IEMSS5730
Spring 2023

BDAS and Spark

Prof. Wing C. Lau

Department of Information Engineering
wclau@ie.cuhk.edu.hk

Acknowledgements

= Slides in this chapter are adapted from the following sources:

= Matei Zaharia et al, “Spark: In-Memory Cluster Computing for Iterative
and Interactive Applications,” UC Berkeley AMPlabs talk, 2011.

= Matei Zaharia, “Advanced Spark Features,” AMPCAMP talk, 2012.

= Matei Zaharia, “Parallel Programming with Spark,” Talks for O’Reilly
Strata Conference and AMPCAMP, 2013.

= Reynold Xin, “Spark,” Stanford CS347 Guest Lecture, May 2015.

= Holden Karau, Andy Konwinski, Patrick Wendell, Matei Zaharia,
“Learning Spark,” Published by O’Reilly, 2015.

« Tathagata Das, “Spark Streaming: Large-scale near-real-time stream
processing,” O’Reilly Strata Conference talk, 2013.

= Joseph Gonzalez et al, “GraphX: Graph Analytics on Spark,” talk at
AMPCAMP 3, 2013.

= lon Stoica, “Intro to AMPLab and Berkeley Data Analytics Stack,” talk at
AMPCAMP 3, 2013.

= lon Stoica, “State of the BDAS Union,” talk at AMPCAMP 6, Nov. 2015.
= Paco Nathan, “Intro to Apache Spark,” GOTO; Conference 2015

= Zhiguang Wen, “Spark: Fast, Interactive, Language-Integrated Cluster
Computing,” 2012.

= All copyrights belong to the original authors of the materials. Spark 2

A Brief History of MapReduce

‘ Pregel ’ ‘ Giraph ’

GraphlLab
‘ Dremel ’ ‘ Drill ’
‘ MapReduce ’ - - — ‘ Tez ’
‘) ‘ mpala ’

‘ MillWheel) (S4) (Storm)

General Batch Processing Specialized Systems:
iterative, interactive, streaming, graph, etc.

MR doesn’t compose well for large applications,

and so specialized systems emerged as workarounds

Spark 3

The Need for Unification (1/2)
= Big Data Analytics stack BEFORE Spark/BDAS

Logs

—

Streaming stack
(e.qg., Storm)

<
1

Demux

Batch stack
(e.q., Hadoop MR)

JF

Interactive queries (e.g., HBase,

Impala, SQL)

Challenges:

Real-Time

:> Analytics

—
—

Ad-Hoc queries
on historical data

Interactive queries
on historical data

» Need to maintain three separate stacks
« Expensive and complex

« Hard to compute consistent metrics across stacks
» Hard and slow to share data across stacks

Spark 4

The Need for Unification (2/2)

s Make real-time decisions
= Detect DDoS, Fraud, etc

= E.g.,: what' s needed to detect a DDoS attack?

1. Detect attack pattern in real time = streaming /MW
2. Is traffic surge expected? = interactive queries L‘””’“
5. Making queries fast - pre-computation (batch))

= And need to implement complex algos (e.g., I\/IL)!

Spark 5

Goal of the Berkeley Data Analytics Stack
(BDAS) Project by AMPLab @ UCB

i e,

Y

fl

\7w)

'_}”g"" e

* Batch

e TR

e N

E; Z. N

I |13 |e - - v | A
ﬁ ng / /TN §
e s Y LS
D R ' : "'f»ﬁ.f T /_/f_i‘y\’.i,
~ Stack! _= ','/' ;

AR

a [Interactlve < >[StreamlngJ

» Support batch, streaming, and interactive computations...
.. and make it easy to compose them

 Easy to develop sophisticated algorithms (e.g., graph, ML

algOS) Spark 6

The Berkeley AMPLab (2011-2017) Gk

/ame\

VMachines @ms=== [People

e/ : ' o .
@ @ amazoncon. (GO0gle TV
R ad ’ \.)

Yasioo! (inteD Mcrosoft @ il oracle oy A2

HUAWEI

= Governmental & industrial funding:

T\
ERICSSON Z “ 5 vmware EIearStorg ‘cloudera &> wave H;:t::w@,‘ks splunk> s wanpisco

NetApp

4 . N
Goal: Next generation of open source data

analytics stack for industry & academia:
Berkeley Data Analytics Stack (BDAS)

- J

Spark 7

A Brief History of Spark

Developed in 2009 at UC Berkeley AMPLab, then
open sourced in 2010, Spark has since become
one of the largest OSS communities in big data,
with over 200 contributors in 50+ organizations

“Organizations that are looking at big data challenges —
including collection, ETL, storage, exploration and analytics —
should consider Spark for its in-memory performance and
the breadth of its model. It supports advanced analytics
solutions on Hadoop clusters, including the iterative model

required for machine learning and graph analysis.”

Gartner, Advanced Analytics and Data Science (2014)

Spork

spark.apache.org
Spark 8

A Brief History of Spark
circa 2010:

a unified engine for enterprise data workflows,
based on commodity hardware a decade later...

lab

Spark: Cluster Computing with Working Sets
Matei Zaharia, Mosharaf Chowdhury,

Michael Franklin, Scott Shenker, lon Stoica
people.csail.mit.edu/matei/papers/2010/hotcloud_spark.pdf

Resilient Distributed Datasets:A Fault-Tolerant Abstraction for

In-Memory Cluster Computing

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,

Justin Ma, Murphy McCauley, Michael Franklin, Scott Shenker, lon Stoica
usenix.org/system/files/conference/nsdil 2/nsdil 2-finall 38.pdf

Spark 9

A Brief History of Spark

Unlike the various specialized systems, Spark’s
goal was to generalize MapReduce to support
new apps within same engine

Two reasonably small additions are enough to
express the previous models:

® fast data sharing
e general DAGs

Spark 10

Data Processing Stack

Data Processing Layer

Resource Management Layer

Storage Layer

Spark 11

Hadoop Stack

Hive Pig
¢ HBase Ver Storm
Hadoop MR
Hadoop YARN

HDFS, 53, ...

Spark 12

Spark 13

How do BDAS & Hadoop fit together?

Hive Pig

HBase || Storm

Hadoop MR

Hadoop Yarn -

DFS, 53, ...

Spark 14

< Apache Mesos

(http://mesos.apache.org) Mesos

o Another competing Cluster Resource Management software

o Enable multiple frameworks to share same cluster resources
(e.g., MapReduce, Storm, Spark, HBase, etc)

o Originated from UCBerkeley’ s BDAS project ;

e B. Hindman et al, “Mesos: A Platform for Fine-Grained Resource Sharing in the Data
Center”, Usenix NSDI 2011.

o Hardened via Twitter’ s large scale in-house deployment

e 6,000+ servers,
e 500+ engineers running jobs on Mesos

o Third party Mesos schedulers
e AirBnB’ s Chronos ; Twitter’ s Aurora

o Mesospehere: startup to commercialize Mesos

MapReduce 15

Spark BlinkDB
Stream.

O]

Spark GraphX

MLBase

MLlib

Mesos

Apache Spark |

Tachyon

HDFS, S3, ...

Distributed Execution Engine
« Fault-tolerant, efficient in-memory storage (RDDs)

= Powerful programming model and APls (Scala, Python,

Java)
Fast: up to 100x faster than Hadoop
Easy to use: 5-10x less code than MapReduce
General: support interactive & iterative apps

Spark 16

=8 BlinkDB MLBase

Stream GraphX ,
Spark SQL MLlIib

Spark Streaming | Spark |

Mesos

| Tachyon |
HDFS, S3, ...

= Large scale streaming computation

= Implement streaming as a sequence of <1s jobs
= Fault tolerant

= Handle stragglers
= Ensure “exactly once” semantics

= Integrated with Spark: unifies batch, interactive, and
batch computations

= Initially, Spark realized streaming in form of “micro-batched”
processing and was not truly msec-type “real-time”.

= Since 2018 (ver2.2), Spark started to support low-latency
streaming under the name of “Continuous Processing
Mode”. Spark 17

Unified Programming Models

def logRegress(points: RDD[Point]): Vector {
m Un|f|ed System f()r var w = Vector(D, => 2 * rand.nextDouble - 1)
for (i <- 1 to ITERATIONS) {
SQL’ graph val gradient = points.map { p =>
prOCeSS|ng, val denom = 1 + exp(-p.y * (w dot p.Xx))

(1 / denom - 1) * p.y * p.X
}.reduce(_ +)

machine learning

w —-= gradient
}
= All share the w
same set of }
WOrkerS and val users = sql2rdd("SELECT * FROM user u
CaCheS JOIN comment ¢ ON c.uid=u.uid")

val features = users.mapRows { row =>
new Vector (extractFeaturel(row.getInt("age")),
extractFeature2(row.getStr("country")),

ce.)}

val trainedVector = logRegress(features.cache())

Spark 18

Response Time (s)

Performance and Generality

(Unified Computation Models)

)
>
T :
3
£ B -
"
_g - [I
n
Interactive Batch Streaming.
(SQL, Shark) (ML, Spark) (SparkStreaming)

Spark 19

Compatibility to existin[g (non-Spark) Ecosystem

Accept inputs from GraphLab API
Kafka, Flume, Twitter,

TCP Sockets, ...

Support Hadoop,
Storm, MPI

HDFS AP]

HDFS, 53, ...

Spark 20

Highly Visible Industrial Impact

Thousands of companies using BDAS components

Three startups behind BDAS main components
Mesos [2 MESOSPHERE

Spark @databricks'
Tachyon ‘€ TACHYON Recently renamed to:

/_\ ALLUXIO

Spark 21

Spaﬁz3 Rapld Adoption

Mesos

ghtning-Fast Cluster Computin

| Tachyon |
HDFS, S3, ...

Train > 10K people via
Tutorials in AMPCamp 1-
6, Strata, Spark Summits
and MOOCs

42K+ Spark Meetup
members

600+ Contributing
Developers to codebase

YaroO! (intel) webtrends' ClearStory AdMobius twittery
PN coon bize TAGGED .uantiFind 1. .C7%

Adobe Alibaba.com

Spark 22

Highly Visible Industrial Impact —
Large Scale Usage

Largest cluster: 8000 nodesTencent i

Largest single job: 1 petabyte 2" €2 gdatabricks

Top streaming intake: 1 TB/hour jancia fam >

2014 on-disk sort record

Spark 23

Spark Ecosystems

Distributions Applications

$databricks H#i+ableau MicraStrategy Qlik @
elasticsearch. '@ pentaho talend

ot cloudera ¥ tresata @ TRIFACTA SKYTREE
=% Pivotal. orAacLEe Alpine @ atscale |oBker www
DF'TRST"‘:;-.-’ W gUAVUS FFAIMDATA FAVARATAD DiYOTTA
I>bluedata &5 STRATIO ZovpaTa (platfora APERVI [INUBE

V2 HuAwEl =~ SequoiaDB
& Typesafe

mesosphere

W Atigeo R855 ZALGNI 3 ypesate

WO |deata)

Spark 24

BDAS Summary

BDAS: address next Big Data challenges

l Batch }i

Unify batch, interactive, and streaming
computations j. %par:\J 1#:04

Facilitate the development of ![wlnteractive]<3:>| Streaminﬁéﬂ

sophisticate applications
= Support graph & ML algorithms, approximate queries

Witnessed significant adoption

Many more additional systems built on the top of
(and around) Spark within the BDAS.:

= Spark Streaming, GraphX, KeystoneML, MLbase,
Spark SQL, BlinkDB, Tachyon, Succinct...

Spark 25

Key Features of Spark

handles batch, interactive, and real-time
within a single framework

native integration with Java, Python, Scala
programming at a higher level of abstraction

more general: map/reduce is just one set
of supported constructs

Spark 26

Programming Language Support by Spark

Python Standalone Programs

lhnines = Esc textralle)
1ines.f1lter(lambda s: *“

ERROR” in s).count() Python, Scala, & Java

Interactive Shells

Scala Python & Scala

val lines = sc.textFile(...)
Tines.filter(x => x.contains(“ERROR"”)).count()

Performance

Java & Scala are faster due to
Java static typing
JavaRDD<String> lines = sc.textFile(...); ...but Python is often fine

1ines.fi1ter%new Function<String, Boolean>() {
Boolean call(string s) {
return s.contains(“error”);

})?count();

Spark 27

In-house Apps

Access and
Interfaces

Processing Engine

Storage

Resource
Virtualization

BDAS (since Nov 2016)

Cancer Genomics

AMPLab Initiated

. Spark Community

Energy Debugging

. 3rd Party

Smart Buildings

. In Development

Spark 28

Spark

Spark 29

Spark as the Core Distributed Processing Engine
of BDAS

. ——
e
- Tachyon |

HDFS, 53, ...

Spark 30

Motivation

Many of the previous cluster programming models
are based on directed acyclic data flow from stable
storage to stable storage, e.g. MapReduce, Dryad,

Tez, SQL

Spark 31

Motivation

Many of the previous cluster programming models
are based on directed acyclic data flow from stable
storage to stable storage, e.g. MapReduce, Dryad,

Tez, SQL
] [
2)
Benefits of data flow: runtime can decide

where to run tasks and can automatically

recover from failures

- _ Y,
7] |

Spark 32

Motivation (cont’'d)

= Although Acyclic data flow is a powerful abstraction,
it is NOT efficient for applications that repeatedly
reuse a Working-Set of data:

>> |terative algorithms (machine learning)
>> Interactive data mining tools (R, Excel, Python)

= With previous frameworks, apps reload data from
stable storage on each query

Spark 33

Data Sharing
= MapReduce: Sharing via Disk I/O

HDFS HDFS HDFS HDFS
read write _ read write
N

— N——

Input

= Spark: In-memory Sharing (Fast Disk-based sharing
as well)

Distributed
memory

Input

[|0-100x faster than network and disk]

34

Examples on the Performance Edge of
Spark over MapReduce
on some common lterative Algorithms

| | | | | 155 & Hadoop
! 4-1 “ Spark

K-Means
Clustering

Logistic
Regression

I [[[I

o) 30 60 90 120

0.96

1ico 180

110

| | I I

0 25 50 75 100 125

Time per Iteration (s)

Spark 35

Key ldeas behind Spark’s Solution:
Data Flow Model + Resilient Distributed Datasets

= Augment Data Flow model with “Resilient
Distributed Datasets” (RDDs)

= Combine Data Flow with RDDs to unify many
cluster programming models
= Instead of specialized APIs for one-type of apps, give

users 1st-class control of Distributed Datasets
Spark 36

Key ldeas behind Spark
Spark makes Working Datasets a first-class concept to
efficiently support In-memory Data-Sharing across
(different iterations/ stages of) apps

Provide Distributed Memory Abstractions (called Resilient
Distributed Datasets - RDDs) for clusters to support apps
with Working Sets

= Work with distributed collections as you would with local ones
Retain the attractive properties of MapReduce:

= Fault tolerance (for crashes & stragglers)

= Data locality

= Scalability

Enhance programmability:
= Integrate into Scala programming language
= Allow interactive use from Scala interpreter Spark 37

Outline

-[Introduction to Functional Programming & Scala]
= Spark’s Resilient Distributed Datasets (RDDs)

= Implementation

= Conclusion

Spark 38

A Brief History:
Functional Programming for Big Data

Theory, Eight Decades Ago:
what can be computed?

Alonso Church Haskell Curry
wikipedia.org haskell.org

Reality, Two Decades Ago:
machine data from web apps

Pattie Maes GO Ugle

MIT Media Lab

é 5 9 amazon(gn) v

Praxis, Four Decades Ago:
algebra for applicative systems

John Backus
acm.org

David Turner
wikipedia.org

Spark 39

A Brief History:
Functional Programming for Big Data

circa late 1990s:
explosive growth e-commerce and machine data
implied that workloads could not fit on a single

computer anymore...

notable firms led the shift to horizontal scale-out
on clusters of commodity hardware, especially
for machine learning use cases at scale

A Brief History:
Functional Programming for Big Data
circa 2002:
mitigate risk of large distributed workloads lost
due to disk failures on commodity hardware...

Google

Google File System
Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung

research.google.com/archive/gfs.html

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean, Sanjay Ghemawat
research.google.com/archive/mapreduce.htmi

Spark 41

Why Functional Programming is a good fit for
Parallel, Concurrent, Fault-Tolerant Computing ?

The Root of The Problem

* Non-determinism caused by el
concurrent threads accessing
shared mutable state.

+ It helps to encapsulate state in actors
or transactions, but the fundamental
problem stays the same.

o ‘SO

async { x =x + 1 }
async { x =x * 2 }

// can give 0, 1, 2

non-determinism = parallel processing + mutable state
+ To get deterministic processing, avoid the mutable state!
« Avoiding mutable state means programming functionally.

Source: Odersky’s OSCON 2011 keynote: https://www.youtube.com/watch?v=3jg1AheF4n0
Spark 42

https://www.youtube.com/watch?v=3jg1AheF4n0

A Brief History:

Functional Programming for Big Data

2004

MapReduce paper

Spark paper

2002
MapReduce @ Google

2008
Hadoop Summit

2006
Hadoop @ Yahoo!

2014
Apache Spark top-level

Spark 43

About Scala
High-level language for JVM

>> Object-Oriented + Functional programming (FP)

>> Designed by Martin Odersky of EPFL in 2001 ;
First public release in 2004.

>> QOdersky founded Typesafe in 2011 to provide commercial support of
Scala

Statically typed

>> Comparable in speed to Java

>> no need to write types due to type inference

Interoperates with Java
>> Can use any Java class, inherit from it, etc;
>> Can also call Scala code from Java

Where to learn more

>>Qdersky’s Scala course on
Coursera:https://www.coursera.org/course/progfun

>>Qdersky’s OSCON 2011 keynote on why Functional Programming & Parallel-
processing is a good fit: https://www.youtube.com/watch?v=3jg1AheF4n0 Spark 44

https://www.coursera.org/course/progfun
https://www.youtube.com/watch?v=3jg1AheF4n0

Quick Tour of Scala

Declaring variables: Java equivalent:

var x: iInt =7 1ThE X = 73
var X 7 // type inferred

val y = “hi” // read-only final string y = “hi”;

Functions: Java equivalent:

def square(x: Int): Int = X*X int square(int x) {
return x*x;

def square(x: Int): Int = { }
G =
}
def announce(text: String) { void announce(String text) {
printTn(text) System.out.println(text);
¥ k

Spark 45

Quick Tour of Scala (cont'd)

Generic types:

var arr = new Array[Int](8)

var Ist = List(1, 2, 3)
// type of Ist is List[Int]

Indexing:
arr(5) =7

println(1st(5))

Java equivalent:
int[] arr = new int[8];
List<Integer> 1Ist =

hew ArrayList<Integer>();
Ist.add(...)

Java equivalent:
arr[s5] = 7:

system.out.printin(lst.get(5));

Spark 46

Quick Tour of Scala (cont’d)

Processing collections with functional programming:

val Tist = List(1l, 2, 3)

Tast.Toreach(x =» printinix)) .// prints 1, 2. 3
Tist.foreach(printin) // same

list.map(x => x + 2) // => List(3, 4, 5)
Tist.map(_ + 2) // same, with placeholder notation

1ist.Filter(k =x- 2 0 2 == 1) J/ = List(l. 3)
list.filter(_ % 2 == 1) // => List(l, 3)

list.reduce((x, y) => x +vy) // => 6
list.reduce(_ + _) P

All of these leave the list unchanged (List is
Immutable) o
opdl

Scala Closure Syntax (cont'd)

(X5 ITht): =5 9¢ & 2 // full version
X => X + 2 // type inferred
+ 2 // when each argument is used exactly once

x => { // when body is a block of code
val numberToAdd = 2
X + numberToAdd

}

// If closure is too long, can always pass a function
def addTwo(x: Int): Int = x + 2

Tist.map(addTwo) "

Scala Cheat Sheet

Variables: Collections and closures:
var x: Int = 7 val nums = Array(1, 2, 3)
var x =7 // type inferred

nums.map((x: Int) => x + 2) // => Array(3, 4, 5)

val y = "hi” // read-only nums.map(x => x + 2) // => same

nums.map(_ + 2) // => same

nums.reduce((x, y) => x +vy) // => 6

Functions: nums . reduce(_ + _) /] => 6

def square(x: Int): Int = x*x

def square(x: Int): Int = {

x*x // last line returned Java |nterop:

import java.net.URL

}

new More details:
URL(“http://cnn.com”).openStre scala-lang.org

Spark 49

http://www.scala-lang.org

Other Scala Collection Methods More details:

scala-lang.org

Scala collections provide many other functional
methods; for example, Google for "Scala Seq”

Method on Seq[T] Explanation

map(f: T => U): Seq[U] Pass each element through f
flatMap(f: T => sSeql[U]): Seq[U] One-to-many map
filter(f: T => Boolean): Seq[T] Keep elements passing f
exists(f: T => Boolean): Boolean True if one element passes
forall(f: T => Boolean): Boolean True if all elements pass
reduce(f: (T, T) => T): T Merge elements using f
groupBy(f: T => K): Map[K,List[T]] Group elements by f(element)
sortBy(f: T => K): Seq[T] Sort elements by f(element)

http://www.scala-lang.org

Outline

= Introduction to Functional programming & Scala
-[Spark’s Resilient Distributed Datasets (RDDs)]
= Implementation

= Conclusion

Spark 51

Key ldeas behind Spark
Spark makes Working Datasets a first-class concept to
efficiently support In-memory Data-Sharing across
(different iterations/ stages of) apps

Provide Distributed Memory Abstractions (called Resilient
Distributed Datasets - RDDs) for clusters to support apps
with Working Sets

= Work with distributed collections as you would with local ones
Retain the attractive properties of MapReduce:

= Fault tolerance (for crashes & stragglers)

= Data locality

= Scalability

Enhance programmability:
= Integrate into Scala programming language
= Allow interactive use from Scala interpreter Spark 52

What are Resilient Distributed Datasets (RDDs) ?

s RDDs are Immutable (i.e. become read-only once
they are created) collections partitioned across
cluster that can be rebuilt if a partition is lost

= Created by transforming data in stable storage using
data flow operators (map, filter, group-by, ...)

= [he elements of an RDD need not exist in physical

storage;

= Instead, a handle to an RDD contains enough information
(aka lineage info) to compute the RDD starting from data in
reliable storage.

=>RDDs can always be reconstructed if nodes fail.

Spark 53

Reap Key Ideas behind Spark’s Solution:
Data Flow Model + Resilient Distributed Datasets

= Augment Data Flow model with “Resilient
Distributed Datasets” (RDDs)

Spark 54

What are RDDs (cont'd) ?

= RDDs that can be cached (aka persist) in RAM
across parallel operations and to be shared by
different Apps

= User can control the Partitioning of an RDD, e.g .one
comprised of <key,value> pairs based on hash or

range of the key.

= Once partitioned, Spark will remember the way an RDD is
partitioned and use the info to reduce unnecessary data
shuffling when operating on RDDs

= €.g. Functions that benefit from partitioning include: cogroup(),
groupWith(), join() , groupByKey(), reduceByKey(),
combineByKey(), lookup()
= Spark knows internally which operations may affect
partitioning, and will automatically set the partitioner of an

RDD
Spark 55

RDD Types: Parallelized Collections

= By calling SparkContext’s parallelize method on an
existing Scala collection (a Seq obj)

scala> val data = Array(1,2,3,4,5)
data: Array[Int] = Array(1, 2, 3, 4, 5)

scala» val distData = sc.parallelize(data)
distData: spark.RDD[Int] = spark.ParallelCollection@3b9c5ceb

s Once created, the distributed dataset can be
operated on in parallel

Spark 56

RDD Types: Hadoop Datasets

= Spark supports text files, SequenceFiles, and any
other Hadoop inputFormat

[Local path or hdfs://, s3n://, kfs:// }
val distFiles = sc.textFile(URI)

s Other Hadoop inputFormat
val distFile = sc.hadoopRDD(URI)

Spark 57

Programming Model of Spark

= Use Resilient Distributed Datasets (RDDs) as basic
building blocks

= Perform Parallel Operations on RDDs

~ Transformations: Operations to create new RDD(s) from
existing ones, e.g. map, filter, groupByY, join ;

~ Actions: Return a result (value) to a driver program after
running the computation on the RDD or write it to storage,
e.g. reduce, collect, count, save ...

~ Transformations are Lazy (They don’'t compute right away):

> Spark just remembers the transformations applied to
datasets(lineage). Only compute when an action
requires.

s Restricted Shared Variables

s Accumulators, Broadcast variables
Spark 58

Working with RDDs

‘ textFile = sc.textFile(”SomeFile.txt"”) \

/
Y4
/

o |

Spark 59

Working with RDDs

[textFile = sc.textFile(”SomeFile.txt"”)

—

Transformations

linesWithSpark = textFile.filter(lambda line: "Spark” in line)

Spark 60

Working with RDDs

textFile = sc.textFile(”SomeFile.txt”)

RDD Value

H

1

Transformations "
i
1]

linesWithSpark. count()
74

linesWithSpark.first()
Apache Spark

linesWithSpark = textFile.filter(lambda line: "Spark” in line)

Spark 61

Transformations

transformation description
return a new distributed dataset formed by passing
map (func) each element of the source through a function func
return a new dataset formed by selecting those
. elements of the source on which func returns true
filter (func) f
similar to map, but each input item can be mapped
to 0 or more output items (so func should return a
flatMap (func) Seq rather than a single item)
sample a fraction fraction of the data, with or without
sample (withReplacement, replacement, using a given random number generator
fraction, seed) seed
return a new dataset that contains the union of the
union (otherDataset) elements in the source dataset and the argument
return a new dataset that contains the distinct elements
distinct ([numTasks])) of the source dataset

Spark 62

Transformations (cont'd)

transformation | description

when called on a dataset of (K, V) pairs, returns a
groupByKey ([numTasks]) dataset of (K, seq[V]) pairs

when called on a dataset of (k, V) pairs, returns
a dataset of (x, V) pairs where the values for each
[numTasks]) key are aggregated using the given reduce function

reduceByKey (func,

when called on a dataset of (K, v) pairs where K
sortByKey ([ascendin gl ., implements ordered, returns a dataset of (x, V)
numTasks pairs sorted by keys in ascending or descending order,
[1) as specified in the boolean ascending argument
& % when called on datasets of type (X, v) and (K, w),
Join(otherDataset, returns a dataset of (K, (v, w)) pairs with all pairs
[numTasks]) of elements for each key

when called on datasets of type (x, v) and (X, w),
cogroup (otherDataset, returns a dataset of (K, Seq[V], Seq[W]) tuples —

[numTasks]) also called groupWith

. when called on datasets of types T and u, returns a
cartesian(otherDataset) dataset of (T, u) pairs (all pairs of elements)

Spark 63

Transformations Examples

inputRDD

{1,2,3,4}

map X =>Xx*x filterx=>x1=1

Mapped RDD Filtered RDD
{1,4,9,16} {2,3,4}

"o

tokenize("coffee panda”) = List("coffee’, “panda”)

mappedRDD

",

{["coffee’, “panda”], ["happy’, “panda”],

" il

["happiest’, “panda’, “party”]}

rdd1.map(tokenize)

RDD1
{"coffee panda’, “happy panda’,

“happiest panda party”}

flatMappedRDD

{"coffee”, “panda’, "happy’, “panda’,

" "

rdd1.flatMap(tokenize) "happiest’, “panda”, “party”}

Examples on Set Operations

RDD1.distinct()
{coffee, panda,
monkey, tea}

RDD1

{coffee, coffee, panda,
monkey, tea}

RDD1.union(RDD2)
{coffee, coffee, coffee,
panda, monkey,

monkey, tea, kitty}

RDD1.intersection(RDD2)
{coffee, monkey}

RDD2
{coffee, money, kitty}

RDD1.subtract(RDD2)
{panda, tea}

Spark 65

Examples on Cartesian product b/w
two RDDs

RDD1
{User(1), User(2), User(3)}

cartesian

RDD2
{Venue("Betabrand”),
Venue("Asha Tea House”),

Venue("Ritual”)}

RDD1.cartesian(RDD2)
{(User(1), Venue("Betabrand")),
(User(1), Venue("Asha Tea House")),
(User(1), Venue("Ritual”)),
{(User(2), Venue("Betabrand”)),
(User(2), Venue("Asha Tea House")),
(User(2), Venue("Ritual”)),
{(User(3), Venue("Betabrand”)),
(User(3), Venue("Asha Tea House")),
(User(3), Venue("Ritual”)),

Spark 66

More Examples Basic RDD Transformations

Table 3-2. Basic RDD transformations on an RDD containing {1, 2, 3, 3}

Function name Purpose Example Result

map() Apply a function to each rdd.map(x => x + 1) {2, 3, 4, 4}
element in the RDD and return
an RDD of the result.

flatMap() Apply a function to each rdd.flatMap(x => x.to(3)) {1; 2, 3, 2;
element in the RDD and return 3 35 3}

an RDD of the contents of the
iterators returned. Often used to

extract words.
filter() Return an RDD consisting ofonly rdd.filter(x => x != 1) 125 35 3}
elements that pass the condition
passed to filter().
distinct() Remove duplicates. rdd.distinct() 1. 25 3}
sample(withRe Sample an RDD, with or without rdd.sample(false, 0.5) Nondeterministic

placement, frac replacement.
tion, [seed])

Spark 67

More Examples Basic RDD Transformations (cont'd)

Table 3-3. Two-RDD transformations on RDDs containing {1, 2, 3} and {3, 4, 5}

Function name Purpose Example Result

union() Produce an RDD containing elements rdd.union(other) tls 25 3 3;
from both RDDs. 4, 5}

intersec RDD containing only elements found in rdd.intersection(other) {3}

tion() both RDDs.

subtract() Remove the contents of one RDD (e.g., rdd.subtract(other) {1 2%

remove training data).

cartesian() Cartesian product with the other RDD. rdd.cartesian(other) {i(1, .3), (1,
4) .. (3:5)})

Spark 68

More Transformations Example

Scala:

val distFile = sqlContext.table("readme").map((0).asInstanceOf[String])
distFile.map(l => l.split(" ")).collect()

distFile.flatMap(l => l.split(" ")).collect()

distFile is a collection of lines

Python:

distFile = sglContext.table("readme").map(lambda x: xX[0])

distFile.map(lambda X: xX.split(' ')).collect()
distFile.flatMap(lambda x: X.split(' ')).collect()

Spark 69

More Transformations Example

Scala:

val distFile = sqglContext.table("readme").map((0).asInstanceOf[String])
distFile.map(l => l.split(" ")).collect()

distFile.flatMap(l => l.split(" ")).collect()

Python:

distFile = sglContext.table("readme").map(lambda x: x[0])
distFile.map(lambda X: X.split(' ')).collect()
distFile.flatMap(lambda x: X.split(' ')).collect()

Spark 70

Actions

action

description

reduce (func)

takeSample (withReplacement,
fraction, seed)

aggregate the elements of the dataset using a function
func (which takes two arguments and returns one),
and should also be commutative and associative so
that it can be computed correctly in parallel

return all the elements of the dataset as an array at
the driver program — usually useful after a filter or
other operation that returns a sufficiently small subset
of the data

return an array with the first n elements of the dataset
— currently not executed in parallel, instead the driver
program computes all the elements

return an array with a random sample of num elements
of the dataset, with or without replacement, using the
given random number generator seed

Spark 71

Actions (cont'd)

action : description

write the elements of the dataset as a text file (or set
of text files) in a given directory in the local filesystem,
saveAsTextFile(path) HDFS or any other Hadoop-supported file system.
Spark will call tostring on each element to convert
it to a line of text in the file

write the elements of the dataset as a Hadoop
SequenceFile in a given path in the local filesystem,
HDFS or any other Hadoop-supported file system.
Only available on RDDs of key-value pairs that either
implement Hadoop's writable interface or are
implicitly convertible to writable (Spark includes
conversions for basic types like Int, Double, String,

only available on RDDs of type (x, v).Returnsa
"Map’ of (X, Int) pairs with the count of each key

run a function func on each element of the dataset —
usually done for side effects such as updating an
accumulator variable or interacting with external
storage systems

foreach (func)

Spark 72

Examples of Actions on RDDs

Table 3-4. Basic actions on an RDD containing {1, 2, 3, 3}

Function name Purpose

collect() Return all elements
from the RDD.

count() Number of
elements in the
RDD.

countByValue() Number of times
each element

occurs in the RDD.

take(num) Return num
elements from the
RDD.

top(num) Return the top num

elements the RDD.

takeOrdered(num)(order Return num
ing) elements based on
provided ordering.

Example

rdd.collect()

rdd.count()

rdd.countByValue()

rdd. take(2)

rdd.top(2)

rdd.takeOrdered(2)
(myOrdering)

Result

{4, 2 3, 3]

{(1, 1),
(2, 1),
(3, 2)}

{1, 2}

{3, 3}

{3, 3}

73

More Examples of Actions on RDDs

Table 3-4. Basic actions on an RDD containing {1, 2, 3, 3}

Function name

takeSample(withReplace
ment, num, [seed])

reduce(func)

fold(zero)(func)

aggregate(zeroValue)
(seqOp, combOp)

foreach(func)

Purpose

Return num
elements at
random.

Combine the
elements of the
RDD together in

parallel (e.g., sum).

Same as
reduce() but
with the provided
zero value.

Similar to
reduce() but
used to return a
different type.

Apply the provided
function to each
element of the
RDD.

Example Result

rdd.takeSample(false, 1) Nondeterministic

rdd.reduce((x, y) => X + V) 9

rdd.fold(0)((x, y) => x +vy) 9

rdd.aggregate((0, 0)) (9, 4)

((x, y) =>

Cx. 1 e g X 20 % 1),

(x, y) =>

(x. 1 +vy. 1, x.. 2 +y..2))

rdd.foreach(func) Nothing

spark 74

More Action Examples

Scala:

val | f = sqglContext.table("readme").map((0).asInstanceOf[String])
val words = f.flatMap(l => l.split(" ")).map(word => (word, 1))
words.reduceByKey(_ + _).collect.foreach(println)

Python:

from operator import add
f = sglContext.table("readme").map(lambda x: x[0])

words = f.flatMap(lambda xXx: X.split(' ')).map(lambda x: (X, 1))
words .reduceByKey(add) .collect ()

Spark 75

Transformations & Actions

e
T - ——————

Transformations

L_jp==
—
L

W W W WER R WER SRR R R SRR WER R RR WER TR WER R WER R SRR TR R WER R R R W W W e
- ——————— -~

=
Stage 2

Spark 76

Parallel Operations

= reduce: Combines dataset elements using an
associative function to produce a result at the
driver program.

s collect: Sends all elements of the dataset to the
driver program.

Spark 77

Example: Log Mining w/ Sparkin Scala

= Load error messages from a log into memory,
then interactively search for various patterns

lines = spark.textFile(“hdfs://...")

: . . y " results -
errors = lines.filter(_.startswith(“ERROR”)) /////7 T {
messages = errors.map(_.split(\t')(2)) tasks
cachedMsgs = messages.cache | =

] . O TV
cachedmsgs.filter(_.contains(“foo”)).count() \
cachedmsgs.filter(_.contains(“bar”)).count()

[FPVOTINGI

=
SISS

Result: full-text search of Wikipedia in
<0.5 sec (vs 20 sec for on-disk data)

Spark in Scala and Java

// Scala:

val lines = sc.textFile(...)
lTines.filter(x => x.contains(“ERROR”)).count()

//the Tine above 1is the long form of:

// lines.filter(_.contains(“ERROR”)).count()

// Java:

JavaRDD<String> lines = sc.textFile(...);
Tines.filter(new Function<String, Boolean>() {
Boolean call(String s) {
return s.contains(“error’”);

}
) .count();

Spark 79

Same Example in Python

Load error messages from a log into memory,
then interactively search for various patterns

: : Cache 1
lines = spark.textFile(“hdfs://...")
[e ‘

: : _ results
errors = lines.filter(lambda s: s.startswith("ERROR")) kcjﬁjjjg =
messages = errors.map(lambda s: s.split("\t")[2]) fasks

messages.cache() ~qp
=yl

messages.filter(lambda s: “foo” in s).count()

C——
i
s

messages.filter(lambda s: “bar” in s).count()

Result: scaled to 1 TB data in 5 sec - Worker: >
I =
(vs 180 sec for on-disk data) | T

Working with Key-Value Pairs

Spark’ s “distributed reduce” transformations
operate on RDDs of key-value pairs

Python: pair = (a, b)
pair[@] # => a
pair[1l] # => b

Scala: val pair = (a, b)
pair. 1 // => a
pair. 2 // => b

Java: Tuple2 pair = new Tuple2(a, b);

pair. 1 // => a
pair. 2 // => b

Spark 81

Examples of Transformations on Pair RDDs

Table 4-1. Transformations on one pair RDD (example: {(1, 2), (3, 4), (3, 6)})

Function name Purpose Example Result
reduceByKey(func) Combine values with rdd. reduceByKey({1
the same key. (X, y) => X +vy) 2),. (3,
10)}
groupByKey () Group values with the rdd.groupByKey() {(1,
same key. [2]),
(3, [4,
6]1)}
mapValues(func) Apply a function to rdd.mapValues(x => x+1) 5 O
each value of a pair 33, (3,
RDD without 5y, (3,
changing the key. 7)}

flatMapValues(func) Apply a function that rdd.flatMapValues(x => (x to 5) {(1,

returns an iterator to 23% (13
each value of a pair 39 L1
RDD, and for each 4), (1,
element returned, 54 (3
produce a key/value 4), (3,
entry with the old 53}

key. Often used for
tokenization. Spark 82

More Examples of Transformations on Pair RDDs

Table 4-1. Transformations on one pair RDD (example: {(1, 2), (3, 4), (3, 6)})

Function name Purpose Example Result
keys() Return an RDD of just rdd.keys() 1, .3,
the keys. 3}
values() Return an RDD of just rdd.values() {2, 4,
the values. 6}
sortByKey() Return an RDD sorted rdd.sortByKey() 1 (L
by the key. 2), (3,
4), (3,
6)}
combineBy Combine values with
Key(createCombiner, the same key using a
mergeValue, different result type.
mergeCombiners,
partitioner)

Spark 83

More Examples of Transformations on Pair RDDs

Table 4-2. Transformations on two pair RDDs (rdd = {(1, 2), (3, 4), (3, 6)} other = {(3, 9)})

Function name Purpose Example Result

subtractByKey Remove elements with a rdd.subtractByKey(other) {(1, 2)}
key presentin the other

RDD.
join Perform an inner join rdd. join(other) $£035: (4 9))5. (35
between two RDDs. (6; 9)) 1

rightOuterJoin Perform a join betweentwo rdd.rightOuterJoin(other) {(3,(Some(4),9)),
RDDs where the key must (3,(Some(6),9))}
be present in the first RDD.

leftOuterJoin Perform ajoin betweentwo rdd.leftOuterJoin(other) {(1,(2,None)), (3,

RDDs where the key must (4,Some(9))), (3,

be present in the other RDD. (6,Some(9)))}
cogroup Group data from both RDDs rdd.cogroup(other) $02. 6121 5[1)) €35

sharing the same key. ([4, 6]5[9]1))}

See https://www.tutorialspoint.com/scala/scala_options.htm for more details on Some() Spark 84

https://www.tutorialspoint.com/scala/scala_options.htm

Example of using combineByKey to compute
Per-key averaging for Pair RDDs in Python or Scala

Example 4-12. Per-key average using combineByKey() in Python

sumCount = nums.combineByKey((lambda x: (x,1)),
(lambda x, y: (x[0] + vy, x[1] + 1)),
(lambda x, y: (x[0] + y[e], x[1] + y[1])))

sumCount.map(lambda key, xy: (key, xy[0]/xy[1])).collectAsMap() key | value
panda | 0
Example 4-13. Per-key average using combineByKey() in Scala onk |3
pirate | 3
val result = input.combineByKey(panda | 1
(v) => (v, 1), pink | 4
(ace: (EnE, Int), *v) =» (3cc..1 ¥V, ACC..2'¥ 1),

(accl: (Int, Int), acc2: (Int, Int)) => (accl._ 1 + acc2._ 1, accl. 2 + acc2.
).map{ case (key, value) => (key, value. 1 / value. 2.toFloat) }
result.collectAsMap().map(println(_))

2)

Spark 85

Examples of combineByKey for Pair RDDs in Java

Example 4-14. Per-key average using combineByKey() in Java

public static class AvgCount implements Serializable {
public AvgCount(int total, int num) { total_ = total; num_ = num; }
public int total ;
public int num_;
public float avg() { return total_ / (float) num_; }
ik

Function<Integer, AvgCount> createAcc = new Function<Integer, AvgCount>() {
public AvgCount call(Integer x) {
return new AvgCount(x, 1);
¥
3
Function2<AvgCount, Integer, AvgCount> addAndCount =
new Function2<AvgCount, Integer, AvgCount>() {
public AvgCount call(AvgCount a, Integer x) {
a.total_ += x;
a.num_ += 1;
return a;
}
b
Function2<AvgCount, AvgCount, AvgCount> combine =
new Function2<AvgCount, AvgCount, AvgCount>() {
public AvgCount call(AvgCount a, AvgCount b) {
a.total_ += b.total_;
a.num_ += b.num_;
return a;
}
I
AvgCount initial = new AvgCount(0,0);
JavaPairRDD<String, AvgCount> avgCounts =
nums . combineByKey (createAcc, addAndCount, combine);
Map<String, AvgCount> countMap = avgCounts.collectAsMap();
for (Entry<String, AvgCount> entry : countMap.entrySet()) {
System.out.println(entry.getKey() + ":" + entry.getValue().avg());

! Spark 86

Examples of Filtering on Values of a Pair-RDD
Example 4-4. Simple filter on second element in Python

result = pairs.filter(lambda keyValue: len(keyValue[1]) < 20)

Example 4-5. Simple filter on second element in Scala

pairs.filter{case (key, value) => value.length < 20}

Example 4-6. Simple filter on second element in Java

Function<Tuple2<String, String>, Boolean> longWordFilter =
new Function<Tuple2<String, String>, Boolean>() {

public Boolean call(Tuple2<String, String> keyValue) {
return (keyValue. 2().length() < 20);

}

}s

JavaPairRDD<String, String> result = pairs.filter(longWordFilter);
key value

. key value
holden | likes coffee filter .
»| holden | likes coffee

panda | likeslong

strings and
coffee

Spark 87

Examples of Per-key Averaging
Example 4-7. Per-key average with reduceByKey() and map Values() in Python

rdd.mapValues(lambda x: (x, 1)).reduceByKey(lambda x, y: (x[0] + y[0], x[1] + y[1]))

Example 4-8. Per-key average with reduceByKey() and mapValues() in Scala

rdd.mapValues(x => (x, 1)).reduceByKey((x, y) => (x._ 1 +vy. 1, x. 2 +vy._ 2))

key value key value
panda |0 panda | (0,1)
pink |3 mapValues ' pink | 3,1)
pirate | 3 pirate | (3,1)
panda | 1 panda | (1,1)

‘%cebyKey

Spark 88

The Word Count Example in Python or Scala
Example 4-9. Word count in Python

Fdd = sc;textFile(=82 1 ")
words = rdd.flatMap(lambda x: x.split(" "))
result = words.map(lambda x: (x, 1)).reduceByKey(lambda x, y: x + vy)

Example 4-10. Word count in Scala

val input = sc.textFile("s3://...")
val words = input.flatMap(x => x.split(" "))
val result = words.map(x => (x, 1)).reduceByKey((x, y) => X + vVy)

b 1 (to, 1)

W o/ (be, 2)
“to be o’ ——p D€" mp (be, 1)

W, " (nOt, 1)

or (or, 1)

“not” (not, 1)

"Not to be" m——t "t0" . (tO, 1) (oF; 1)
’ (to, 2)

“be” (be, 1)

The Word Count Example (w/ Scala shorthand):

sc.textFile(“hamlet.txt”)

val Tines

val counts = lines.flatMap(line => line.split(” 7))
.map(word => (word, 1))
.reduceBykey(_ + _)

b (to, 1)

W 7 be, 2
“to be Or" ——p D€ ey (be, 1) ()
W1 (nOt, 1)
or (or, 1)
“not” (not, 1)
"not to be" m==———p "t0" 3y (to, 1) L)
: (to, 2)

“be” (be, 1)

The Word Count Example in Java
Example 4-11. Word count in Java

JavaRDD<String> input = sc.textFile("s3://...")
JavaRDD<String> words = rdd.flatMap(new FlatMapFunction<String, String>() {
public Iterable<String> call(String x) { return Arrays.aslList(x.split(" ")); }
1)
JavaPairRDD<String, Integer> result = words.mapToPair(
new PairFunction<String, String, Integer>() {
public Tuple2<String, Integer> call(String x) { return new Tuple2(x, 1); }
}) .reduceByKey(
new Function2<Integer, Integer, Integer>() {
public Integer call(Integer a, Integer b) { return a + b; }

});
“to” to, 1
—_— () (be, 2)
“to be Or" ——p D€" ey (be, 1)
W, " (nOt, 1)
or (or, 1)
“not” (not, 1)
n " W " (orl 1)
NOt to be" m——t 10" ey (1O, 1) (to, 2)

“be” (be, 1)

A Complete Example of Word-Count w/ Spark

1 public class WordCount {
public static closs TokenizerMapper
extends Mapper<Object, Text, Text, IntWriteble>{
4
5 private finel static Intritable coe = sew IntWriteble(1);
6 private Text word = new Text();

€ public void sap(Object ey, Text value, Context context
]) throws IDException, InterruptedException {

19 StringTokenizer Ltr = new StriagTokenizer(value.toS5tring{)):
11 while (itr.hasMoreTokens()) {

12 word.set{itr.nextToken());

1 context,write(word, one);

14

15 }

16 }

17

18 public statie class IntSurRedecer

19 extends Reducer<Text,IntWritable,Text,IntWritables {

20 private IntWritable result = new ImtWritable();

21

22 public void reduce(Text key, Iterable<intMriteble> volues,

23 Context context

24 } throws [0€xception, InterruptedException {
5 int sur = 0

2¢ for (Intwritable val : values) {
27 sur += val.get();

g result.set{sur);

3 context . write(key, result);
1)
37)

3 public static void main(String() args) threws Exception {
35 Configuration conf = new Configuratiom();

=Y

val f
val w

sc.textFile(inputPath)

N
[}

w

f.flatMap(l => Ll.split(" ")).map(word => (word, 1)).cache()
w.reduceByKey(_ + _).saveAsText(outputPath)

WordCount in 3 lines of Spark

' Stringl) otherArgs = new GeserlclptionsParser{conf, orgs).getRerainingArgs()y

¥ if (otherArgs,length < 2) {
e Systes,err, printin(Usage;: wordcownt <im> [<ir>...] <out>");

) Systes.exit(2);

40

4 Job job « new Job(conf, “word coent”);

42 job.setlarByClass (WordCount.class);

43 job.setMapperClass (TokenizerMapper.class);

“ job.setCorbinerClass (IntSurReducer.class);

4" job,setReducerCloss | IntSurReducer.class);

46 job.setOutputkeyClass (Text,class);

47 job,setOutputVelueClass(IntWritable.closs);

48 for {int L = 2; L < otherArgs.length — 1; «i) {
90 FileInputForsat.addInputPath(jeb, sew Path(otherArgsiil));
50]

51 FileDutputForsat.setOutputPath(jed,

new Path(otherArgs[otherArgs. length « 1]));
Systen.exit{job.waitForCorpletion(tree) ? @ 1 1))

WordCount in 50+

lines of Java MR

Spark 92

Changing the Persistence of RDD

By default, RDDs are lazy and ephemeral.

User can alter the persistence of an RDD through two
actions:

= Cache action: By calling the persist() method, user provides
the hints that the RDD should be kept in memory after the
first time it is computed, because it will be reused.

= Save action: evaluates the dataset and writes it to a
distributed filesystem such as HDFS

Spark keeps persistent RDDs in memory by default,
but it can spill them to disk if there is not enough RAM.

Users can set a persistence priority on each RDD to
specify which in-memory data should spill to disk first.

Spark 93

Memory Management in Spark

Spark provides three options for persist RDDs:

(1) In-memory storage as deserialized Java Objects
>> fastest, JVM can access RDD natively

(2) In-memory storage as serialized data

>> gpace limited, choose another efficient
representation, lower performance

(3) On-disk storage

>> RDD too large to keep in memory, and costly
to recompute

Spark 94

Persistence Levels in Spark

Table 3-6. Persistence levels from org.apache.spark.storage.StorageLevel and
pyspark.StorageLevel; if desired we can replicate the data on two machines by adding _2 to
the end of the storage level

Space used CPUtime Inmemory Ondisk Comments

MEMORY_ONLY High Low Y N

MEMORY_ONLY_SER Low High Y N

MEMORY_AND_DISK High Medium Some Some Spills to disk if there is too much data to fit in
memory.

MEMORY _AND_DISK_SER Low High Some Some Spills to disk if there is too much data to fit in
memory. Stores serialized representation in
memory.

DISK_ONLY Low High N Y

Example 3-40. persist() in Scala

val result = input.map(x => x * x)
result.persist(StoragelLevel.DISK_ONLY)
println(result.count())

println(result.collect().mkString(",")) Spark 95

Behavior with Less RAM

100 -

w 80 - &

v A

.§ 60 -

=

5

2 40

=)

(©) N

() 20 - .

X

L

O —

Cache 25% 50% 75% Fully
disabled cached

% of working set in cache

Spark 96

RDDs vs. Distributed Shared Memory

Reads

Writes
Consistency
Fault recovery

Straggler mitigation
Work placement

Behavior if not enough
RAM

Coarse- or fine-grained
Coarse-grained
Trivial(immutable)

Fine-grained and low-
overhead using lineage

Possible using backup
tasks

Automatic based on data
locality

Similar to existing data
flow systems

Fine-grained
Fine-grained
Up to app / runtime

Requires checkpoints
and program rollback

Difficult

Up to app (runtimes aim
for transparency)

Poor
performance(swapping ?)

Spark 97

RDD Fault Tolerance

= An RDD has enough information about how it was
derived from other datasets (aka its lineage).

= RDD’s Lineage info can be used to reconstruct lost
partitions

Ex: messages = textFile(...).filter(_.startswith(“ERROR"))
.map(_.sph1tC*\£") (2))

HDFS File ‘ > Filtered RDD 1 > Mapped RDD

- < filter - map -
(func = _.contains(...)) (func = _.split(...))

(Same Example in Python)

msgs = textFile.filter(lambda s: s.startswith(“ERROR"))
.map(lambda s: s.split(“\t")[2])

[HDFS File } >{Filtered RDD} {Mapped RDD}
filter map
(func = _.contains(...)) (func = _.split(...))

Spark 99

Example 2 of RDD

val file = spark.textFile("hdfs://...")

val errs = file.filter(_.contains("ERROR"))
val cachedErrs = errs.cache()

val ones = cachedErrs.map(_ => 1)

val count = ones.reduce (_+_)

= [hese datasets will be stored as a chain of objects

capturing the lineage of each RDD. Each dataset
object contains a pointer to its parent and

information about how the parent was transformed.

Spark 100

Lineage Chain of Example2

file:

errss

cachedErrs:

ones.

HdfsTextFile
path = hdfs://...
t

FilteredDataset
func = _.contains(...)

t

CachedDataset

1

MappedDataset
func = _

=>1

Spark 101

Example 3 of RDD

lines = spark.ftextFile("hdfs://...")
errors = lines.filter(_.startsWith("ERROR"))
errors.persist()

// Count errors mentioning MySQL:
errors.filter(_.contains("MySQL"™)) .count()

// Return the time fields of errors mentioning
// HDFS as an array (assuming time is field
// number 3 in a tab-separated format):
errors.filter(_.contains("HDFS"))
qapC_.splitC *\NE*>E3))
.collect()

Spark 102

Lineage Chain of Example 3

[lines]
l filter(_.startsWith("ERROR”))
errors

| iter(_contains(*HDFs”))
HDFS errors
map(_.split(\t')(3))

[time fields |

Figure 1: Lineage graph for the third query in our example.

Boxes represent RDDs and arrows represent transformations.

Spark 103

Whatisan RDD ?

A: Distributed Collection of Objects on disks
B: Distributed Collection of Objects in memory

C: Distributed Collection of Objects in Cassandra

sAnswer: Could be any of the above.

Spark 104

Whatisan RDD ?

s Scientific Answer: RDD is an Interface !

. Set of partitions (“splits” in Hadoop)

~~

List of dependencies on parent RDDs

. Function to compute a partition
(@s an lterator) given its parent(s)

. (Optional) partitioner (hash, range)

. (Optional) preferred location(s)
for each partition

S—

—

—

“lineage”

optimized
execution

Spark 105

Interface used to represent RDDs

e

partitions() Return s list of partition objects

preferredLocations(p) List nodes where partition p can be
accessed faster due to data locality

dependencies() Return a list of dependencies

iterator(p, parentiters) Compute the elements of partition p
given iterators for its parent partitions

partitioner() Return metadata specifying whether
the RDD is hash/range partitioned

Spark 106

Example: A HadoopRDD

partitions = one per HDFS block
dependencies = none

compute(part) = read corresponding block

preferredLocations(part) = HDFS block location

partitioner = none

Spark 107

Example: A Filtered RDD

partitions = same as parent RDD
dependencies = “one-to-one” on parent
compute(part) = compute parent and filter it
preferredLocations(part) = none (ask parent)

partitioner = none

Spark 108

RDD Graph (DAG of tasks)

Dataset-level view:

file:

errors:

ETITL (R IS § oy o
o RN e R N R R

C

FllteredRDD

Partition-level view:

(=

- -

Task1 Task2 ...

Spark 109

Example: A Joined RDD
partitions = one per reduce task
dependencies = “shuffle” on each parent
compute(partition) = read and join shuffled data

preferredlLocations(part) = none

partitioner = HashPartitioner(hnumTasks)

Spark will now know
this data is hashed!

Spark 110

Example: Join and its Operator Graph

stage 1

A:

Spark 111

RDD Dependency Types

Wide Dependencies:

Narrow Dependencies:
——y
(W
-
map, filter
" —
- —a
-—a
T— i
- join with inputs
G—8) corpartioned

union

groupByKey

join with inputs not
co-partitioned

Each box is an RDD, with partitions shown as shaded rectangles

Spark 112

Dependencies between RDDs(1)

= Narrow Dependencies: each partition of the parent
RDD is used by at most one partition of the child
RDD(1:1). Map leads to a narrow dependency.

= Wide Dependencies: multiple child partitions may
depend on it(1:N). Join leads to wide
dependencies.

Spark 113

Dependencies between RDDs(2)

= Narrow dependencies allow for pipelined execution
on one cluster node, which can compute all the
parent partitions. For example, one can apply a map
followed by a filter on an element-by-element basis.

= Wide dependencies require data from all parent
partitions to be available and to be shuffled across
the nodes using a MapReduce like operation.

= Recovery after a node failure is more efficient with a
narrow dependency than the ones with wide

dependency.

Spark 114

Advanced Features

= Controllable partitioning
= Speed up joins against a dataset

= Controllable storage formats

= Keep data serialized for efficiency, replicate to multiple
nodes, cache on disk

s Shared variables: broadcasts, accumulators

Spark 115

Shared Variables

= Programmers invoke operations like map, filter and
reduce by passing closures (functions) to Spark.
Normally, when Spark runs a closure on a worker
node, these variables are copied to the worker.

= However, Spark also lets programmers create two
restricted types of shared variables to support two
simple but common usage patterns.

Spark 116

Broadcast Variables

= WWhen one creates a broadcast variable b with a
value v, v is saved to a file in a shared file system.
The serialized form of b is a path to this file. When
b’s value is queried on a worker node, Spark first
checks whether v is in a local cache, and reads it
from the file system if it isn't.

Spark 117

Accumulators

= Each accumulator is given a unique ID when it is
created. When the accumulator is saved, its
serialized form contains its ID and the “zero” value
for its type.

= On the workers, a separate copy of the
accumulator is created for each thread that runs a
task using thread-local variables, and is reset to
zero when a task begins. After each task runs, the
worker sends a message to the driver program
containing the updates it made to various
accumulators.

Spark 118

A More Sophisticated Example:
Computing PageRank w/ Spark

= Good example of a more complex algorithm
= Multiple stages of map & reduce

= Benefits from Spark’ s in-memory caching
= Multiple iterations over the same data

= Demonstrating the Importance of Controlling the
Partitioning of RDDs for Performance Optimization

Spark 119

Basic ldea

= Give pages ranks (scores) based on links to them

= Links from many pages = high rank
= Link from a high-rank page =» high rank

5 —@

Image: en.wikipedia.org/wiki/File:PageRank-hi-res-2.png

Algorithm

1. Start each page at a rank of 1

2. On each iteration, have page p contribute
to its neighbors

5. Set each page’ s rank to 0.15 + 0.85 X contribs

TN

1.0

1.0

Spark 121

1.

2.

3.

Start each page at a rank of 1
On each iteration, have page p contribute

1.0

Algorithm

1.0

1

0.5

1.0

to its neighbors
Set each page’ s rank to 0.15 + 0.85 x contribs

0.5

0.5

0.5

Spark 122

Algorithm

1. Start each page at a rank of 1

2. On each iteration, have page p contribute
to its neighbors

5. Set each page’ s rank to 0.15 + 0.85 X contribs

TN

1.85

Spark 123

1.

2.

3.

Start each page at a rank of 1
On each iteration, have page p contribute

0.58

Algorithm

to its neighbors
Set each page’ s rank to 0.15 + 0.85 x contribs

1.85

0.5

0.5

Spark 124

Algorithm

1. Start each page at a rank of 1

2. On each iteration, have page p contribute
to its neighbors

5. Set each page’ s rank to 0.15 + 0.85 X contribs

0.39 :7\ 1.72

1.31

Spark 125

Algorithm

1. Start each page at a rank of 1

2. On each iteration, have page p contribute
to its neighbors

5. Set each page’ s rank to 0.15 + 0.85 X contribs

Final state: 1.44 j\
0.46 1.37

0.73

Spark 126

Naive Implementation of PageRank in Spark
(in Scala)

1. Start each page atarankofa

2. Oneachiteration, have page p contribute
rank / [neighbors | to its neighbors

3. Seteach page’sranktoo.15 + 0.85 x contribs

val links
var ranks

// RDD of (url, neighbors) pairs
// RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
val contribs = 1links.join(ranks).flatmMap {
case (url, (links, rank)) =>
Tinks.map(dest => (dest, rank/links.size))
}

ranks contribs.reduceByKey(_ + _).mapvalues(.1l5 + .85%_)

N})te: The need of the “case” primitive in scala:
http://danielwestheide.com/blog/2012/12/12/the-neophytes-guide-to-scala-part-4-pattern-matching-anonymous-functions.html

Spark 127

Naive Implementation of PageRank in Spark
(in Scala)

val sc = new SparkContext(“local”, “PageRank”, sparkHome,
Seq(“pagerank.jar”))

// load RDD of (url, neighbors) pairs
// load RDD of (url, rank) pairs

val 1links
var ranks

for (i <- 1 to ITERATIONS) {
val contribs = links.join(ranks).flatmap {

case (url, (links, rank)) =>
Tinks.map(dest => (dest, rank/links.size))

}

ranks = contribs.reduceBykKey(_ + _)
.mapvalues(0.15 + 0.85 * _)
}

ranks.saveAsTextFile(...)

Spark 128

Execution of the Naive Implementation of
PageRank in Spark

{ Input File

J

l map

[

Links
(url, neighbors)

Ranks,
(url, rank)

———

11 join
[Contribs, J
l reduceByKey

[Ranks, J

nl join
[Contribs, J
J reduceByKey

{ Ranks,]

e

1inks and ranks are
repeatedly joined

Each join requires a full

shuffle over the network
» Hash both onto same nodes

join

. : A-F
. G
Sl MR
—

Map tasks Reduce tasks

Spark 129

An Important (Optimization) Tool: Control the
Partitioning of RDDs across different nodes

Pre-partition the 1inks RDD so that links for URLs
with the same hash code are on the same node

val ranks
val Tinks

// RDD of (url, rank) pairs
sc.textFile(...).map(...)
.partitionBy(new HashPartitioner(8))

for (1 <- 1 to ITERATIONS) {
ranks = 1inks.join(ranks).flatMap {
(url, (1inks, rank)) =>
links.map(dest => (dest, rank/links.size))
}.reduceByKey(_ + _)
.mapvalues(0.15 + 0.85 * _)
}

Spark 130

Join without using partitionBy

userData joined events

SN
@a.
R
/"4\ /\ :
I e

>

network communication Spark 131

Join after using partitionBy

userData

joined

events

_ K

B
network communication

local reference Spark 132

Execution Flow of the 2"4 Implementation of
PageRank in Spark

Input File Links

join flatMap reduceByKey join flatMap reduceByKey

Spark 133

Yet Another Variation (Trick)

// Assume that our neighbor list was saved as a Spark objectFile
val links = sc.objectFile[(String, Seq[String])]("links")
.partitionBy(new HashPartitioner(100))
.persist()

// Initialize each page's rank to 1.0; since we use mapValues, the resulting RDD
// will have the same partitioner as links
var ranks = links.mapValues(v => 1.0)

// Run 10 iterations of PageRank
for (1 <- 0 until 10) {
val contributions = links.join(ranks).flatMap {
case (pageld, (links, rank)) =>
links.map(dest => (dest, rank / links.size))

}

ranks = contributions.reduceByKey((x, y) => x + y).mapValues(v => 0.15 + 0.85%v)

}

// Write out the final ranks
ranks.saveAsTextFile("ranks")

Spark 134

How does it work ?

= Each RDD has an OPTIONAL Partitioner
object

= Any shuffle operation on an RDD with a
Partitioner Will respect that Partitioner

= Any shuffle operation on two RDDs will take
on the Partitioner of one of them, if one is
set ;

= Otherwise, will use the HashPartitioner by
default

Spark 135

Examples of RDD Partitioning

pages.join(visits).reduceByKey(...)

join

Output of join is :
]E already partitioned

reduceByKey

pages.join(visits).map(...).reduceByKey(...)

join

“map loses knowledge
E% about partitioning

map reduceByKey

pages.join(visits).mapvalues(...).reduceBykey(...)

join

| mapValfues retains
]E]E\ keys unchanged

mapValues reduceByKey

Spark 136

PageRank Performance

200 171

150

100

Time per iteration (s)
(Wa
@)

o)

& Hadoop

W Basic Spark

= Spark + Controlled
Partitioning

in bytes than ranks!

\.

| Why it helps so much: Tinks RDD is much bigger N

J

Spark 137

How to Customized RDD Partitioning

Can define your own subclass of partitioner to
leverage domain-specific knowledge

Example: in PageRank, hash URLs by domain
name

class DomainPartitioner extends Partitioner {
def numPartitions = 20

def getPartition(key: Any): Int =
parsebDomain(key.toString) .hashCode % numPartitions

def equals(other: Any): Boolean =
other.isInstanceOf[DomainPartitioner]

Spark 138

Way to find out how an RDD is Partitioned

Use the .partitioner method on RDD

scala> val a = sc.parallelize(List((1, 1), (2, 2)))
scala> val b = sc.parallelize(List((1, 1), (2, 2)))

scala> val joined = a.join(b)

scala> a.partitioner
resO: Option[Partitioner] = None

scala> joined.partitioner
resl: Option[Partitioner] = Some(HashPartitioner@286d41c0)

Spark 139

Your program
(JVM / Python)

sc=new SparkContext
f = sc.textFile(“...")

f.filter(...)
.count()

A single application often contains multiple actions

A Spark Application

Spark driver
(app master)

Spark executor
(multiple of them)

RDD graph Cluster T
ask
manager

Scheduler 9 threads

Block tracker Block
manager
Shuffle tracker
HDFS, HBase, ...

Spark 140

Execution Process of Spark

RDD Objects DAG Scheduler Task Scheduler Worker
Cluster
g manager Threads
DAG Task slock
— >
manager
rddl.join (thng split graph into launch tasks via execute tasks
.groupBy (...
Hiterc.) stages of tasks cluster manager
_ submit each retry failed or store and serve
build operator DAG stage as ready straggling tasks blocks

Spark 141

DAG Scheduler of Spark

= Input: RDD and Partitions to compute
= Output: Output from Actions of those Partitions

= Roles:
= Build stages of tasks

= Submit them to lower level scheduler, (e.g. YARN or
Mesos, Standalone) as ready

= Lower level scheduler will schedule data based on
locality

= Resubmit failed stages if outputs are lost

Spark 142

Job Scheduler of Spark

Captures RDD R etnininiplylyint
dependency graph !
Pipelines functions i i
into “stages” i

Cache-aware for
data reuse &
locality

Partitioning-aware
to avoid shuffles O

————————————————————————————

=RDD (g = cached partition

Spark 143

— e . e e e e e . .
e o - o o o o oy

Outline

= Introduction to Scala & functional programming
= What is Spark

= Resilient Distributed Datasets (RDDs)
-[Implementation J
= Conclusion

Spark 144

Codebase of Spark

Implement Spark Core in about 14,000 Lines of Scala:

Spark core: 14,000 LOC
RDD ops: 1600 Scheduler: 2000
Interpreter:
Block store: 2000 Networking: 1200 3300 LOC
Accumulators: 200 Broadcast: 3500
Hadoop I/O: Mesos runner: || Standalone runner:
400 LOC 700 L E 1200 LOC

Spark 145

Software Components: How to run Spark ?

= Spark runs as a library in your
program (1 instance per app)

= Runs tasks locally or on cluster
= Mesos, YARN or standalone
mode

>> new SparkContext (masterUrl,
jobname, [sparkhome], [jars])

>> MASTER=local[n] ./spark-shell
>> MASTER=HOST:PORT ./spark-shell

= Access storage systems via
Hadoop InputFormat API

=« Can use HBase, HDFS, Tachyon,
S3, Cassandra, ...

Your application

SparkContext

Cluster Local
manager threads

Worker Worker

Spark Spark
executor executor

HDFS or other storage

Spark 146

Add Spark to Your Project

= Scala / Java: add a Maven dependency on

= groupld: org.spark-project
artifactld: spark-core 2.9.3
version: 0.7.3

= Python: run program with our pyspark script

Spark 147

Create a SparkContext
(Generalized to SparkSession since Spark ver2.0)

https://stackoverflow.com/questions/49574511/what-is-difference-between-sparksession-and-sparkcontext

import spark.SparkContext
import spark.SparkContext._

val sc = new SparkContext(“url”, “name”, “sparkHome”, Seq(“app.jar”))

import spark.api.: 11

JavaSparkContext sc = new JavaSparkContext(
“masterurl”, “name”, “sparkHome”, new String[] {“app.jar”’}));

from pyspark import SparkContext

sc = SparkcContext(“masterurl”, “name”, “sparkHome”, [“Tibrary.py’]))

Spark 148

Getting Started

= Download Spark:
www.spark.apache.org/downloads.html

s Documentation and video tutorials:
www.spark.apache.org/docs/latest

s Other Resources:
www.Databricks.com

Spark 149

spark.apache.org/downloads.html
http://www.spark.apache.org/docs/latest
http://www.Databricks.com

Local Execution

= Just pass local or local[k] as master URL

= Debug using local debuggers
= For Java/ Scala, just run your program in a debugger
= For Python, use an attachable debugger (e.g. PyDev)

= Great for development & unit tests

Spark 150

Cluster Execution

= Easiest way to launch is EC2:

./spark-ec2 -k keypair -i id rsa.pem -s slaves \
[launch|stop|start|destroy] clusterName

= Several options for private clusters:

= Standalone mode (similar to Hadoop’ s deploy scripts)
= Mesos
= Hadoop YARN

= Amazon EMR: tinyurl.com/spark-emr

Spark 151

http://www.tinyurl.com/spark-emr

Key Distinctions for Spark vs. MapReduce

generalized patterns
= unified engine for many use cases

lazy evaluation of the lineage graph
= reduces wait states, better pipelining

generational differences in hardware
= off-heap use of large memory spaces

functional programming / ease of use
= reduction in cost to maintain large apps

lower overhead for starting jobs

less expensive shuffles

Spark 152

Conclusion for Part |

Scala: OOP + FP

RDDs: fault tolerance, data locality/ partitioning-
control, scalability

RDD implemented in Spark using Scala

Spark offers a rich AP| to make data analytics fast:
both fast to write and fast to run

= Achieves 50 or even 100+ speedups in real applications

Rapidly growing community
Spc:rrl(z

Spark 153

