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Practical Scalability Limits of Hadoop1.0
v Scalability

v Maximum Cluster Size – 4000 Nodes
v Maximum Concurrent Tasks – 40000
v Coarse synchronization in Job Tracker

v Single point of failure
v Failure kills all queued and running jobs
v Jobs need to be resubmitted by users

v Restart is very tricky due to complex state



5

Scalability/Flexibility Issues of the 
MapReduce/ Hadoop 1.0 Job Scheduling/Tracking

¢ The MapReduce Master node (or Job-tracker in Hadoop 1.0) 
is responsible to monitor the progress of ALL tasks of all jobs 
in the system and launch backup/replacement copies in case 
of failures
l For a large cluster with many machines, the number of tasks to be 

tracked can be huge 
=> Master/Job-Tracker node can become the performance bottleneck

¢ Hadoop 1.0 platform focuses on supporting MapReduce as its 
only computational model ; may not fit all applications

¢ Hadoop 2.0 introduces a new resource management/ job-
tracking architecture, YARN [1], to address these problems

[1] V.K. Vavilapalli, A.C.Murthy, “Apache Hadoop YARN: Yet Another Resource Negotiator,” 
ACM Symposium on Cloud Computing 2013.



6

YARN for Hadoop 2.0

¢ YARN (Yet Another Resource Negotiator) provides a 
resource management platform for Cluster to support 
general Distributed/Parallel Applications/Frameworks 
beyond the MapReduce computational model.

V. K. Vavilapalli, A. C. Murthy, “Apache Hadoop YARN: Yet Another Resource Negotiator”, in 
ACM Symposium on Cloud Computing (SoCC)  2013.
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A Big Data Processing Stack with YARN
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Hadoop2.0/YARN Architectural Overview
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YARN Framework
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2/7/23 Jure Leskovec, Stanford CS246: Mining Massive Datasets, 
http://cs246.stanford.edu

¢ Multiple frameworks (Applications) can run on top of YARN to share a Cluster, e.g.
MapReduce is one framework (Application),  MPI, or Storm are other ones.

¢ YARN splits the functions of JobTracker into 2 components:  resource allocation 
and job-management (e.g. task-tracking/ recovery):
l Upon launching, each Application will have its own Application Master (AM), e.g. MR-AM in the figure 

above is the AM for MapReduce, to track its own tasks and perform failure recovery if needed
l Each AM will request resources from the YARN Resource Manager (RM) to launch the Application’s 

jobs/tasks (Containers in the figure above)  ;
l The YARN RM determines resource allocation across the entire cluster by communicating with/ 

controlling the Node Managers (NM), one NM per each machine.

Cluster Resource Management w/ YARN in Hadoop2.0
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YARN Execution Sequence
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YARN Application Models
¢ Application Master (AM) per Job 

l Most simple for batch 
l Used by MapReduce (v2) 

¢ Application Master per Session 
l Runs multiple jobs on behalf of the same user 
l Added in Tez ; 
l Also for Spark (one AM per SparkContext, w/ Long-

lived enhancement)

¢ AM as permanent service, supporting Multiple 
Users 
l Always on, waits around for jobs to come in 
l Used for Impala (with Llama Adapter to support 

separate-user/queue billing of YARN) 
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Example: Running MapReduce (v2) on YARN

¢ Each MapReduce Job has a separate instance of AM

¢ A Separate MapReduce Job History Server to track MR 
job history

¢ YARN runs Shuffle as a persistent, auxiliary service 
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Hadoop 2.0 vs. Hadoop1.0
v Hadoop 2.0 includes YARN’s Multi-tenant Support for different Big Data 

Processing Frameworks
v YARN Fault Tolerance and Availability

v Resource Manager
v No single point of failure – state saved in ZooKeeper
v Application Masters are restarted automatically on RM restart

v Application Master
v Optional failover via application-specific checkpoint
v MapReduce applications pick up where they left off via state saved in HDFS

v Wire Compatibility
v Protocols are wire-compatible
v Old clients can talk to new servers
v Rolling upgrades

v Besides YARN, Hadoop 2.0 also supports High Availability and Federation
v High Availability takes away the Single Point of failure from HDFS Namenode and 

introduces the concept of the QuorumJournalNodes to sync edit logs between 
active and standby Namenodes

v Federation allows multiple independent namespaces (private namespaces, or 
Hadoop as a service)
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Apache Mesos
(http://mesos.apache.org)

httphtt
¢ Another competing Cluster Resource Management platform

¢ Enable multiple frameworks to share same cluster resources 
(e.g., MapReduce, Storm, Spark, HBase, etc)

¢ Originated from UCBerkeley’s BDAS project ;
l B. Hindman et al, “Mesos: A Platform for Fine-Grained Resource Sharing in the Data 

Center”, Usenix NSDI 2011. 

¢ Hardened via Twitter’s large scale in-house deployment 
l 6,000+ servers, 
l 500+ engineers running jobs on Mesos

¢ Third party Mesos schedulers 
l AirBnB’s Chronos ; Twitter’s Aurora

¢ Mesospehere: startup to commercialize Mesos

Mesos
Spark

Spark
Stream. Spark 

SQL

BlinkDB
GraphX

MLlib
MLBase

HDFS, S3, … 
Tachyon



Motivation of Mesos

Hadoop

Storm

MPI
Shared cluster

Previously: Static partitioning of 
a cluster among different big 
data processing frameworks

Mesos aims to achieve
dynamic sharing of cluster 

across different frameworks

u Hard to fully utilize machines           
(e.g., X GB RAM & Y CPUs)

u Hard to scale elastically (to take 
advantage of statistical multiplexing) 

u Hard to deal with failures
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Mesos as a Data-Center “Kernel” 

¢ Like YARN, Mesos 
provides a Node 
Abstraction of the 
entire Cluster

¢ Like YARN, Mesos 
is a common 
resource sharing 
layer over which 
diverse 
frameworks can 
run
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System Architecture of Mesos
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Framework Isolation

¢ Mesos uses OS isolation mechanisms, such as Linux containers 
and Solaris projects

¢ Containers currently support CPU, memory, IO and network 
bandwidth isolation

¢ Not perfect, but much better than no isolation
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Mesos’ use of Container Technology
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Design Elements

¢Fine-grained sharing:
l Allocation at the level of tasks within a job
l Improves utilization, latency, and data locality

¢Resource offers:
l Simple, scalable application-controlled scheduling 

mechanism



Element 1: Fine-Grained Sharing
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Element 2: Resource Offers
¢Option: Global scheduler

l Frameworks express needs in a specification language, global 
scheduler matches them to resources

+ Can make optimal decisions
¢– Complex: language must support all framework 
needs

– Difficult to scale and to make robust
– Future frameworks may have unanticipated needs
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Element 2: Resource Offers
¢Mesos: Resource offers

l Offer available resources to frameworks, let them pick 
which resources to use and which tasks to launch

+ Keep Mesos simple, let it support future frameworks

- Decentralized decisions might not be optimal



Mesos Architecture
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Mesos Architecture

MPI job
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Hadoop job

Hadoop
scheduler

Allocation 
module

Mesos
master

Mesos slave
MPI 

executor

Mesos slave
MPI 

executor

tasktask

Pick framework to 
offer resources toResource 

offer

Resource offer =
list of (node, availableResources)

E.g.  { (node1, <2 CPUs, 4 GB>),
(node2, <3 CPUs, 2 GB>) }



Mesos Architecture
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Another  Resource Offering Example



Optimization: Filters

• Let frameworks short-circuit rejection by 
providing a predicate on resources to be 
offered
»E.g. “nodes from list L” or “nodes with > 8 GB RAM”
»Could generalize to other hints as well

• Ability to reject still ensures correctness when 
needs cannot be expressed using filters



Revocation

• Mesos allocation modules can revoke (kill) 
tasks to meet organizational SLOs

• Framework given a grace period to clean up

• “Guaranteed share” API lets frameworks 
avoid revocation by staying below a certain 
share



Scheduler Callbacks

resourceOffer(offerId, offers)
offerRescinded(offerId)
statusUpdate(taskId, status)
slaveLost(slaveId)

Executor Callbacks

launchTask(taskDescriptor)
killTask(taskId)

Executor Actions

sendStatus(taskId, status)

Scheduler Actions

replyToOffer(offerId, tasks)
setNeedsOffers(bool)
setFilters(filters)
getGuaranteedShare()
killTask(taskId)

Mesos API



A Big Data Processing Stack w/ Mesos



Mesos only performs inter-framework scheduling (e.g. fair 
sharing), which is easier than intra-framework scheduling
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200 frameworks,
100K tasks (30s len)

Scalability



Fault Tolerance

• Mesos master has only soft state: list of 
currently running frameworks and tasks

• Rebuild when frameworks and slaves re-
register with new master after a failure

Result: fault detection and recovery in ~10 sec



Mesos Implementation Statistics

§ 20,000 lines of C++

§ Master failover using ZooKeeper

§ Frameworks ported: Hadoop1.0, MPI, Storm, etc

§ Specialized framework: Spark, for iterative jobs
(up to 20× faster than Hadoop)

§ Open source under Apache license



Other  Schedulers/ Resource Management 
Platforms for 

Big Data Processing Clusters
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Approach 1: Centralized Resource Management

A. Verma, L. Pedrosa, “Large-scale cluster management at Google with Borg”, Eurosys 2015

M. Schwarzkopf, A. Konwinski, M.Abd-El-Malek, J. Wilkes, “Omega: flexible, scalable schedulers for large 
compute clusters,” Eurosys 2013 
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Design Options for Centralized Resource Management:
Monolithic[Hadoop1.0, YARN]  vs.Two-level[Mesos] vs.Shared-state[Omega, Borg]
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High-level Architecture of Google’s Borg

A. Verma, L. Pedrosa, “Large-scale cluster management at Google with Borg”, Eurosys 2015
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Borg Architecture - Borgmaster

● Each cell contains a Borgmaster
● Each Borgmaster consists of 2 processes:

○ Main Borgmaster process
○ Scheduler

● Multiple replicas of each Borgmaster
● Role of (elected leader) Borgmaster:

○ submission of job, termination of any of job’s task 
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Borg Architecture - Borglet

● Local Borg agent on every cell
○ starts/stops/restarts tasks
○ Manages local resources
○ Rolls over debug logs

● Polled by Borgmaster to get machine’s current state
● If a Borglet does not respond to several poll 

messages, it is marked as down
○ Tasks re-distributed
○ If communication is restored, Borgmaster tells 

Borglet to kill rescheduled tasks
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How does Borg work?

● Users submit “jobs”
○ Each “job” contains 1+ “task” that all run the same 

program/binary
○ Runs inside containers (not VMs as it would cost 

higher latency)
● Each “job” runs on one “cell”

○ A “cell” is a set of machines that run as one unit

● Two main types of jobs:
○ “Prod” job :  long-running server jobs, 

higher priority
○ “Non-prod” job :  quick batch jobs, lower 

priority
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How does Borg work?

● Allocs:
○ Reserved set of resources in one machine
○ Can run multiple instances of a task, different 

tasks from many jobs, or future tasks 
● Priority and quota:

○ Each job has a priority 
○ Preemption disallowed between “prod” jobs. 
○ Quota refers to vector of resource quantities for 

period of time
● Support for naming and monitoring
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Borg Architecture - Scheduling

● Borgmaster adds new jobs to a pending queue after 
recording it in the Paxos store

● A scheduler (primarily operates on tasks) scans and 
assigns tasks to machines
○ Feasibility checking
○ Scoring

● E-PVM vs “best-fit”
○ E-PVM leaves headroom for load-spikes but has 

increased fragmentation
○ Best-fit fills machines as tightly as possible, but 

hurts “bursty loads”
● Current model is a hybrid of both

○ Borg will kill lower priority tasks until it finds room 
for an assigned task
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Techniques Borg uses for managing utilization
● Cell-sharing: sharing prod and non-prod tasks

○ Resource reclaiming
○ Not sharing prod and non-prod work would increase 

machine needs by 20-30%
● Large cells: to allow large computations and decrease 

fragmentation 
○ splitting up jobs and distributing them requires significantly 

more machines
● Fine-grained resource requests

○ fixed size containers/VMs not ideal
○ instead there are “buckets” of CPU/memory requirements

● Resource reclamation: jobs specify limits
○ Borg can kill tasks that use more RAM or disk space than 

requested
○ Throttle CPU usage
○ Prioritize prod tasks over non-prod
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Borg Architecture - Scalability

● Ultimate scalability limit is unknown

○ Single Borgmaster can manage thousands of 
borglets

○ Rates above 10,000 tasks per minute

○ Busy Borgmaster uses 10-14 CPU cores and 
50GiB RAM
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Borg - Achieving Availability

● To mitigate inevitable failures, Borg will:
○ Automatically reschedule evicted tasks
○ Reduce correlated failures by distributing across 

failure domains
○ Limits downtime due to maintenance 
○ Use “declarative desired-state representations 

and idem-potent mutating operations” to ease 
resubmission of forgotten requests

○ Avoid task to machine pairings that cause 
crashes

○ Use a logsaver to recover critical data written to 
a local disk

● Achieve 99.99% availability in practice
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Isolation
● Security:

○ Linux chroot command used for process 
isolation 

○ Standard sandboxing techniques used for 
running external software

● Performance:
○ Borg makes explicit distinction between 

LS (latency-intensive) tasks and batch 
tasks. Helps for priority-based 
preemption

○ Borg uses notion of compressible 
resources (CPU cycles, disk I/O 
bandwidth) and non-compressible 
resources (RAM, disk space)
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Why is it important to have isolation, and 
how does Borg implement it?
● To protect an app from Noisy, Nosy and 

Messy neighbors
● Sharing machines between applications 

increases utilization, but isolation is needed 
to prevent tasks from interfering 
○ Security: rogue tasks can affect other tasks, and information should not be visible 

between tasks
○ Performance:

■ Utilization can be decreased by users inflating resource requests to prevent 
interference

■ Again, rogue tasks can affect your task

● Security: Linux chroot jail is the primary 
security isolation mechanism

● Performance: Linux cgroup-based container
○ Also appclass is used to help with overload and overcommitment
○ High priority LS (latency-sensitive) tasks 
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Approach 2: Distributed Resource Management

K. Ousterhout et al, “Sparrow: Distributed, Low Latency Scheduling”, ACM SOSP 2013

E. Boutin et al, “Apollo: Scalable and Coordinated Scheduling for Cloud-Scale Computing”, Usenix OSDI 2014
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High-level Distributed Resource Management 
Architecture of Microsoft’s Apollo

E. Boutin et al, “Apollo: Scalable and Coordinated Scheduling for Cloud-Scale Computing”, OSDI 2014
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Centralized vs. Distributed Resource Management
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Approach 3: Hybrid (Distributed and Centralized) 
Resource Management in Microsoft’s Mercury

K. Karanasos et al, “Mercury: Hybrid Centralized and Distributed Scheduling in Large Shared Clusters”,
Usenix ATC 2015
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Mercury Architecture over YARN
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Operations and Implementation of Mercury



Resource
Management 

Platform for Clusters

Scheduling/Resource Sharing
paradigm Scalability  

Multiple Programming
Frameworks/ Multi-

tenant Support

Hadoop 1.0 Centralized Limited but OK No

YARN in Hadoop 2.0 Centralized Good Yes

Mesos
Centralized (Two-level) via 

Resource Offers to Individual 
Frameworks

Better Yes

Apollo
Distributed and Loosely 

Coordinated (via Expected 
Resource Wait-Time matrix)

Very Good Yes

Borg, Omega

Centralized per-cell BorgMaster
which allows multiple // schedulers 
to performs optimistic-concurrent

allocation followed by checking

Very Good Yes

Mercury

Hybrid 
(Centralized and Distributed

scheduling for Big and Small jobs 
respectively)

Very Good Yes

Comparisons of  Recent Resource Management 
Platforms for Clusters


