IEMSS5730
Spring 2023

sk

Stream Processing
Prof. Wing C. Lau

Department of Information Engineering
wclau@ie.cuhk.edu.hk

Acknowledgements

= These slides are adapted from the following sources:

= Matei Zaharia, “Spark 2.0,” Spark Summit East Keynote, Feb 2016.
= Reynold Xin, “The Future of Real-Time in Spark,” Spark Summit East Keynote, Feb 2016.

= Michael Armburst, “Structuring Spark: SQL, DataFrames, DataSets, and Streaming,” Spark Summit East Keynote, Feb
2016.

= Ankur Dave, “GraphFrames: Graph Queries in Spark SQL,” Spark Summit East, Feb 2016.

= Michael Armburst, “Spark DataFrames: Simple and Fast Analytics on Structured Data,” Spark Summit Amsterdam, Oct
2015.

= Michael Armburst et al, “Spark SQL: Relational Data Processing in Spark,” SIGMOD 2015.

= Michael Armburst, “Spark SQL Deep Dive,” Melbourne Spark Meetup, June 2015.

= Reynold Xin, “Spark,” Stanford CS347 Guest Lecture, May 2015.

= Joseph K. Bradley, “Apache Spark MLlIib’s past trajectory and new directions,” Spark Summit Jun 2017.

= Joseph K. Bradley, “Distributed ML in Apache Spark,” NYC Spark MeetUp, June 2016.

= Ankur Dave, “GraphFrames: Graph Queries in Apache Spark SQL,” Spark Summit, June 2016.

= Joseph K. Bradley, “GraphFrames: DataFrame-based graphs for Apache Spark,” NYC Spark MeetUp, April 2016.

= Joseph K. Bradley, “Practical Machine Learning Pipelines with MLIib,” Spark Summit East, March 2015.

= Joseph K. Bradley, “Spark DataFrames and ML Pipelines,” MLconf Seattle, May 2015.

= Ameet Talwalkar, “MLlib: Spark’s Machine Learning Library,” AMPCamps 5, Nov. 2014.

= Shivaram Venkataraman, Zongheng Yang, “SparkR: Enabling Interactive Data Science at Scale,” AMPCamps 5, Nov.
2014.

= Tathagata Das, “Spark Streaming: Large-scale near-real-time stream processing,” O’Reilly Strata Conference, 2013.
= Joseph Gonzalez et al, “GraphX: Graph Analytics on Spark,” AMPCAMP 3, 2013.

= Jules Damiji, “Jumpstart on Apache Spark 2.X with Databricks,” Spark Sat. Meetup Workshop, Jul 2017.

= Sameer Agarwal, “What’s new in Apache Spark 2.3,” Spark+Al Summit, June 2018.

= Reynold Xin, Spark+Al Summit Europe, 2018.

= Hyukjin Kwon of Hortonworks, “What’s New in Spark 2.3 and Spark 2.4,” Oct 2018.

= Matel Zaharia, “MLflow: Accelerating the End-to-End ML Lifecycle,” Nov. 2018.

= Jules Damiji, “MLflow: Platform for Complete Machine Learning Lifecycle,” PyData, Jan 2019.

= All copyrights belong to the original authors of the materials.
Spark Streaming 2

DStream’s:
Streams of RDD'’s

Spark

Streaming
real-time

Major Modules in Spark

SchemaRDD’s | | RDD-Based |1

Matrices

MLLib

machine
learning

Spark
SQL

RDDs, Transformations, and Actions

Spark

RDD-Based
Graphs

GraphX
graph

Spark Streaming 3

Motivation for Spark Streaming

= Many Important Applications must process Large Data
Streams at second-scale latencies
= Site Statistics, Intrusion Detection, Online ML, Fraud Detection

= To build and scale these applications require:
= Integration: with Offline Analytic Stack
= Fault-tolerance: to handle Crashes and Stragglers
s Efficiency: low cost beyond base processing
= Work with distributed collections as you would with local ones

Spark Streaming 4

Spark Streaming Overview

"Low Latency”, High-throughput and Fault Tolerant

Discretized Stream (DStream): Micro-batches of RDDs
= Operations are similarto RDD

= Lineage for Fault-Tolerance
Leverage Core Components from Spark
= RDD data model and API
= Data Partitioning and Shuffles
= Task Scheduling
= Monitoring/ Instrumentation
= Scheduling and Resource Allocation

Support Flume, Kafka, Twitter, Kinesis, etc for Data
Ingestion

Long-running Spark Applications Spark Streaming 5

Discretized Stream Processing

Run a streaming computation as a series of very
small, deterministic batch jobs

= Chop up the live stream into ~ fve datastream 7=

batches of X seconds | 'i'\ﬂf Ly Streaming
= Spark treats each batch of batches of X —
data as RDDs and processes seconds —

them using RDD operations

(@ =m == mm | Spark
= Finally, the processed results processed

_ results
of the RDD operations are
returned in batches

Spark Streaming 6

Discretized Stream Processing

Run a streaming computation as a series of very
small, deterministic batch jobs

= Batch sizes as low as %
second, latency ~ 1 second

= Potential for combining batch
processing and streaming
processing in the same system

live data stream

I 'i'\ﬂf ﬂii>
batches of X
secqnds

¢ = = ==
processed

results

Spark
Streaming

]
]
]

Spark

Spark Streaming 7

Discretized Stream Processing (Micro-Batching)

batch operation
=1 .
input

pull
- immutable dataset
(stored reliably) o (output or state);
@@ mp @ stored in memory

=2

immutable dataset

Y \
stream 1 stream 2

Spark Streaming 8

Programming Interface

views ones counts

Simple functional AP

views = readStream("http:...", "1s")
ones = views.map(ev => (ev.url, 1))
counts = ones.runningReduce(_ + _)

Interoperates with RDDs

// Join stream with static RDD .
counts.joinChistoriccounts).map(...) @ "
=RDD @ = partition

// Ad-hoc queries on stream state
counts.slice(*21:00”,%“21:05”).topK(10)

runningReduce() is merely a concept, actually not implemented by Spark ;
Use updateStateByKey(), mapStateByKey() etc instead ; more details on
arbitrary Stateful operations with Spark Streaming later. Spark Streaming 9

Spark Streaming AP

Transformations — modify data from one DStream to

another

sStandard RDD operations — map, filter, distinct,
countByValue, reduceByKey, join, ...

sStateful, Sliding Window-based Operations

= window, updateStateByKey, countByValueAndWindow

=« Window Size & Slide Interval

Output Operations — send data to external entity

ssaveAsHadoopFiles — saves to HDFS
sforeach — do anything with each batch of results

Checkpointing
Register DStream as a SQL table

Spark Streaming 10

Example 1: Get HashTags from Twitter

val tweets = ssc.twitterStream(<Twitter username>, <Twitter

passwor‘di\

DStream: a sequence of distributed datasets (RDDs)
representing a distributed stream of data

TwitterStreamingAPILw w w E>

tweets DStream

stored in memory as an RDD
(immutable, distributed dataset)

Spark Streaming 11

Example 1: Get HashTags from Twitter

val tweets = ssc.twitterStream(<Twitter username>, <Twitter
password>)

val bashTags = tweets.f status => getTags(status))

transformation: modify data in one DStream to create]

new DStream] [another DStream

tweets DStream

hashTags Dstream

new RDDs created
[#cat, #dog, ...]

for every batch

Spark Streaming 12

Example 1: Get HashTags from Twitter

val tweets = ssc.twitterStream(<Twitter username>, <Twitter
password>)

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.saveAs ilocMhdfc: // "y
output operation: to push data to external]

storage

batch @ t batch @ t+1 batch @ t+2

flatMap flatMap flatMap
o G G W

save save save

6
‘s' 6
<7

saved to HDFS

@
@
—/\

every batch]

Spark Streaming 13

Example 1: Get HashTags from Twitter

val tweets = TwitterUtils.createStream(ssc, None)
val hashTags = tweets.flatMap(status => getTags(status))
hashTags.foreachRDD(hashTagRDD => { ... })

ﬁ foreach: do whatever you want with the processed data]

batch @ t batch @ t+1 batch @ t+2
tweets DStream

flatMap flatMap flatMap
hashTags DStream

foreach foreach foreach

Write to a database, update analytics
Ul, do whatever you want

Spark Streaming 14

Example 1 in Java vs. Scala

Scala

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))

hashTags.saveAsHadoopFiles("hdfs://...")

Java

JavaDStream<Status> tweets = ssc.twitterStream(<Twitter username>,
<Twitter password>) Function object

JavaDstream<String> hashTags = tweets.flatMap(new Function<...> { })

hashTags.saveAsHadoopFiles("hdfs://...")

Spark Streaming 15

Spark program vs Spark Streaming program

Spark Streaming program on Twitter stream

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))
hashTags. ("hdfs://...")

Spark program on Twitter log file

val tweets = sc.hadoopFile("hdfs://...")
val hashTags = tweets.flatMap (status => getTags(status))
hashTags. ("hdfs://...")

Spark Streaming 16

Vision - one stack to rule them all

= Explore data
interactively using
Spark Shell / PySpark to
identify problems

= Use same code in Spark
stand-alone programs
to identify problems in
production logs

= Use similar code in
Spark Streaming to
identify problems in
live log streams

$./spark-shell
scala> val file = sc.hadoopFile(“smalllLogs”)

scala> val filtered = file.filter(_.contains(“ERROR”))

scala> val mapped = file.map(...)

- {object ProcessProductionData {
def main(args: Array[String]) {
val sc = new SparkContext(...)
val file = sc.hadoopFile(
val filtered =
file.filter(_.contains(“ERROR”))
val mapped = file.map(...)

object ProcessLiveStream {
} def main(args: Array[String]) {
val sc = new StreamingContext(...)
val stream = sc.kafkaStream(...)
val filtered =
file.filter(_.contains(“ERROR”))
val mapped = file.map(...)

}

}

Spark Streaming 17

Example 2: Count the HashTags

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

val tagCounts = hashTags.countByValue()

tweets

hashTags

tagCounts
[(#cat, 10), (#dog, 25), ...]

batch @ t

flatMap

%
)

ap
frrr

ountByValue

batch @ t+1

flatMap

ap
rrri

ountByValue

batch @ t+2

flatMap

ap
rrri

ountByValue

Spark Streaming 18

Window-based Operations on DStreams

badch

Zime |

batch 2

Zinre 2

batch 3

Zine 3

badch 4

Cime 4

batch s
@

Zime s

badch ¢
@

Zirme ¢

Or/‘gl‘na/ SZ‘reCZM

window @ Cime 3

eorndoww @ Cine ¢

window @ Cime s

(oindows size 3, Slide interval D

window @ Cime ¢

wWindoroed Strearr

Spark Streaming 19

Example 3: Count the HashTags over last 1 min

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))
val tagCounts = hashTags.window(Minutes(1), Seconds(1)).countByValue()

sliding window _
operation window length sliding interval

window length
A

N SNEFFEFERE = EEEEEEE EEE>
DStream of data W_J

sliding interval

Spark Streaming 20

Example 3: Count the HashTags over last 1 min

val tagCounts = hashTags.window(Minutes(1), Seconds(1)).countByValue()

t-1 t t+1 t+2 t+3

-

hashTags [

countByValue

~N

tagCounts Q Q count over all
the data in the
window

J

Spark Streaming 21

Example 3: Smart Window-based countByValue

val tagCounts = hashtags.countByValueAndWindow(Minutes(10),
Seconds (1))

t-1 t t+1 t+2 t+3

hashTags

add the
counts from
the new batch
in the window

subtract the
counts from

tagCounts | o batch
__________ before the

window

Spark Streaming 22

Smart window-based reduce

= [echnique to incrementally compute count generalizes
to many reduce operations

= Need a function to “inverse reduce” (“subtract” for
counting)

= Could have implemented counting as:
hashTags.reduceByKeyAndWindow(_+ _, - _, Minutes(1), ..)

Spark Streaming 23

Another Example: Word Count with Kafka

val context = new StreamingContext(conf, Seconds(1)) < iStre;.amm:.g;

val lines = KafkaUtils.createStream(context, ...) <

Discretized Stream (DStream)

data
lines DStream

batch @ t

create DStream
from Kafka data

basic abstraction of Spark Streaming

series of RDDs representing a stream of

~batch-@t-

—+2

o~

—

Spark Streaming 24

Another Example: Word Count with Kafka

val context = new StreamingContext(conf, Seconds(1))

val lines = KafkaUtils.createStream(context, ...)

val words = lines.flatMap(_.split(" "))

lines DStream

words DStream

<split lines into words

RDD @ t

RDD @ t+1

RDD @ t+2

b

RDD @ t

lﬂatMap l;latMap lﬂatMap

IRLH)§2t+ﬂ

RDD @ t+2

=

Spark Streaming 25

Another Example: Word Count with Kafka

val context = new StreamingContext(conf, Seconds(1))
val lines = KafkaUtils.createStream(context, ...)

val words = lines.flatMap(_.split(" "))

val wordCounts = words.map(x => (x, 1))

< count the words

.reduceByKey(_ + _)

A print some counts on
wordCounts .print() < a——
context.start() start receiving and
transforming the data

Spark Streaming 26

Another Example: Word Count with Kafka

val context = new StreamingContext(conf, Seconds(1))
val lines = KafkaUtils.createStream(context, ...)
val words = lines.flatMap(_.split("™ "))

val wordCounts = words.map(x => (x, 1))

.reduceByKey(_ + _)

push data out to
storage systems

wordCounts . foreachRDD(rdd => /* do something */) <::

context.start()

Spark Streaming 27

Combine SQL with Streaming

"|nteractively query streaming data with SQL and
Dataframes

// Register each batch in stream as table
kafkaStream.foreachRDD { batchRDD =>

batchRDD.toDF.registerTempTable("events")
}

// Interactively query table
sqlContext.sql("select * from events")

Spark SQL
DataFrames | Streaming

Spark Core

Spark Streaming 28

Another Example

val ssc = new StreamingContext(sc, Seconds(5))
new SQLContext(sc)

val tweets = TwitterUtils.createStream(ssc, auth)

val sqglContext

val transformed = tweets.filter(isEnglish).window(Minutes(1))

transformed.foreachRDD { rdd =>
// Tweet is a case class containing necessary

rdd.map(Tweet.apply()).registerAsTable(“tweets”™)

SELECT text FROM tweets WHERE similarity(tweet) > 0.01
SELECT getClosestCountry(lat, long) FROM tweets

Spark Streaming 29

Combine Batch and Stream Processing

"|nter-mix RDD and DStream operations

- e.g., Join incoming tweets with a spam HDFS file to filter
out bad tweets

tweets.transform(tweetsRDD => {
tweetsRDD. join(spamHDFSFile).filter(...)

1)

* Query streaming data using SQL, e.g.

select * from table from streaming data
Spark Streaming 30

Many Transformations

Window operations

words.map(x => (x, 1)).reduceByKeyAndWindow(_ + _, Minutes(1))

Arbitrary stateful processing

def stateUpdateFunc(newData, lastState) => updatedState

val stateStream = keyValueDStream.updateStateByKey(stateUpdateFunc)

Spark Streaming 31

Arbitrary Stateful Computations

= Maintain arbitrary state, track sessions and specify
function to generate new state based on previous state
and new data:
- e.g. Maintain per-user mood as state, and update it with his/her
tweets

def updateMood(newTweets, lastMood) => newMood
val moods = tweets.updateStateByKey(tweet => updateMood(_))
t-1 t t+1 t+2 t+3

tweets

moods

Detail usage example of updateStateByKey at:
https://docs.cloud.databricks.com/docs/latest/databricks guide/07%20Spark%?20Streaming/11%20Global%20Ag

gregations%20-%20updateStateByKey.html
for the purpose of Historical Reference only ! |
Spark Streaming 32

https://docs.cloud.databricks.com/docs/latest/databricks_guide/07%20Spark%20Streaming/11%20Global%20Aggregations%20-%20updateStateByKey.html

Example of using updateStateByKey()
for Stateful Stream Computations

To use updateStateByKey(), we provide a function update(events, oldState) that

takes in the events that have arrived for a key and its previous state, and returns a
newState to store for it. This function’s signature is as follows:

« events is a list of events that arrived in the current batch (may be empty).

« oldState is an optional state object, stored within an Option; it might be missing
if there was no previous state for the key.

« newState, returned by the function, is also an Option; we can return an empty
Option to specify that we want to delete the state.

The result of updateStateByKey() will be a new DStream that contains an RDD of
(key, state) pairs on each time step.

Spark Streaming 33

Example of using updateStateByKey()
for Stateful Stream Computations (cont'd)

As a simple example, we’ll use updateStateByKey() to keep a running count of the
number of log messages with each HTTP response code. Our keys here are the
response codes, our state is an integer representing each count, and our events are
page views. Note that unlike our window examples earlier, Examples 10-23 and 10-24
keep an “infinitely growing” count since the beginning of the program.

Example 10-23. Running count of response codes using updateStateByKey() in Scala

def updateRunningSum(values: Seq[Long], state: Option[Long]) = {
Some(state.getOrElse(0L) + values.size)

}

val responseCodeDStream = accessLogsDStream.map(log => (log.getResponseCode(), 1L))
val responseCodeCountDStream = responseCodeDStream.updateStateByKey(updateRunningSum _)

Spark Streaming 34

Example of using updateStateByKey()
for Stateful Stream Computations (cont'd)

Example 10-24. Running count of response codes using updateStateByKey() in Java

class UpdateRunningSum implements Function2<List<Long>,
Optional<Long>, Optional<Long>> {
public Optional<Long> call(List<Long> nums, Optional<Long> current) {
long sum = current.or(6L);
return Optional.of(sum + nums.size());

}
};

JavaPairDStream<Integer, Long> responseCodeCountDStream = accessLogsDStream.mapToPair(
new PairFunction<ApacheAccesslLog, Integer, Long>() {
public Tuple2<Integer, Long> call(ApacheAccessLog log) {
return new Tuple2(log.getResponseCode(), 1L);
)
.updateStateByKey(new UpdateRunningSum());

Spark Streaming 35

Another Example of Stateful Operation on
Spark-Stream:
Session Tracking

= A series of events - state changing

sessions = events.track(

(key, ev) => 1, // initialize function DSteamol frack D-Streamof
: (Key, Event) pairs ‘ (Key, State) pairs

(key, st, ev) => // update function o .

ev == Exit ? null : 1, . o

"30s") // timeout t=2: .

counts = sessions.count() // a stream of groupBy+map

ints =3 @

Spark Streaming 36

New Developments In
Spark-Streaming with
Arbitrary Stateful Computations

Instead of using updateStateByKey():

eMapWithState() was introduced in Spark 1.6 as the preferred way to realize
stateful operations in Spark Streaming,

MapGroupsWithState and FlatMapGroupsWithState were introduced in Spark
2.2

See detail usage examples at:

https://databricks.com/blog/2016/02/01/faster-stateful-stream-processing-in-apache-spark-streaming.html

http://asyncified.io/2016/07/31/exploring-stateful-streaming-with-apache-spark/

http://asyncified.io/2017/07/30/exploring-stateful-streaming-with-spark-structured-streaming/

https://databricks.com/blog/2017/10/17/arbitrary-stateful-processing-in-apache-sparks-structured-streaming.html

Spark Streaming 37

https://databricks.com/blog/2016/02/01/faster-stateful-stream-processing-in-apache-spark-streaming.html
http://asyncified.io/2016/07/31/exploring-stateful-streaming-with-apache-spark/
http://asyncified.io/2017/07/30/exploring-stateful-streaming-with-spark-structured-streaming/
https://databricks.com/blog/2017/10/17/arbitrary-stateful-processing-in-apache-sparks-structured-streaming.html

Fault Tolerance

RDDs remember the
operations that created
them

Batches of input data are
replicated in memory for
fault-tolerance

Data lost due to worker
failure, can be recomputed
from replicated input data

Therefore, all transformed
data is fault-tolerant

Exactly once semantics
= No double counting

tweets

RDD

hashTags

input data
replicated
in memory

lost partitions
recomputed on
other workers

Spark Streaming 38

Input Sources

= Out of the box support for:
= Kafka, Flume, Akka Actors, Raw TCP sockets, HDFS, etc

= Developers can write additional custom receiver(s)
s Just define what to and when receiver is started and stopped

= Can also generate one’ s own sequence of RDDs and push
theminasa “Stream”

Spark Streaming 39

Zero (Input) Data Loss during Streaming

For Non-replayable Sources, i.e. sources that do not support
replay from any position (e.g. Flume, etc):

sSolved using Write Ahead Log (WAL) (since Spark 1.3)

For Replayable Sources, i.e. sources that allow data to be
replayed from any position (e.q. Kafka, Kinesis, etc):

=Solved with more reliable Katka and Kinesis Integrations
(Spark 1.3-1.5)

Spark Streaming 40

Write Ahead Log (WAL) [since Spark 1.3]

= All received data synchronously written to HDFS and
replayed when necessary after failure

= WAL can be enabled by setting Spark configuration flag:
spark.streaming.receiver.writeAheadlLog.enabledto TRUE

= Can give end-to-end at least once guarantee for sources
that can support acks, but do not support replays

Spark Streaming 41

Reliable Kinesis [since Spark 1.5]

Save record sequence numbers instead of data to WAL
Replay from Kinesis using sequence numbers

Higher throughput than using WAL

Can give at least once guarantee

Spark Streaming 42

Reliable Kafka [Spark 1.3, graduated in 1.5}

New API: Direct Kafka stream:
s Does not use receivers, does not use ZooKeeper to save offsets
s Offset management (saving, replaying) by Spark Streaming

Can provide up to 10x higher throughput than earlier
receiver
s https://spark-summit.org/2015/events/towards-benchmarking-
modern-distributed-streaming-systems/
Can give exactly-once guarantee (excluding o/p to
storage)

Can run Spark batch jobs directly on Kafka
s # of RDD partitions = # of Kafka partitions, easy to reason about

s https://databricks.com/blog/2015/03/30/improvements-to-
kafka-integration-of-spark-streaming.html Spark Streaming 43

Innerworkings of a
Discretized Stream (DStream)

A sequence of RDDs representing
a stream of data

What does it take to define a DStream?

Spark Streaming 44

DStream Interface

The DStream interface primarily defines how to
generate an RDD in each batch interval

sList of dependent (parent) DStreams

aSlide Interval, the interval at which it will
compute RDDs

sFunction to compute RDD at a time t

Spark Streaming 45

Example: Mapped DStream

= Dependencies: Single parent DStream
s Slide Interval: Same as the parent DStream

= Compute function for time t: Create new RDD by applying
map function on parent DStream’ s RDD of time t

override def compute(time: Time): Option[RDD[U]] = {
parent.getOrCompute(time).map(_.map[U] (mapFunc))
}

[Gets RDD of time t if already

Map function applied to
computed once, or generates it

generate new RDD

Spark Streaming 46

Example: Windowed DStream

Window operation gather together data over a sliding

window window length

_II_H_II_H_II_II_II_H_IIJI_H_II_H_II_II_II_HJI_H_H_>
Parent DStream ——

sliding interval

Dependencies: Single parent DStream

Slide Interval: \Window sliding interval

Compute function for time t: Apply union over all the RDDs
of parent DStream between times t and (t — window length)

Spark Streaming 47

Example: Network Input DStream

Base class of all input DStreams that receive data
from the network

sDependencies: None
nSlide Interval: Batch duration in streaming context

sCompute function for time t: Create a BlockRDD
with all the blocks of data received in the last batch
Interval

sAssociated with a Network Receliver object

Spark Streaming 48

Network Receiver

Responsible for receiving data and pushing it into
Spark’ s data management layer (Block Manager)

Base class for all receivers - Kafka, Flume, etc.

Simple Interface:

s\What to do on starting the receiver
= Helper object blockGenerator to push data into Spark

=\What to do on stopping the receiver

Spark Streaming 49

Example: Socket Receiver

= On start:
Connect to remote TCP server
While socket is connected,
Receiving bytes and deserialize

Deserialize them into Java objects
Add the objects to blockGenerator

= On stop:

Disconnect socket

Spark Streaming 50

Other functions in DStream interface

= parentRememberDuration — defines how long
should

= Window-based DStreams have
parentRememberDuration = window length

= mustCheckpoint — if set to true, the system will
automatically enable periodic checkpointing
= Set to true for stateful DStreams

Spark Streaming 51

Recap: Execution Process of Spark

RDD Objects DAG Scheduler Task Scheduler Worker

DAG

/7

rddl.join(rdd2) split graph into

.groupBy(..)
A Tterc3 stages of tasks

_ submit each
build operator DAG stage as ready

Cluster
manager Threads
TaskSet Task
> Block
. <€ . manager
launch tasks via execute tasks
cluster manager
retry failed or store and serve
straggling tasks blocks

Spark Streaming 52

Recap: A Spark Application

Spark driver

Your program Spark executor

(JVM / Python) (@pp master) (multiple of them)
RDD graph Cluster
Task
sc=new SparkContext manaaoer
A Scheduler J threads
f.filter(...)
countg Block tracker Block
manager
Shuffle tracker
HDFS, HBase, ...

A single application often contains multiple actions

Spark Streaming 53

DStream Graph

Spark Streaming program DStream Graph

T | Twitter Input DStream

t = ssc.twitterStream("..”)
.map (..) |:> Mapped DStream

t.foreach(..)

T Foreach DStream
Dummy DStream signifying

an output operation

tl
t2

ssc.twitterStream(".") v

ssc.twitterStream(®..”) U

t = tl.union(t2).map(..) |:> M
ARR

t.saveAsHadoopFiles(..) —)
t.map(..).foreach(..) [FE] M [i]
t.filter(..).foreach(..) flf

Spark Streaming 54

DStream Graph - RDD Graphs - Spark jobs

= Every interval, RDD graph is computed from

DStream graph

= For each output operation, a Spark action is created
= For each action, a Spark job is created to compute it

DStream Graph

N
EIREIAE

Block RDDs with RDD Graph
data received in \

last batch interval B

—

(2] |

U
A

M
R

M

A
e

A
3 Spark jobs //v'

Spark Streaming 55

Agenda

Overview

DStream Abstraction
System Model
Persistence / Caching
RDD Checkpointing
Performance Tuning

Spark Streaming 56

Components

/ - .
/ Spark Client
Your program , Spark Context i
// \ RDD graph Scheduler
| y DStream graph N Shuffle
ssc = new StreamingContext ‘ \‘ Block manager tracker
b7 sse.nnrrerstreant b Network Input Tracker Cluster
t.filter(..).foreach(..) \ Manager
\
\\ Job Scheduler Spark Worker
\ Task Block
v Job Manager threads manager

Network Input Tracker — Keeps track of the data received by each network
receiver and maps them to the corresponding input DStreams

Job Scheduler — Periodically queries the DStream graph to generate Spark
jobs from received data, and hands them to Job Manager for execution

Job Manager — Maintains a job queue and executes the jobs in Spark
Spark Streaming 57

Execution Model — Receiving Data

Spark Workers

Spark Streaming + Spark Driver

StreamingContext.start() Data recvd

Blocks pushed

| Block
" Manager

l Blocks replicated

Block

VRIS Manager

|
Master :
|
|

Spark Streaming 58

Execution Model — Job Scheduling

Spark Streaming + Spark Driver Spark Workers

1| /Block IDs
Block
Manager
| Jobs executed on
—> worker nodes
\ | .
: |
3 I - Block
<] : Manager
Pt I
o I
9
I
I

Spark Streaming 59

Job Scheduling

= Each output operation used generates a job

= More jobs > more time taken to process batches -
higher batch duration

= Job Manager decides how many concurrent
Spark jobs to run

= Defaultis 1, can be set using Java property
spark.streaming.concurrentJobs

= |f you have multiple output operations, you can try
iIncreasing this property to reduce batch processing
times and so reduce batch duration

Spark Streaming 60

Agenda

Overview

DStream Abstraction
System Model
Persistence / Caching
RDD Checkpointing
Performance Tuning

Spark Streaming 61

DStream Persistence

= If a DStream is set to persist at a storage level,
then all RDDs generated by it set to the same
storage level

= When to persist?

= If there are multiple transformations / actions on a
DStream

= If RDDs in a DStream is going to be used multiple
times

= Window-based DStreams are automatically
persisted in memory

Spark Streaming 62

DStream Persistence

= Default storage level of DStreams IS storagerevel . mmmory onny ser
(i.e. in memory as serialized bytes)

= Except for input DStreams which have

StorageLevel .MEMORY AND DISK SER 2

= Note the difference from RDD’ s default level (no
serialization)

= Serialization reduces random pauses due to GC providing
more consistent job processing times

Spark Streaming 63

Agenda

Overview

DStream Abstraction
System Model
Persistence / Caching
RDD Checkpointing
Performance Tuning

Spark Streaming 64

What is RDD checkpointing?

Saving RDD to HDFS to prevent RDD graph from

growing too large

sDone internally in Spark transparent to the user program
sDone lazily, saved to HDFS the first time it is computed

=¥=

red_rdd.checkpoint()

K | >

I-)D HDFS file

I Contents of red_rdd saved

I to a HDFS file transparent to
all child RDDs

Spark Streaming 65

Why is RDD checkpointing necessary?

Stateful DStream operators can have infinite
lineages

t-1 t t+1 t+2 t+3

R

states —_— > —> —>

data

Large lineages lead to ...

sLarge closure of the RDD object - large task sizes - high task
launch times

=sHigh recovery times under failure

Spark Streaming 66

Why is RDD checkpointing necessary?

Stateful DStream operators can have infinite
lineages

data

t-1 t t+1 t+2 t+3

RN

states —_— > m—

Periodic RDD checkpointing solves this

Useful for iterative Spark programs as well

Spark Streaming 67

RDD Checkpointing

= Periodicity of checkpoint determines a tradeoff

= Checkpoint too frequent: HDFS writing will slow things
down

= Checkpoint too infrequent: Task launch times may
Increase

= Default setting checkpoints at most once in 10
seconds

= Try to checkpoint once in about 10 batches

Spark Streaming 68

Agenda

Overview

DStream Abstraction
System Model
Persistence / Caching
RDD Checkpointing
Performance Tuning

Spark Streaming 69

Performance Tuning

Step 1

Achieve a stable configuration that can sustain the
streaming workload

Step 2

Optimize for lower latency

Spark Streaming 70

Step 1: Achieving Stable Configuration

How to identify whether a configuration is
stable?

sLook for the following messages in the log
Total delay: 0.01500 s for job 12 of time 1371512674000 ..

ulf the total delay is continuously increasing, then
unstable as the system is unable to process data
as fast as its receiving!

ulf the total delay stays roughly constant and
around 2x the configured batch duration, then
Stable Spark Streaming 71

Step 1: Achieving Stable Configuration

How to figure out a good stable configuration?

sStart with a low data rate, small number of nodes,
reasonably large batch duration (5 — 10 seconds)

slncrease the data rate, number of nodes, etc.

sFind the bottleneck in the job processing
= Jobs are divided into stages
= Find which stage is taking the most amount of time

Spark Streaming 72

Step 1: Achieving Stable Configuration

How to figure out a good stable configuration?

alf the first map stage on raw data is taking most
time, then try ...
= Enabling delayed scheduling by setting property

spark.locality.wait

= Splitting your data source into multiple sub streams
= Repartitioning the raw data into many partitions as first
step
alf any of the subsequent stages are taking a lot of
time, try...

= Try increasing the level of parallelism (i.e., increase
number of reducers)

= Add more processors to the system Spark Streaming 73

Step 2: Optimize for Lower Latency

= Reduce batch size and find a stable
configuration again

= Increase levels of parallelism, etc.

= Optimize serialization overheads

= Consider using Kryo serialization instead of the default
Java serialization for both data and tasks

= For data, set property

spark.serializer=spark.KryoSerializer

= For tasks, set

spark.closure.seriallzer=spark.KryoSerializer

s Use Spark stand-alone mode rather than Mesos

Spark Streaming 74

Step 2: Optimize for Lower Latency

= Using concurrent mark sweep GC -
XX:+UseConcMarkSweepGC IS recommended

= Reduces throughput a little, but also reduces large GC
pauses and may allow lower batch sizes by making
processing time more consistent

= [ry disabling serialization in DStream/RDD
persistence levels

= Increases memory consumption and randomness of GC
related pauses, but may reduce latency by further
reducing serialization overheads

= For a full list of guidelines for performance tuning
= Spark Tuning Guide
s Spark Streaming Tuning Guide

Spark Streaming 75

http://spark-project.org/docs/latest/tuning.html
http://spark-project.org/docs/latest/streaming-programming-guide.html

System Stability

= Streaming applications may have to deal with variations
in data rates and processing rates

= For stability, any streaming application must receive data
only as fast as it can process

= Static rate limits on receivers [Spark 1.1]
s But hard to figure out the right rate

Spark Streaming 76

Backpressure [Spark 1.5]

System automatically and dynamically adapts rate limits
to ensure stability under any processing conditions

If sinks slow down, then the system automatically pushes
back on the source to slow down receiving

System uses batch processing times and scheduling
delays experienced to set rate limits

Well known PID controller theory (used in industrial

control systems) is used to calculate appropriate rate limit
s Contributed by Typesafe

Enabled by setting Spark configuration flag

= spark.streaming.backpressure.enabledto TRUE
Spark Streaming 77

Backpressure [Spark 1.5]

= System automatically and dynamically adapts rate limits

metnc

B Cenarnearune
B ingestionRate
B vt

Dynamic rate limit prevents
receivers from receiving too
___fast

B SchedulngDelay
B ProcessngTine
B TotalOelwy

Scheduling delay kept in
check by the rate limits

—

TEESLAHNO000 1430654800000 1ANSMT10000 140000 143055050000 1A3GSAL00000 141600000 TANASI0000 T4INAESIN0N0
me

Spark Streaming 78

Improved State Management

Earlier stateful stream processing done with

updateStateByKey
def stateUpdateFunc(newData, lastState) => updatedState

val stateDStream = keyValueDStream.updateStateByKey(stateUpdateFunc)

per-key
stat

HeY-vaIe i> Upcate updated states>

state

Spark Streaming 79

Improved State Management

Feedback from community about updateStateByKey

Need to keep much larger state

Processing times of batches
increase with the amount state,
limits performance

Need to expire keys that have
received no data for a while

Batch processing times (ms)

2000

1500

1000

S00

0

Batch processing time vs # keys In state (10k updates per

batch)

/._/-i—’_"—n_‘ 43
1004 H:/
T /

1M records 2M records IM records 4M records
Sze of stete (# koys)

Spark Streaming 80

Improved State Management

New API with timeouts: trackStateByKey

def updateFunc(values, state) => emittedData
// call state.update(newState) to update state

keyValueDStream.trackStateByKey(

StateSpec.function(updateFunc).timeout(Minutes(10))

Can provide order of
magnitude higher performance

than updateStateByKey

https://issues.apache.org/jira/browse/
SPARK-2629

g

Batch processing times

2000

1500

1000

500

0

Batch processing time vs # keys in state (10k updates per
batch)

3 27158
A

140.08 178.75
A

1M records 2M records aM records 4M records

Spark Streaming 81

Visualizations

. For stability
ooy || Amtd ‘| m ; = Scheduling delay should be approx 0
| | A Processing Time approx < batch

- L - - interval
o)MW*M

Streaming Statistics
et s - | Stats over last 1000
. | W“M — ~ | batches
e 2N | N =
— 13

Spark Streaming 82

Visualizations

Details of individual batches

Active Batches (1)

Batch Time
2015/06/08 11:10:46

Completed Batches (last 794
Batch Time

2015/06/08 11:10:45

2015/06/08 11:10:44

2015/06/08 11:10:43

2015/06/08 11:10:42

2015/06/08 11:10:41

2015/06/08 11:10:40

List of Spark jobs |

Input Size Scheduling Delay ™ Processing Time ™ Status
Details of batch at 2015/06/29 15:34:00 L-\
Batch Durabon: 30 5)

e e Kafka offsets processed in each o
e batch,
p= % Can help in debugging bad data
Fie stream (1) flec/Usars/zax/streaming/a. txt, file/Usens/ssx/streaming/. tet, file/Users/zex/streasming/c.txt, flec/Ussrs/2ex/
Kafka direct stream [0} OMsetRange(topic: est’, partition: 0, range: [1 -> 1)), OMsetRangeiopic: test2’, partition: 0, range: [1 -> 1)
OutputOpld Description Duration Jobld Durstion Stages: Succeeded/Totsl TH e
print at DirectXafkaWordCount. scala:60 50 ms 6 48 ms 272 -
|n eaCh baM Tms 11 {1 skipped) -
4 111 (1 skipped) -

Spark Streaming 83

Visualizations

Full DAG of RDDs and stages
generated by Spark Streaming

Spark Streaming 84

Performance

Can process 6 GB/sec (60M records/sec) of data on 100 nodes at
sub-second latency

= Tested with 100 streams of data on 100 EC2 instances with 4 cores each

Cluster Throughput (GB/s)

~

(e)}

vl

o

w

N

[EEN

o

Grep

&) sec

o

I

50
Nodes in Cluster

100

Cluster Throughput (GB/s)

3.5

3

2.5

2

1.5

1 -

0.5

0

WordCount

&/ secC

0

50 100
Nodes in Cluster

Spark Streaming 85

Comparison with Storm and S4

Higher throughput $ w0 Grep oo
than Storm £ 580

. 25, B Storm
mSpark Streaming: 670k &
records/second/node § 0 -

100 1000
sStorm: 115k :
records/second/node Record Size (bytes)
mApache S4: 7.5k g 50 —WordCount
records/second/node 5 _ W Spark

%g W Storm
£ o u
100 1000
Record Size (bytes)

Spark Streaming 86

Small code base

= 5000 LOC for Scala API (+ 1500 LC for Java
API)

s Most DStream code mirrors the RDD code

Spark Streaming 87

Subsequent Extensions on Spark Streaming

APl and Libraries Support of Streaming DataFrames
= Logical-to-physical plan optimizations
= Tungsten-based binary optimizations
s Support for event-time based windowing
= Support for Out-of-Order Data

Add Native Infrastructure support for Dynamic Allocation
for Streaming
= Dynamically scale the cluster resources based on processing load
= Need to work with Backpressure to scale up/down while
maintaining stability
Programmable monitoring by exposing more info via Streaming
Listener

Performance Enhancement: higher throughput and lower latency,
specially for Stateful Ops, e.g. trackStateByKey

Spark Streaming 88

Structured Streaming in Spark 2.0

@

Structured Streaming
real-time engine
on SQL/DataFrames

Spark Streaming 89

Motivation for Structured Streaming
= Real-time processing is increasingly important
= Most applications need to combine it with Batch &
Interactive queries, e.g.

= [rack state using a stream, then run SQL queries

= Train an Machine Learning model offline, then update it
with new, online data

Not just streaming, but

“‘continuous applications”

Spark Streaming 90

Challenges of Integrating Streaming into
a Real-world Application Infrastructure

Stream
(home.html, 10:08)

(product.html, 10:09) - Streaming

(home.html, 10:10)

engine

What can go wrong?

 Late events

* Partial outputs to MySQL
» State recovery on failure
* Distributed reads/writes

[

MySQL

Page Minute Visits

home 10:09 21

pricing 10:10 30

Spark Streaming 91

Complex Programming Models

Data
Late arrival, varying distribution overtime, ...

Processing Output
Business logic change & new ops How do we define
(windows, sessions) outputovertime & correctness?

Spark Streaming 92

Structured Streaming

= High-level Streaming API built on Spark SQL engine
= Run the same queries on DataFrames
= Event-time, windowing, sessions, source and sinks

= Unify Streaming, Interactive and Batch Queries
= Aggregate data in a stream, then serve using JDBC
= Change queries at runtime
= Build and Apply Machine Learning models

Spark 1.3
Static DataFrames

Continuous DataFrames

Spark 2.0

Not just streaming, but

“continuous applications”

L

Y

Single API!

Spark Streaming 93

An Example

B Traditionalstreaming
B Other processingtypes

Ad-hoc Queries

- Database
Reportingh Applications

Kafka

[

[ML Model }

Goal: end-to-end continuous applications

Spark Streaming 94

Model for Structured Streaming
Y/ Trigger:every 1 sec

Time

Input

Result

Output

2
4
data up data up data up
10.PT.1 toiPT.2 toPT3
>
——
Q
=
(®
Y
output for output for output for
data at 1 data at 2 data at 3
complete
output

Spark Streaming 95

Model for Structured Streaming
V4 Trigger:every 1 sec

' 1 2 3
Time | | | >
4 4 v
Input data up data up data up
toPT1 to PT2 to:PT3
£
Q
>
@
Y
Result output for output for output for
data at 1 data at 2 data at 3
N 7 N 7
N 7 N\ ’
N 7 N 7’

delta
Output output |j |A_L|

Spark Streaming 96

Model Detalls for Structured Streaming

Input Sources: Append-Only Tables

Queries: New operators for Windowing, Sessions, etc
Triggers: based on time (e.g. every 1 sec)

Output modes: Complete, Deltas, Update-in-Place

Spark Streaming 97

Batch ETL with DataFrames

input = spark.read
.format("json")
.load("source-path")

Read from Json file

result = input

.select("device", "signal") Select some devices
.where("signal > 15")

result.write
.format("parquet") . .
.save("dest-path") Write to parquet file

Spark Streaming 98

Streaming ETL with DataFrames

input = spark.read ’
PR AL TG Read from Json file stream

.stream("source-path") Replace 1oad () with stream()

result = input
.select("device", "signal") Select some devices
.wh 5] s B 5
where(“signal > 15%) Code doesnotchange

result.write

.format("parquet")) .
.startStream("dest-path") Write to Parquet file stream

Replace save () with startStream()

Spark Streaming 99

Streaming ETL with DataFrames

input = spark.read
.format("json")

.stream("source-path") Input 4 A 4
result = input l l
.select("device", "signal") Y
.where("signal > 15") Result
[append-only table]
result.write New rows
in result New rows

.format("parquet") .
.startStream("dest-path") Output v of 2 in result

[append mode]g Q of 3 |

™ 4

Spark Streaming 100

Continuous Aggregation

input.avg("signal")

input.groupBy("device-type")
.avg("signal")

input.groupBy(
$"device-type",

window($"event-time-col”, "10 min"))

.avg("signal")

Continuously compute average
signal across all devices

Continuously compute average
signal of each type of device

Continuously compute
average signal of each type
of device in last 10 minutes
using event-time

Spark Streaming 101

Joining Streams with Static Data

kafkaDataset = spark.read . . .
R Join streaming data from Kafka with

.stream() static data via JDBC to enrich the

streaming data ...
staticDataset = ctxt.read

.jdbc("jdbc://", "iot-device-info")

joinedDataset = ... withouthavingto thinkthat you

kafkaDataset. join(are joining streaming data
staticDataset, "device-type")

Spark Streaming 102

Output Modes for Structured Streaming

Defines what is outputted every time thereis a trigger
Different output modes make sensefor different queries

input.select("device”, "signal")

. .write
Append mOderth . .outputMode("append")
non—aggregatlon querles .format("parquet”)

.startStream("dest-path")

input.agg(count("*"))

Complete mode with -write
: : .outputMode("complete™)
aggregation queries .format ("parquet”)

.startStream("dest-path")

Spark Streaming 103

query

Query Management

= result.write

.format("parquet")

.outputMode("append")
.startStream("dest-path")

query.
query.
query.

query.
query.

stop()
awaitTermination()

exception()

sourceStatuses()
sinkStatus()

query: a handleto the running streaming
computation for managingit

- Stopit,wait forit to terminate
- Getstatus
- Geterror,ifterminated
Multiple queries can be active at the same time

Each queryhasunique name for keepingtrack

Spark Streaming 104

Execution for Structured Streaming

Logically:
sDataFrame operations on

static data (i.e. as easy to
understand as batch)

DataFrame

Logical Plan
Physically:
sSpark automatically runs the
query in Streaming fashion (i.e.
incrementally and continuously)

Catalyst optimizer

Continuous,

incremental execution

Spark Streaming 105

Example: Batch Aggregation

logs = ctx.read.format("json").open("s3://logs")
logs.groupBy(logs.user _id).agg(sum(logs.time))

.write.format("jdbc")
.save("jdbc:mysql//...")

Spark Streaming 106

Example: Continuous Aggregation

logs = ctx.read.format("json").stream("s3://logs")
logs.groupBy(logs.user_id).agg(sum(logs.time))

.write.format("jdbc")
.stream("jdbc:mysql//...")

Spark Streaming 107

Automatic Incremental Execution

.
T=0 Y] — REEEE

|

LN
=4 NG Aggregate

1

.
= JSON I Al Aggregate

Spark Streaming 108

Incrementalized by Spark

Batch | Continuous
Transformation
Scan Files . reqUIrgs Scan New Files
information
about the

Stateful
Aggregate

structure

Write to MySQL Update MySQL

Spark Streaming 109

Inner Workings of Structured Streaming

Spark Streaming 110

Batch Execution on Spark SQL

DataFrame/ Logical
Dataset Plan

Abstract
representation
of query

Spark Streaming 111

Batch Execution on Spark SQL

DataFrame/
Dataset

Logical
Plan

Planner

~
- -7 . & ks ~
o > ~
- .
P Helluvalot of magic! L
~
- a

e
SQLAST Analysis ogcal Physical Code

Optimization Planning Generation

Cost Model

- [an

Spark Streaming 112

Batch Execution on Spark SQL

DataFrame/ Logical
Dataset Plan
-~~~ Run super-optimized Spark

e jobsto compute results
e e e —————
Project Tungsten - Phase 1 and 2

Execution Plan J

Code Optimizations Memory Optimizations
Bytecode generation Compact and fastencoding
JVM intrinsics, vectorization Offheap memory

Operations on serialized data

Spark Streaming 113

Continuous Incremental Execution

DataFrame/ Logical Incremental
Dataset Plan Execution Plan 1

i By
Planner knows how to convert

Incremental
Execution Plan 2
& J

. . » "
stregmmg loglgal pla-nsto a | (ncremental
continuous series of incremental Execution Plan 3
- .)
execution plans, for each processing
the nextchunk of streaming data Incremental
Execution Plan 4

Spark Streaming 114

Continuous Incremental Execution

Planner polls for
new data from __.---"""""

sources g Incrementally executes
new data and writes to sink

GF

Y

r |
v

Offsets: [19-105] _ » Incremental Count: 87 >
% Execution 1

kafka

(----

Offsets: [106-197] > [:Enxcerglrjrt]i((e)rr]\tazl] Count: 92

Spark Streaming 115

Continuous Aggregation

Maintain running aggregate as in-memory state
backed by WAL in file system for fault-tolerance

| Running Count: 87 >

Incremental
Execution 1

Offsets: [19-105]

g8

kafka

GF

HIES]

Incremental
Execution 2

Offsets:[106-179] > Count: 87+92= 179>

state data generated and used
across incremental executions

Spark Streaming 116

Fault-Tolerance

All data and metadata in
the system needsto be
recoverable/ replayable

Incremental
Execution 1

Incremental
Execution 2

Spark Streaming 117

Fault-Tolerance

Fault-tolerant Planner ,
Offsets written to

fault-tolerant WAL

Tracks offsets by writing the before execution
offset range of each execution to Incremental
a write ahead log (WAL) in HDFS p— L___J 2Lk s —

| source | | sink
A ~ 7 >

state

Incremental
' Execution 2

Spark Streaming 118

Fault-Tolerance

Failed
Plan ner

Fault-tolerant Planner

Failed planner fails
current execution

Tracks offsets by writing the
offset range of each execution to
a write ahead log (WAL) in HDFS

Incremental
Execution 1

source

Failed Execution

Spark Streaming 119

Fault-Tolerance

Restarted
Planner

Fault-tolerant Planner

Offsets read back
fromm WAL

Tracks offsets by writing the

offset range of each execution to Incremental
a write ahead log (WAL) in HDFS S -/

| I 8| - sink
Reads log to recover from S RN A

failures, and re-execute exact -y V.
Incremental
range of offsets iyt

Same executions
regenerated from offsets

Spark Streaming 120

Fault-Tolerance

Fault-tolerant Sources

Structured streaming sources
are by design replayable (e.g.
Kafka, Kinesis, files) and
generate the exactly same data
given offsets recovered by
planner

Replayable
source

Incremental
Execution 1

Incremental
Execution 2

Spark Streaming 121

Fault-Tolerance

Fault-tolerant State

Intermediate "state data" is a
maintained inversioned, key-
value maps in Spark workers,
backed by HDFS

Planner makes sure "correct
version" of state used to re-
execute after failure

source

Planner

Incremental
Execution 1

o

N

Incremental
Execution 2

state is fault-tolerant with WAL

S

Spark Streaming 122

Fault-Tolerance

Fault-tolerant Sink

Sink are by designidempotent,
and handles re-executions to
avoid double committing the

output

source

Planner

Incremental
Execution 1

state

Incremental
Execution 2

Idempotent
by design

Spark Streaming 123

Realizing Fault-Tolerance in
Structured Streaming — A Summary

Offset Tracking in WAL
+

State Management
+

Fault-Tolerant Sources and Sinks

= End-to-End Exactly Once Guarantee

Spark Streaming 124

Support of Structured Streaming
from Other Modules of Spark

= Interactive queries should just work

= Spark’ s data source API are being updated to
support seamless streaming integration
= Exactly once semantics end-to-end

= Different Output modes (complete, delta, update-in-
place)

= Machine Learning algorithms are being updated
according to this new model

Spark Streaming 125

