing 
Time



What: Computing Integer Sums

// Collection of raw log lines
PCollection<String> raw = IO.read(...);

// Element-wise transformation into team/score pairs
PCollection<KV<String, Integer>> input =

raw.apply(ParDo.of(new ParseFn());

// Composite transformation containing an aggregation
PCollection<KV<String, Integer>> scores = 

input.apply(Sum.integersPerKey());

What Where When How



What: Computing Integer Sums

What Where When How



The Beam Model: Asking the Right Questions 

What are you computing? 

Where in event time? 

When in processing time are results produced?

How do refinements relate?

27

Event time 
windowing



28

The Beam Model: Where in Event Time?
8:00

8:00

8:00



29

1977 1980 1983 1999 2002 2005 2015

Processing Time

Episode
IV
Episode

V
Episode
VI
Episode

I
Episode

II
Episode

III
Episode
VII

Event Time

2016

Rogue
One
III.5

2017

Episode
VIII

Event Time vs. Processing Time

The Rise of 
Skywalker



30

1977 1980 1983 1999 2002 2005 2015

Processing Time

Episode
IV
Episode

V
Episode
VI
Episode

I
Episode

II
Episode

III
Episode
VII

Event Time

2016

Rogue
One
III.5

2017

Episode
VIII

Event Time vs. Processing Time

The Rise of 
Skywalker



Processing Time vs Event Time

31

Pr
oc

es
si

ng
 T

im
e

Event Time



Pr
oc

es
si

ng
 T

im
e

Processing Time vs Event Time

Realtime

32

This is not possible

Event Time



Processing Time vs Event Time

33

Processing Delay
Pr

oc
es

si
ng

 T
im

e

Event Time



Processing Time vs Event Time
Very delayed

34

Pr
oc

es
si

ng
 T

im
e

Event Time



Processing Time windows
(probably are not what you want)

Pr
oc

es
si

ng
 T

im
e

Event Time 35



Event Time Windows

36

Pr
oc

es
si

ng
 T

im
e

Event Time



input | WindowInto(FixedWindows(3600)
| Sum.PerKey()
| Write(BigQuerySink(...))

Python

The Beam Model: Where in Event Time?

Sum Per Key

Window Into

37

input.apply(

Window.into(
FixedWindows.of(

Duration.standardHours(1)))
.apply(Sum.integersPerKey())
.apply(BigQueryIO.Write.to(...))

Java



Where: Fixed 2-minute Windows

What Where When How

PCollection<KV<String, Integer>> scores = input
.apply(Window.into(FixedWindows.of(Minutes(2)))
.apply(Sum.integersPerKey());



Where: Fixed 2-minute Windows

What Where When How



Fixed Windows
(also called Tumbling)

Sliding Windows

User Sessions

The Beam Model: Where in Event Time?
1. Assign each timestamped 

event to one or more 
windows

1. Merge those windows 
according to custom logic



So that's what and where...

41



Beam Model: Asking the Right Questions 

What are you computing? 

Where in event time? 

When in processing time are results produced?

How do refinements relate?

42

Triggers



Formalizing Event-Time Skew



Reality

Formalizing Event-Time Skew
Pr

oc
es

si
ng

 T
im

e

Event Time

Ideal

Skew



Formalizing Event-Time Skew
Watermarks describe event 
time progress.

"No  (event-time) timestamp  
earlier than the watermark will 
be seen"

Pr
oc

es
si

ng
 T

im
e

Event Time

~Watermark

Ideal

Skew

Often heuristic-based.

Too Slow? Results are delayed.
Too Fast? Some data is late.



When in processing time?

What Where When How

• Triggers control 
when results are 
emitted.

• Triggers are often 
relative to the 
watermark.

Pr
oc

es
si

ng
 T

im
e

Event Time

~Watermark

Ideal

Skew



Event time windows
Pr

oc
es

si
ng

 T
im

e

47

Event Time



Fixed cutoff (we can do better)
Pr

oc
es

si
ng

 T
im

e

Event Time
48

Allowed 
delay



Perfect watermark
Pr

oc
es

si
ng

 T
im

e

49

Event Time



When: Triggering at the Watermark

What Where When How

PCollection<KV<String, Integer>> scores = input
.apply(Window.into(FixedWindows.of(Minutes(2))

.triggering(AtWatermark()))
.apply(Sum.integersPerKey());



When: Triggering at the Watermark

What Where When How



Heuristic Watermark
Pr

oc
es

si
ng

 T
im

e

52

Event Time



Heuristic Watermark
Pr

oc
es

si
ng

 T
im

e

53

Current processing time

Event Time



Heuristic Watermark
Pr

oc
es

si
ng

 T
im

e

54

Current processing time

Event Time



Heuristic Watermark
Pr

oc
es

si
ng

 T
im

e

55

Current processing time

Late data

Event Time



Watermarks measure completeness

56

$$$

$$$

$$$

? Running Total

✔ Monthly billing

? Abuse Detection

✔ Historical Analysis $$$



The Beam Model: When in Processing Time?

Sum Per Key

Window Into

57

input
.apply(Window.into(FixedWindows.of(...))

.triggering(
AfterWatermark.pastEndOfWindow()))

.apply(Sum.integersPerKey())

.apply(BigQueryIO.Write.to(...))

Java

input | WindowInto(FixedWindows(3600),

trigger=AfterWatermark())

| Sum.PerKey()
| Write(BigQuerySink(...))

Python

Trigger after end 
of window



Pr
oc

es
si

ng
 T

im
e

Event Time

AfterWatermark.pastEndOfWindow()

58



Current processing time

Pr
oc

es
si

ng
 T

im
e

Event Time
59

AfterWatermark.pastEndOfWindow()



Pr
oc

es
si

ng
 T

im
e

Event Time

Late data

60

Current processing time

AfterWatermark.pastEndOfWindow()



Pr
oc

es
si

ng
 T

im
e

Event Time
61

High completeness

Potentially high latency

Low cost

AfterWatermark.pastEndOfWindow()

$$$



Pr
oc

es
si

ng
 T

im
e

Event Time

Repeatedly.forever(
AfterPane.elementCountAtLeast(2))

62



Pr
oc

es
si

ng
 T

im
e

Event Time
63

Current processing time

Repeatedly.forever(
AfterPane.elementCountAtLeast(2))



Current processing time

Pr
oc

es
si

ng
 T

im
e

Event Time
64

Repeatedly.forever(
AfterPane.elementCountAtLeast(2))



Pr
oc

es
si

ng
 T

im
e

Event Time
65

Current processing time

Repeatedly.forever(
AfterPane.elementCountAtLeast(2))



Pr
oc

es
si

ng
 T

im
e

Event Time
66

Repeatedly.forever(
AfterPane.elementCountAtLeast(2))

Low completeness

Low latency

Cost driven by input$$$



Build a finely tuned trigger for your use case
AfterWatermark.pastEndOfWindow()

.withEarlyFirings(
AfterProcessingTime

.pastFirstElementInPane()

.plusDuration(Duration.standardMinutes(1))

.withLateFirings(AfterPane.elementCountAtLeast(1))

67

Bill at end of month

Near real-time estimates

Immediate corrections



Pr
oc

es
si

ng
 T

im
e

Event Time
68

.withEarlyFirings(after 1 minute)

.withLateFirings(ASAP after each element)



Pr
oc

es
si

ng
 T

im
e

Event Time
69

Current processing time

.withEarlyFirings(after 1 minute)

.withLateFirings(ASAP after each element)



Pr
oc

es
si

ng
 T

im
e

Event Time
70

Current processing time

Low completeness

Low latency

Low cost, driven by time$$$

.withEarlyFirings(after 1 minute)

.withLateFirings(ASAP after each element)



Current processing time

Pr
oc

es
si

ng
 T

im
e

Event Time
71

.withEarlyFirings(after 1 minute)

.withLateFirings(ASAP after each element)



Current processing time

Pr
oc

es
si

ng
 T

im
e

Event Time

Late output

72

.withEarlyFirings(after 1 minute)

.withLateFirings(ASAP after each element)



Pr
oc

es
si

ng
 T

im
e

Event Time

Late output

73

.withEarlyFirings(after 1 minute)

.withLateFirings(ASAP after each element)



The Beam Model: Asking the Right Questions 

What are you computing?

Where in event time?

When in processing time are results produced?

How do refinements relate?

76

Accumulation 
Mode



Window.into(...)
.triggering(...)

.discardingFiredPanes()

Window.into(...)
.triggering(...)

.accumulatingFiredPanes()

2 more

3 more

5 more

Sum Per Key

2

5

3

new sum is 2

new sum is 10

new sum is 7

How do refinements relate?
• How should multiple outputs per window accumulate?
• Appropriate choice depends on consumer.



How do refinements relate? A more detail Example

What Where When How

• How should multiple outputs per window accumulate?
• Appropriate choice depends on consumer.

Firing Elements

Speculative [3]

Watermark [5, 1]

Late [2]

Last Observed

Total Observed

Discarding

3

6

2

2

11

Accumulating

3

9

11

11

23

Acc. & Retracting

3

9, -3

11, -9

11

11

(Accumulating & Retracting not yet implemented.)



How: Add Newest, Remove Previous

What Where When How

PCollection<KV<String, Integer>> scores = input
.apply(Window.into(FixedWindows.of(Minutes(2))

.triggering(AtWatermark()
.withEarlyFirings(AtPeriod(Minutes(1)))
.withLateFirings(AtCount(1)))

.accumulatingAndRetractingFiredPanes())
.apply(Sum.integersPerKey());



How: Add Newest, Remove Previous

What Where When How



What can this 
Generalized Stream Processing model

(aka the Beam model) 
offer ?



Correctness
Power

Composability
Flexibility

Modularity

What / Where / When / How



Distributed Systems are Distributed



Processing Time Results Differ



Event Time Results are Stable



Correctness
Power

Composability
Flexibility

Modularity

What / Where / When / How



Identifying Bursts of User Activity



Sessions

PCollection<KV<String, Integer>> scores = input
.apply(Window.into(Sessions.withGapDuration(Minutes(1))

.triggering(AtWatermark()
.withEarlyFirings(AtPeriod(Minutes(1)))
.withLateFirings(AtCount(1)))

.accumulatingAndRetractingFiredPanes())
.apply(Sum.integersPerKey());



Identifying Bursts of User Activity



Correctness
Power

Composability
Flexibility

Modularity

What / Where / When / How



Calculating Session Lengths

input
.apply(Window.into(Sessions.withGapDuration(Minutes(1)))

.trigger(AtWatermark())

.discardingFiredPanes())
.apply(CalculateWindowLength()));





Correctness
Power

Composability
Flexibility

Modularity

What / Where / When / How



1.Classic Batch 2. Batch with Fixed 
Windows

3. Streaming 

5. Streaming With 
Retractions

4. Streaming with 
Speculative + Late Data

6. Sessions



Correctness
Power

Composability
Flexibility

Modularity

What / Where / When / How



PCollection<KV<String, Integer>> scores = input
.apply(Window.into(FixedWindows.of(Minutes(2))

.triggering(AtWatermark()
.withEarlyFirings(AtPeriod(Minutes(1)))
.withLateFirings(AtCount(1)))

.apply(Sum.integersPerKey());

PCollection<KV<String, Integer>> scores = input
.apply(Sum.integersPerKey());

PCollection<KV<String, Integer>> scores = input
.apply(Window.into(FixedWindows.of(Minutes(2))

.triggering(AtWatermark()
.withEarlyFirings(AtPeriod(Minutes(1)))
.withLateFirings(AtCount(1)))

.accumulatingAndRetractingFiredPanes())
.apply(Sum.integersPerKey());

PCollection<KV<String, Integer>> scores = input
.apply(Window.into(FixedWindows.of(Minutes(2))

.triggering(AtWatermark()))
.apply(Sum.integersPerKey());

PCollection<KV<String, Integer>> scores = input
.apply(Window.into(FixedWindows.of(Minutes(2)))
.apply(Sum.integersPerKey());

PCollection<KV<String, Integer>> scores = input
.apply(Window.into(Sessions.withGapDuration(Minutes(2))

.triggering(AtWatermark()
.withEarlyFirings(AtPeriod(Minutes(1)))
.withLateFirings(AtCount(1)))

.accumulatingAndRetractingFiredPanes())
.apply(Sum.integersPerKey());

1.Classic Batch 2. Batch with Fixed 
Windows

3. Streaming 

5. Streaming With 
Retractions

4. Streaming with 
Speculative + Late Data

6. Sessions



Correctness
Power

Composability
Flexibility

Modularity

What / Where / When / How



Apache Beam



A Beam Computational Pipeline

Pipeline

101

PTransform

PCollection
(bounded or unbounded)



The Beam Vision

Sum Per Key

102

input.apply(
Sum.integersPerKey())

Java

input | Sum.PerKey()

Python

Apache Flink
local, on-prem, 

cloud

Apache Spark
local, on-prem, 

cloud

Cloud Dataflow:
fully managed

⋮ ⋮

Apache Apex
local, on-prem, 

cloud

Apache 
Gearpump 

(incubating)



Pipeline p = Pipeline.create(options);

p.apply(TextIO.Read.from("gs://dataflow-samples/shakespeare/*"))

.apply(FlatMapElements.via(line -> Arrays.asList(line.split("[^a-zA-Z']+"))))

.apply(Filter.byPredicate(word -> !word.isEmpty()))

.apply(Count.perElement())

.apply(MapElements.via(count -> count.getKey() + ": " + count.getValue())

.apply(TextIO.Write.to("gs://..."));

p.run();

What your (Java) Beam code Looks Like

103



The Evolution of Beam

MapReduce

Google Cloud 
Dataflow

Apache 
Beam

BigTable DremelColossus

FlumeMegastoreSpanner

PubSub

Millwheel



1. The Beam Model: the abstractions at the 
core of Apache Beam

2. End users: who want to write pipelines or 
transform libraries  in a language that’s 
familiar.

3. SDK writers: who want to make Beam 
concepts available in new languages.

4. Runner writers: who have a distributed 
processing environment (on-prem/ cloud, 
open-source/ closed-source) and want to 
support Beam pipelines

5. A Runner platform (e.g. Flink) may also 
make the power of the Beam model 
available to native users of the platform by 
extending the platform’s native APIs.

Apache Beam Technical Vision

Beam Model: Fn Runners

Runner A Runner B

Beam Model: Pipeline Construction

Other
LanguagesBeam Java Beam 

Python

Execution Execution

Cloud 
Dataflow

Execution



1. The Beam Model: What / Where / When / How

2. SDKs for writing Beam pipelines -- Java and Python

3. Runners for Existing Distributed Processing Backends
• Apache Flink 
• Apache Spark 
• Google Cloud Dataflow 
• Direct runner for local development and testing
• In development: Apache Gearpump and Apache 

Apex

What is Part of Apache Beam?



1. The Beam Model: the abstractions at the 
core of Apache Beam

2. End users: who want to write pipelines or 
transform libraries  in a language that’s 
familiar.

3. SDK writers: who want to make Beam 
concepts available in new languages.

4. Runner writers: who have a distributed 
processing environment (on-prem/ cloud, 
open-source/ closed-source) and want to 
support Beam pipelines

5. A Runner platform (e.g. Flink) may also 
make the power of the Beam model 
available to native users of the platform by 
extending the platform’s native APIs.

Apache Beam Technical Vision

Beam Model: Fn Runners

Runner A Runner B

Beam Model: Pipeline Construction

Other
LanguagesBeam Java Beam 

Python

Execution Execution

Cloud 
Dataflow

Execution





Example Beam Runners



Comparing Runner Capabilities

Latest version available 
at: 
http://beam.apache.org/
documentation/runners/
capability-matrix/

http://beam.apache.org/


Comparing Runner Capabilities



Progress of Apache Beam

3/25/2024
Latest release

(2.55.0)

https://beam.apache.org/blog/beam-2.55.0/



Milestones of Apache Beam (circa: Aug 2021)



Learn More !
Free Book on Key Streaming Concepts and Apache Beammin

http://asiandatascience.com/wp-content/uploads/2018/01/WP_EN_BD_OReilly_Streaming_Systems.pdf

Two Excellent Articles on Streaming Models and Beamming gndamentals: The World Beyond Batch 101 
http://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
http://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102

Apache Beam
http://beam.apache.org

Cloud Dataflow
http://cloud.google.com/dataflow/

Follow @ApacheBeam on Twitter

Beam Summit:    https://2022.beamsummit.org

http://asiandatascience.com/wp-content/uploads/2018/01/WP_EN_BD_OReilly_Streaming_Systems.pdf
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102
http://beam.apache.org/

