
IEMS5730
Spring 2023

BDAS and Spark

Prof. Wing C. Lau
Department of Information Engineering

wclau@ie.cuhk.edu.hk

Spark 2

Acknowledgements
n Slides in this chapter are adapted from the following sources:

n Matei Zaharia et al, “Spark: In-Memory Cluster Computing for Iterative
and Interactive Applications,” UC Berkeley AMPlabs talk, 2011.

n Matei Zaharia, “Advanced Spark Features,” AMPCAMP talk, 2012.
n Matei Zaharia, “Parallel Programming with Spark,” Talks for O’Reilly

Strata Conference and AMPCAMP, 2013.
n Reynold Xin, “Spark,” Stanford CS347 Guest Lecture, May 2015.
n Holden Karau, Andy Konwinski, Patrick Wendell, Matei Zaharia,

“Learning Spark,” Published by O’Reilly, 2015.
n Tathagata Das, “Spark Streaming: Large-scale near-real-time stream

processing,” O’Reilly Strata Conference talk, 2013.
n Joseph Gonzalez et al, “GraphX: Graph Analytics on Spark,” talk at

AMPCAMP 3, 2013.
n Ion Stoica, “Intro to AMPLab and Berkeley Data Analytics Stack,” talk at

AMPCAMP 3, 2013.
n Ion Stoica, “State of the BDAS Union,” talk at AMPCAMP 6, Nov. 2015.
n Paco Nathan, “Intro to Apache Spark,” GOTO; Conference 2015
n Zhiguang Wen, “Spark: Fast, Interactive, Language-Integrated Cluster

Computing,” 2012.
n All copyrights belong to the original authors of the materials.

Spark 3

A Brief History of MapReduce

Spark 4

The Need for Unification (1/2)
n Big Data Analytics stack BEFORE Spark/BDAS

Batch stack
(e.g., Hadoop MR)

Logs

De
m

ux

Streaming stack
(e.g., Storm)

Real-Time
Analytics

Ad-Hoc queries
on historical data

Interactive queries
on historical data

Interactive queries (e.g., HBase,
Impala, SQL)

Challenges:
»Need to maintain three separate stacks

• Expensive and complex
• Hard to compute consistent metrics across stacks

»Hard and slow to share data across stacks

Spark 5

The Need for Unification (2/2)

n Make real-time decisions
n Detect DDoS, Fraud, etc

n E.g.,: what’s needed to detect a DDoS attack?
1. Detect attack pattern in real time à streaming

2. Is traffic surge expected? à interactive queries
3. Making queries fast à pre-computation (batch)

n And need to implement complex algos (e.g., ML)!

Spark 6

Goal of the Berkeley Data Analytics Stack
(BDAS) Project by AMPLab @ UCB

Batch

Interactive Streaming

Single
Stack!

• Support batch, streaming, and interactive computations…
… and make it easy to compose them

• Easy to develop sophisticated algorithms (e.g., graph, ML
algos)

Spark 7

The Berkeley AMPLab (2011-2017)

n Governmental & industrial funding:

Goal: Next generation of open source data
analytics stack for industry & academia:
Berkeley Data Analytics Stack (BDAS)

lgorithms

achines eople

Spark 8

A Brief History of Spark

Spark 9

A Brief History of Spark

Spark 10

A Brief History of Spark

Spark 11

Data Processing Stack

Data Processing Layer

Resource Management Layer

Storage Layer

Spark 12

Hadoop Stack

Data Processing Layer

Resource Management Layer

Storage Layer

…

Hadoop MR

Hive Pig
HBase Storm

HadoopYARN

HDFS, S3, …

Spark 13

BDAS

Data Processing Layer

Resource Management Layer

Storage Layer

Mesos

Spark

Spark
Streaming Spark SQL

BlinkDB
GraphX

MLlib

KeystoneML

HDFS, S3, …
Tachyon

Spark 14

How do BDAS & Hadoop fit together?

Mesos Mesos

Spark

Spark
Streaming Spark SQL

BlinkDB
GraphX

MLlib

MLBase

HDFS, S3, …
Tachyon

HadoopYarn

Hadoop MR

Hive Pig
HBase StormSpark

SQL

Spark
Streaming

Graph
X ML

library

BlinkDB MLbase

Spark

MapReduce 15

Apache Mesos
(http://mesos.apache.org)

httphtt
¢ Another competing Cluster Resource Management software

¢ Enable multiple frameworks to share same cluster resources
(e.g., MapReduce, Storm, Spark, HBase, etc)

¢ Originated from UCBerkeley’s BDAS project ;
l B. Hindman et al, “Mesos: A Platform for Fine-Grained Resource Sharing in the Data

Center”, Usenix NSDI 2011.

¢ Hardened via Twitter’s large scale in-house deployment
l 6,000+ servers,
l 500+ engineers running jobs on Mesos

¢ Third party Mesos schedulers
l AirBnB’s Chronos ; Twitter’s Aurora

¢ Mesospehere: startup to commercialize Mesos

Mesos
Spark

Spark
Stream. Spark

SQL

BlinkDB
GraphX

MLlib
MLBase

HDFS, S3, …
Tachyon

Spark 16

Apache Spark
n Distributed Execution Engine

n Fault-tolerant, efficient in-memory storage (RDDs)
n Powerful programming model and APIs (Scala, Python,

Java)
n Fast: up to 100x faster than Hadoop
n Easy to use: 5-10x less code than MapReduce
n General: support interactive & iterative apps

Mesos
Spark

Spark
Stream. Spark

SQL

BlinkDB
GraphX

MLlib
MLBase

HDFS, S3, …
Tachyon

Spark 17

Spark Streaming

n Large scale streaming computation
n Implement streaming as a sequence of <1s jobs

n Fault tolerant
n Handle stragglers
n Ensure “exactly once” semantics

n Integrated with Spark: unifies batch, interactive, and
batch computations
n Initially, Spark realized streaming in form of “micro-batched”

processing and was not truly msec-type “real-time”.
n Since 2018 (ver2.2), Spark started to support low-latency

streaming under the name of “Continuous Processing
Mode”.

Mesos
Spark

Spark
Stream

. Spark SQL
BlinkDB

GraphX
MLlib

MLBase

HDFS, S3, …
Tachyon

Spark 18

Unified Programming Models

n Unified system for
SQL, graph
processing,
machine learning

n All share the
same set of
workers and
caches

def logRegress(points: RDD[Point]): Vector {
 var w = Vector(D, _ => 2 * rand.nextDouble - 1)
 for (i <- 1 to ITERATIONS) {
 val gradient = points.map { p =>
 val denom = 1 + exp(-p.y * (w dot p.x))
 (1 / denom - 1) * p.y * p.x
 }.reduce(_ + _)
 w -= gradient
 }
 w
}

val users = sql2rdd("SELECT * FROM user u
 JOIN comment c ON c.uid=u.uid")

val features = users.mapRows { row =>
 new Vector(extractFeature1(row.getInt("age")),
 extractFeature2(row.getStr("country")),
 ...)}
val trainedVector = logRegress(features.cache())

Spark 19

Performance and Generality
(Unified Computation Models)

Interactive
(SQL, Shark)

Sp
ar

k…

0

5

10

15

20

25

30

35

Th
ro

ug
hp

ut
 (M

B
/s

/n
od

e)

Streaming
(SparkStreaming)

0

20

40

60

80

100

120

140

Ti
m

e
pe

r I
te

ra
ti

on
 (s

)

Batch
(ML, Spark)

Spark 20

Compatibility to existing (non-Spark) Ecosystem

Resource Management Layer

Storage Layer

Mesos

Spark

Spark
Streaming Spark SQL

BlinkDB
GraphX

MLlib

MLBase

HDFS, S3, …
Tachyon

Accept inputs from
Kafka, Flume, Twitter,
TCP Sockets, …

Hive API

GraphLab API

HDFS API

Support Hadoop,
Storm, MPI

Spark 21

Highly Visible Industrial Impact

Recently renamed to:

Spark 22

Rapid Adoption

n Train > 10K people via
Tutorials in AMPCamp 1-
6, Strata, Spark Summits
and MOOCs

n 42K+ Spark Meetup
members

n 600+ Contributing
Developers to codebase

Mesos
Spark

Spark
Stream. Spark SQL

BlinkDB
GraphX

MLlib
MLBase

HDFS, S3, …
Tachyon

Spark 23

Highly Visible Industrial Impact –
Large Scale Usage

Spark 24

Spark Ecosystems

Spark 25

BDAS Summary

n BDAS: address next Big Data challenges
n Unify batch, interactive, and streaming

computations
n Facilitate the development of

sophisticate applications
n Support graph & ML algorithms, approximate queries

n Witnessed significant adoption
n Many more additional systems built on the top of

(and around) Spark within the BDAS:
n Spark Streaming, GraphX, KeystoneML, MLbase,

Spark SQL, BlinkDB, Tachyon, Succinct…

Batch

Interactive Streaming

Spark

Spark 26

Key Features of Spark

Spark 27

Programming Language Support by Spark

Spark 28

BDAS (since Nov 2016)

Spark 29

Spark

Spark 30

Spark as the Core Distributed Processing Engine
of BDAS

Data Processing Layer

Resource Management Layer

Storage Layer

Mesos

Spark

Spark
Streaming Spark SQL

BlinkDB
GraphX

MLlib

KeystoneML

HDFS, S3, …
Tachyon

Spark 31

Motivation

Many of the previous cluster programming models
are based on directed acyclic data flow from stable
storage to stable storage, e.g. MapReduce, Dryad,
Tez, SQL

Spark 32

Motivation

Many of the previous cluster programming models
are based on directed acyclic data flow from stable
storage to stable storage, e.g. MapReduce, Dryad,
Tez, SQL

Benefits of data flow: runtime can decide
where to run tasks and can automatically
recover from failures

Spark 33

Motivation (cont’d)

n Although Acyclic data flow is a powerful abstraction,
it is NOT efficient for applications that repeatedly
reuse a Working-Set of data:
>> Iterative algorithms (machine learning)
>> Interactive data mining tools (R, Excel, Python)

n With previous frameworks, apps reload data from
stable storage on each query

Spark 34

Data Sharing
n MapReduce: Sharing via Disk I/O

n Spark: In-memory Sharing (Fast Disk-based sharing
as well)

Spark 35

Examples on the Performance Edge of
Spark over MapReduce

on some common Iterative Algorithms

Time per Iteration (s)

Spark 36

Key Ideas behind Spark’s Solution:
Data Flow Model + Resilient Distributed Datasets

n Augment Data Flow model with “Resilient
Distributed Datasets” (RDDs)

n Combine Data Flow with RDDs to unify many
cluster programming models
n Instead of specialized APIs for one-type of apps, give

users 1st-class control of Distributed Datasets

Spark 37

n Spark makes Working Datasets a first-class concept to
efficiently support In-memory Data-Sharing across
(different iterations/ stages of) apps

n Provide Distributed Memory Abstractions (called Resilient
Distributed Datasets - RDDs) for clusters to support apps
with Working Sets
n Work with distributed collections as you would with local ones

n Retain the attractive properties of MapReduce:
n Fault tolerance (for crashes & stragglers)
n Data locality
n Scalability

n Enhance programmability:
n Integrate into Scala programming language
n Allow interactive use from Scala interpreter

Key Ideas behind Spark

Spark 38

Outline

n Introduction to Functional Programming & Scala
n Spark’s Resilient Distributed Datasets (RDDs)
n Implementation
n Conclusion

Spark 39

A Brief History:
Functional Programming for Big Data

Spark 40

A Brief History:
Functional Programming for Big Data

Spark 41

A Brief History:
Functional Programming for Big Data

Spark 42

Why Functional Programming is a good fit for
Parallel, Concurrent, Fault-Tolerant Computing ?

Source: Odersky’s OSCON 2011 keynote: https://www.youtube.com/watch?v=3jg1AheF4n0

https://www.youtube.com/watch?v=3jg1AheF4n0

Spark 43

A Brief History:
Functional Programming for Big Data

Spark 44

High-level language for JVM
>> Object-Oriented + Functional programming (FP)
>> Designed by Martin Odersky of EPFL in 2001 ;

First public release in 2004.
>> Odersky founded Typesafe in 2011 to provide commercial support of

Scala
Statically typed

>> Comparable in speed to Java
>> no need to write types due to type inference

Interoperates with Java
>> Can use any Java class, inherit from it, etc;
>> Can also call Scala code from Java

Where to learn more
>>Odersky’s Scala course on

Coursera:https://www.coursera.org/course/progfun
>>Odersky’s OSCON 2011 keynote on why Functional Programming & Parallel-

processing is a good fit: https://www.youtube.com/watch?v=3jg1AheF4n0

About Scala

https://www.coursera.org/course/progfun
https://www.youtube.com/watch?v=3jg1AheF4n0

Spark 45

Quick Tour of Scala

Spark 46

Quick Tour of Scala (cont’d)

Spark 47

All of these leave the list unchanged (List is
Immutable)

Quick Tour of Scala (cont’d)

Spark 48

Scala Closure Syntax (cont’d)

Spark 49

Scala Cheat Sheet

Variables:
var x: Int = 7
var x = 7 // type inferred

val y = “hi” // read-only

Functions:
def square(x: Int): Int = x*x

def square(x: Int): Int = {
x*x // last line returned

}

Collections and closures:
val nums = Array(1, 2, 3)

nums.map((x: Int) => x + 2) // => Array(3, 4, 5)

nums.map(x => x + 2) // => same
nums.map(_ + 2) // => same

nums.reduce((x, y) => x + y) // => 6
nums.reduce(_ + _) // => 6

Java interop:
import java.net.URL

new
URL(“http://cnn.com”).openStream()

More details:
scala-lang.org

http://www.scala-lang.org

Spark 50

Other Scala Collection Methods More details:
scala-lang.org

http://www.scala-lang.org

Spark 51

Outline

n Introduction to Functional programming & Scala
n Spark’s Resilient Distributed Datasets (RDDs)
n Implementation
n Conclusion

Spark 52

n Spark makes Working Datasets a first-class concept to
efficiently support In-memory Data-Sharing across
(different iterations/ stages of) apps

n Provide Distributed Memory Abstractions (called Resilient
Distributed Datasets - RDDs) for clusters to support apps
with Working Sets
n Work with distributed collections as you would with local ones

n Retain the attractive properties of MapReduce:
n Fault tolerance (for crashes & stragglers)
n Data locality
n Scalability

n Enhance programmability:
n Integrate into Scala programming language
n Allow interactive use from Scala interpreter

Key Ideas behind Spark

Spark 53

What are Resilient Distributed Datasets (RDDs) ?
n RDDs are Immutable (i.e. become read-only once

they are created) collections partitioned across
cluster that can be rebuilt if a partition is lost

n Created by transforming data in stable storage using
data flow operators (map, filter, group-by, …)

n The elements of an RDD need not exist in physical
storage;
n Instead, a handle to an RDD contains enough information

(aka lineage info) to compute the RDD starting from data in
reliable storage.

=>RDDs can always be reconstructed if nodes fail.

Spark 54

Reap Key Ideas behind Spark’s Solution:
Data Flow Model + Resilient Distributed Datasets

n Augment Data Flow model with “Resilient
Distributed Datasets” (RDDs)

Spark 55

What are RDDs (cont’d) ?
n RDDs that can be cached (aka persist) in RAM

across parallel operations and to be shared by
different Apps

n User can control the Partitioning of an RDD, e.g .one
comprised of <key,value> pairs based on hash or
range of the key.
n Once partitioned, Spark will remember the way an RDD is

partitioned and use the info to reduce unnecessary data
shuffling when operating on RDDs

n e.g. Functions that benefit from partitioning include: cogroup(),
groupWith(), join() , groupByKey(), reduceByKey(),
combineByKey(), lookup()

n Spark knows internally which operations may affect
partitioning, and will automatically set the partitioner of an
RDD

Spark 56

RDD Types: Parallelized Collections

n By calling SparkContext’s parallelize method on an
existing Scala collection (a Seq obj)

n Once created, the distributed dataset can be
operated on in parallel

Spark 57

RDD Types: Hadoop Datasets
n Spark supports text files, SequenceFiles, and any

other Hadoop inputFormat

val distFiles = sc.textFile(URI)

n Other Hadoop inputFormat
val distFile = sc.hadoopRDD(URI)

Local path or hdfs://, s3n://, kfs://

Spark 58

Programming Model of Spark
n Use Resilient Distributed Datasets (RDDs) as basic

building blocks
n Perform Parallel Operations on RDDs

Ø Transformations: Operations to create new RDD(s) from
existing ones, e.g. map, filter, groupBy, join ;

Ø Actions: Return a result (value) to a driver program after
running the computation on the RDD or write it to storage,
e.g. reduce, collect, count, save …

Ø Transformations are Lazy (They don’t compute right away):
Ø Spark just remembers the transformations applied to

datasets(lineage). Only compute when an action
requires.

n Restricted Shared Variables
n Accumulators, Broadcast variables

Spark 59

Working with RDDs

Spark 60

Working with RDDs

Spark 61

Working with RDDs

Spark 62

Transformations

Spark 63

Transformations (cont’d)

Spark 64

Transformations Examples

Spark 65

Examples on Set Operations

Spark 66

Examples on Cartesian product b/w
two RDDs

Spark 67

More Examples Basic RDD Transformations

Spark 68

More Examples Basic RDD Transformations (cont’d)

Spark 69

More Transformations Example

Spark 70

More Transformations Example

Spark 71

Actions

Spark 72

Actions (cont’d)

Spark 73

Examples of Actions on RDDs

Spark 74

More Examples of Actions on RDDs

Spark 75

More Action Examples

f

Spark 76

Transformations & Actions

Spark 77

Parallel Operations
n reduce: Combines dataset elements using an

associative function to produce a result at the
driver program.

n collect: Sends all elements of the dataset to the
driver program.

Spark 78

Example: Log Mining w/ Spark in Scala
n Load error messages from a log into memory,

then interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”))

messages = errors.map(_.split(‘\t’)(2))

cachedMsgs = messages.cache()

Block 1

Block 2

Block 3

Worker

Worker

Worker

Driver

cachedMsgs.filter(_.contains(“foo”)).count()

cachedMsgs.filter(_.contains(“bar”)).count()

. . .

tasks

results

Cache 1

Cache 2

Cache 3

Base RDDTransformed
RDD

Cached RDD
Parallel operation

Result: full-text search of Wikipedia in
<0.5 sec (vs 20 sec for on-disk data)

Spark 79

Spark in Scala and Java

// Scala:

val lines = sc.textFile(...)
lines.filter(x => x.contains(“ERROR”)).count()

//the line above is the long form of:

// lines.filter(_.contains(“ERROR”)).count()

// Java:

JavaRDD<String> lines = sc.textFile(...);
lines.filter(new Function<String, Boolean>() {

Boolean call(String s) {
return s.contains(“error”);

}
}).count();

Spark 80

Same Example in Python

Load error messages from a log into memory,
then interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()
Block 1

Block 2

Block 3

Worker

Worker

Worker

Driver

messages.filter(lambda s: “foo” in s).count()

messages.filter(lambda s: “bar” in s).count()

. . .

tasks

results
Cache 1

Cache 2

Cache 3

Base RDDTransformed RDD

Action

Result: full-text search of Wikipedia in < 1 sec
(vs 20 s for on-disk data)

Result: scaled to 1 TB data in 5 sec
(vs 180 sec for on-disk data)

Spark 81

Working with Key-Value Pairs

n Spark’s “distributed reduce” transformations
operate on RDDs of key-value pairs

n Python: pair = (a, b)
pair[0] # => a

pair[1] # => b

n Scala: val pair = (a, b)
pair._1 // => a
pair._2 // => b

n Java: Tuple2 pair = new Tuple2(a, b);
pair._1 // => a
pair._2 // => b

Spark 82

Examples of Transformations on Pair RDDs

Spark 83

More Examples of Transformations on Pair RDDs

Spark 84

More Examples of Transformations on Pair RDDs

See https://www.tutorialspoint.com/scala/scala_options.htm for more details on Some()

https://www.tutorialspoint.com/scala/scala_options.htm

Spark 85

Example of using combineByKey to compute
Per-key averaging for Pair RDDs in Python or Scala

Spark 86

Examples of combineByKey for Pair RDDs in Java

Spark 87

Examples of Filtering on Values of a Pair-RDD

Spark 88

Examples of Per-key Averaging

Spark 89

The Word Count Example in Python or Scala

Spark 90

The Word Count Example (w/ Scala shorthand):

Spark 91

The Word Count Example in Java

Spark 92

A Complete Example of Word-Count w/ Spark

Spark 93

Changing the Persistence of RDD
n By default, RDDs are lazy and ephemeral.
n User can alter the persistence of an RDD through two

actions:
n Cache action: By calling the persist() method, user provides

the hints that the RDD should be kept in memory after the
first time it is computed, because it will be reused.

n Save action: evaluates the dataset and writes it to a
distributed filesystem such as HDFS

n Spark keeps persistent RDDs in memory by default,
but it can spill them to disk if there is not enough RAM.

n Users can set a persistence priority on each RDD to
specify which in-memory data should spill to disk first.

Spark 94

Memory Management in Spark
Spark provides three options for persist RDDs:
(1) In-memory storage as deserialized Java Objects

>> fastest, JVM can access RDD natively
(2) In-memory storage as serialized data

>> space limited, choose another efficient
representation, lower performance

(3) On-disk storage
>> RDD too large to keep in memory, and costly

to recompute

Spark 95

Persistence Levels in Spark

Spark 96

Behavior with Less RAM

69

58

41

30

12

0

20

40

60

80

100

Cache
disabled

25% 50% 75% Fully
cached

Ex
ec

ut
io

n
ti

m
e

(s
)

% of working set in cache

Spark 97

RDDs vs. Distributed Shared Memory

Aspect RDDs DSM
Reads Coarse- or fine-grained Fine-grained
Writes Coarse-grained Fine-grained
Consistency Trivial(immutable) Up to app / runtime
Fault recovery Fine-grained and low-

overhead using lineage
Requires checkpoints
and program rollback

Straggler mitigation Possible using backup
tasks

Difficult

Work placement Automatic based on data
locality

Up to app (runtimes aim
for transparency)

Behavior if not enough
RAM

Similar to existing data
flow systems

Poor
performance(swapping ?)

Spark 98

n An RDD has enough information about how it was
derived from other datasets (aka its lineage).
n RDD’s Lineage info can be used to reconstruct lost

partitions

RDD Fault Tolerance

Spark 99

(Same Example in Python)

msgs = textFile.filter(lambda s: s.startsWith(“ERROR”))
.map(lambda s: s.split(“\t”)[2])

HDFS File Filtered RDD Mapped RDD
filter

(func = _.contains(...))
map

(func = _.split(...))

Spark 100

Example 2 of RDD

n These datasets will be stored as a chain of objects
capturing the lineage of each RDD. Each dataset
object contains a pointer to its parent and
information about how the parent was transformed.

Spark 101

Lineage Chain of Example2

Spark 102

Example 3 of RDD

Spark 103

Lineage Chain of Example 3

Spark 104

What is an RDD ?

A: Distributed Collection of Objects on disks

B: Distributed Collection of Objects in memory

C: Distributed Collection of Objects in Cassandra

nAnswer: Could be any of the above.

Spark 105

What is an RDD ?
n Scientific Answer: RDD is an Interface !

Spark 106

Interface used to represent RDDs

Operation Meaning

partitions() Return s list of partition objects

preferredLocations(p) List nodes where partition p can be
accessed faster due to data locality

dependencies() Return a list of dependencies

iterator(p, parentIters) Compute the elements of partition p
given iterators for its parent partitions

partitioner() Return metadata specifying whether
the RDD is hash/range partitioned

Spark 107

Example: A HadoopRDD

Spark 108

Example: A Filtered RDD

Spark 109

RDD Graph (DAG of tasks)

Spark 110

Example: A Joined RDD

Spark 111

Example: Join and its Operator Graph

Spark 112

RDD Dependency Types

Each box is an RDD, with partitions shown as shaded rectangles

Spark 113

Dependencies between RDDs(1)
n Narrow Dependencies: each partition of the parent

RDD is used by at most one partition of the child
RDD(1:1). Map leads to a narrow dependency.

n Wide Dependencies: multiple child partitions may
depend on it(1:N). Join leads to wide
dependencies.

Spark 114

Dependencies between RDDs(2)

n Narrow dependencies allow for pipelined execution
on one cluster node, which can compute all the
parent partitions. For example, one can apply a map
followed by a filter on an element-by-element basis.

n Wide dependencies require data from all parent
partitions to be available and to be shuffled across
the nodes using a MapReduce like operation.

n Recovery after a node failure is more efficient with a
narrow dependency than the ones with wide
dependency.

Spark 115

Advanced Features
n Controllable partitioning

n Speed up joins against a dataset
n Controllable storage formats

n Keep data serialized for efficiency, replicate to multiple
nodes, cache on disk

n Shared variables: broadcasts, accumulators

Spark 116

Shared Variables

n Programmers invoke operations like map, filter and
reduce by passing closures (functions) to Spark.
Normally, when Spark runs a closure on a worker
node, these variables are copied to the worker.

n However, Spark also lets programmers create two
restricted types of shared variables to support two
simple but common usage patterns.

Spark 117

Broadcast Variables
n When one creates a broadcast variable b with a

value v, v is saved to a file in a shared file system.
The serialized form of b is a path to this file. When
b’s value is queried on a worker node, Spark first
checks whether v is in a local cache, and reads it
from the file system if it isn’t.

Spark 118

Accumulators

n Each accumulator is given a unique ID when it is
created. When the accumulator is saved, its
serialized form contains its ID and the “zero” value
for its type.

n On the workers, a separate copy of the
accumulator is created for each thread that runs a
task using thread-local variables, and is reset to
zero when a task begins. After each task runs, the
worker sends a message to the driver program
containing the updates it made to various
accumulators.

Spark 119

A More Sophisticated Example:
Computing PageRank w/ Spark

n Good example of a more complex algorithm
n Multiple stages of map & reduce

n Benefits from Spark’s in-memory caching
n Multiple iterations over the same data

n Demonstrating the Importance of Controlling the
Partitioning of RDDs for Performance Optimization

Spark 120

Basic Idea

n Give pages ranks (scores) based on links to them
n Links from many pages è high rank
n Link from a high-rank page è high rank

Image: en.wikipedia.org/wiki/File:PageRank-hi-res-2.png

Spark 121

Algorithm

1.0 1.0

1.0

1.0

1. Start each page at a rank of 1
2. On each iteration, have page p contribute

rankp / |neighborsp| to its neighbors
3. Set each page’s rank to 0.15 + 0.85 × contribs

Spark 122

Algorithm

1. Start each page at a rank of 1
2. On each iteration, have page p contribute

rankp / |neighborsp| to its neighbors
3. Set each page’s rank to 0.15 + 0.85 × contribs

1.0 1.0

1.0

1.0

1

0.5

0.5

0.5

1

0.5

Spark 123

Algorithm

1. Start each page at a rank of 1
2. On each iteration, have page p contribute

rankp / |neighborsp| to its neighbors
3. Set each page’s rank to 0.15 + 0.85 × contribs

0.58 1.0

1.85

0.58

Spark 124

Algorithm

1. Start each page at a rank of 1
2. On each iteration, have page p contribute

rankp / |neighborsp| to its neighbors
3. Set each page’s rank to 0.15 + 0.85 × contribs

0.58

0.29

0.29

0.5

1.85
0.58 1.0

1.85

0.58

0.5

Spark 125

Algorithm

1. Start each page at a rank of 1
2. On each iteration, have page p contribute

rankp / |neighborsp| to its neighbors
3. Set each page’s rank to 0.15 + 0.85 × contribs

0.39 1.72

1.31

0.58

. . .

Spark 126

Algorithm

1. Start each page at a rank of 1
2. On each iteration, have page p contribute

rankp / |neighborsp| to its neighbors
3. Set each page’s rank to 0.15 + 0.85 × contribs

0.46 1.37

1.44

0.73

Final state:

Spark 127

Naïve Implementation of PageRank in Spark
(in Scala)

Note: The need of the “case” primitive in scala:
http://danielwestheide.com/blog/2012/12/12/the-neophytes-guide-to-scala-part-4-pattern-matching-anonymous-functions.html

Spark 128

Naïve Implementation of PageRank in Spark
(in Scala)

val sc = new SparkContext(“local”, “PageRank”, sparkHome,
Seq(“pagerank.jar”))

val links = // load RDD of (url, neighbors) pairs
var ranks = // load RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
val contribs = links.join(ranks).flatMap {

case (url, (links, rank)) =>
links.map(dest => (dest, rank/links.size))

}
ranks = contribs.reduceByKey(_ + _)

.mapValues(0.15 + 0.85 * _)
}
ranks.saveAsTextFile(...)

Spark 129

Execution of the Naïve Implementation of
PageRank in Spark

Spark 130

An Important (Optimization) Tool: Control the
Partitioning of RDDs across different nodes

Spark 131

Join without using partitionBy

Spark 132

Join after using partitionBy

Spark 133

Execution Flow of the 2nd Implementation of
PageRank in Spark

Spark 134

Yet Another Variation (Trick)

Spark 135

How does it work ?

n Each RDD has an OPTIONAL Partitioner
object

n Any shuffle operation on an RDD with a
Partitioner will respect that Partitioner

n Any shuffle operation on two RDDs will take
on the Partitioner of one of them, if one is
set ;
n Otherwise, will use the HashPartitioner by

default

Spark 136

Examples of RDD Partitioning

Spark 137

PageRank Performance

Spark 138

How to Customized RDD Partitioning

Spark 139

Way to find out how an RDD is Partitioned

Spark 140

A Spark Application

Spark 141

Execution Process of Spark

Spark 142

DAG Scheduler of Spark

n Input: RDD and Partitions to compute

n Output: Output from Actions of those Partitions

n Roles:
n Build stages of tasks
n Submit them to lower level scheduler, (e.g. YARN or

Mesos, Standalone) as ready
n Lower level scheduler will schedule data based on

locality
n Resubmit failed stages if outputs are lost

Spark 143

Job Scheduler of Spark

n Captures RDD
dependency graph

n Pipelines functions
into “stages”

n Cache-aware for
data reuse &
locality

n Partitioning-aware
to avoid shuffles

= cached partition= RDD

join

filter

groupBy

Stage 3

Stage 1

Stage 2

A: B:

C: D: E:

F:

map

Spark 144

Outline

n Introduction to Scala & functional programming
n What is Spark
n Resilient Distributed Datasets (RDDs)
n Implementation
n Conclusion

Spark 145

Codebase of Spark
Implement Spark Core in about 14,000 Lines of Scala:

Spark 146

Software Components: How to run Spark ?

n Spark runs as a library in your
program (1 instance per app)

n Runs tasks locally or on cluster
n Mesos, YARN or standalone

mode
>> new SparkContext (masterUrl,

jobname, [sparkhome], [jars])

>> MASTER=local[n] ./spark-shell
>> MASTER=HOST:PORT ./spark-shell

n Access storage systems via
Hadoop InputFormat API
n Can use HBase, HDFS, Tachyon,

S3, Cassandra, …

Your application

SparkContext

Local
threads

Cluster
manager

Worker
Spark

executor

Worker
Spark

executor

HDFS or other storage

Spark 147

Add Spark to Your Project
n Scala / Java: add a Maven dependency on

n groupId: org.spark-project
artifactId: spark-core_2.9.3
version: 0.7.3

n Python: run program with our pyspark script

Spark 148

import spark.api.java.JavaSparkContext;

JavaSparkContext sc = new JavaSparkContext(
“masterUrl”, “name”, “sparkHome”, new String[] {“app.jar”}));

n import spark.SparkContext
n import spark.SparkContext._

n val sc = new SparkContext(“url”, “name”, “sparkHome”, Seq(“app.jar”))

Cluster URL, or
local / local[N]

App
name

Spark install
path on
cluster

List of JARs with
app code (to

ship)

Create a SparkContext
(Generalized to SparkSession since Spark ver2.0)

https://stackoverflow.com/questions/49574511/what-is-difference-between-sparksession-and-sparkcontext

Sc
al
a

Ja
va

from pyspark import SparkContext

sc = SparkContext(“masterUrl”, “name”, “sparkHome”, [“library.py”]))

Py
th
on

Spark 149

Getting Started

n Download Spark:
www.spark.apache.org/downloads.html

n Documentation and video tutorials:
www.spark.apache.org/docs/latest

n Other Resources:
www.Databricks.com

spark.apache.org/downloads.html
http://www.spark.apache.org/docs/latest
http://www.Databricks.com

Spark 150

n Just pass local or local[k] as master URL
n Debug using local debuggers

n For Java / Scala, just run your program in a debugger
n For Python, use an attachable debugger (e.g. PyDev)

n Great for development & unit tests

Local Execution

Spark 151

Cluster Execution

n Easiest way to launch is EC2:
./spark-ec2 -k keypair –i id_rsa.pem –s slaves \

[launch|stop|start|destroy] clusterName

n Several options for private clusters:
n Standalone mode (similar to Hadoop’s deploy scripts)
n Mesos
n Hadoop YARN

n Amazon EMR: tinyurl.com/spark-emr

http://www.tinyurl.com/spark-emr

Spark 152

Key Distinctions for Spark vs. MapReduce

Spark 153

n Scala : OOP + FP
n RDDs: fault tolerance, data locality/ partitioning-

control, scalability
n RDD implemented in Spark using Scala
n Spark offers a rich API to make data analytics fast:

both fast to write and fast to run
n Achieves 50 or even 100+ speedups in real applications

n Rapidly growing community

Conclusion for Part I

