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What is this course about?

¢ Computing Infrastructure for Data-intensive Information 
Processing and Analytics 

¢ Focus on the System Aspects of Big Data Processing:
l Big Data Computing Infrastructure
l The Big Data Processing Software Stack
l Mainstream Parallel and Distributed Programming Models, 
l Their corresponding Platforms/ Frameworks and 
l Additional Operational/Programming Tools

for Big Data Processing/Analytics in the Real World

¢ This course is NOT about the Design/ Analysis of Machine 
Learning or Data Mining algorithms
l For ML/DM, you should consider to take IERG4300, Web-scale 

Information Analysis, instead of (or in parallel with) this course
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Course Administrivia
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Course Pre-requisites
¢ Strong Programming and Hands-on Software 

Development skills ; 

¢ Some Operating System Management/Configuration Skills

¢ No previous experience necessary in
l MapReduce/ Hadoop or other
l Parallel and distributed programming models
BUT we expect you to pick them up quickly
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What is MapReduce?
¢ The 1st widely-deployed (successful) Programming model for 

expressing distributed computations at a massive scale

¢ Execution framework (actual software system) for organizing 
and performing such computations

¢ Open-source implementation called Hadoop
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HW#0
Set up your own 

Hadoop 2.x Cluster  + 
run a sample MapReduce program

using
a Free Public Cloud Infrastructure

Due in 10 days:
Due Date: Jan 21, 2023 11:59am 

(noon-time on CNY Eve !!)
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YARN for Hadoop 2.0

¢ YARN (Yet Another Resource Negotiator)
l Like an Operating System (OS) for a Data-center-scale Computing Cluster
l Serve as the  resource management platform for Cluster of Computers to support 

general Distributed/Parallel Applications/Frameworks beyond the MapReduce
computational model.

V. K. Vavilapalli, A. C. Murthy, “Apache Hadoop YARN: Yet Another Resource Negotiator”, in 
ACM Symposium on Cloud Computing (SoCC)  2013.



Overview 10

A Big Data Processing Stack with YARN
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What is MapReduce or Hadoop (cont’d) ?
¢ Hadoop version 1.0 supports mainly MapReduce and a large-scale 

Distributed File System called Hadoop Distributed File System (HDFS) 
l HDFS is the open-source version of Google File System (GFS)

¢ Since version 2.0, Hadoop has added YARN to become a general 
resource management platform (i.e. OS for a Datacenter-scale Cluster) 
which supports not only MapReduce, HDFS, but also other datacenter-
scale computing models/ frameworks, e.g. 
l Giraph for Graph processing, 
l Storm for stream processing,
l TeZ for DAG-based parallel-processing 
l Spark, etc. 
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Putting everything together under 
Hadoop 1.0
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Different Terminologies for
Job and Task Tracking under Hadoop2.0 / YARN

¢ HDFS architecture and terminologies largely remain unchanged w.r.t. 
Hadoop 1.0 as shown in previous 2 slides
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YARN Framework
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YARN Execution Sequence
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Jure Leskovec, Stanford CS246: Mining Massive 

Datasets, http://cs246.stanford.edu

¢ Multiple frameworks (Applications) can run on top of YARN to share a Cluster, e.g.
MapReduce is one framework (Application),  MPI, or Storm are other ones.

¢ YARN splits the functions of JobTracker into 2 components:  resource allocation 
and job-management (e.g. task-tracking/ recovery):
l Upon launching, each Application will have its own Application Master (AM), e.g. MR-AM in the figure 

above is the AM for MapReduce, to track its own tasks and perform failure recovery if needed
l Each AM will request resources from the YARN Resource Manager (RM) to launch the Application’s 

jobs/tasks (Containers in the figure above)  ;
l The YARN RM determines resource allocation across the entire cluster by communicating with/ 

controlling the Node Managers (NM), one NM per each machine.

Cluster Resource Management w/ YARN in Hadoop2.0
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Computing/ Cloud Resources
¢ Hadoop on your local machine

¢ Hadoop in a Virtual Machine on your local machine

¢ Sign-up for Freebie (limited-time) Trial accounts from 
Commercial Cloud Computing  Services: 
l Amazon Web Service (AWS), Google Compute Engine
l Homework sets will require each student to setup various Big Data 

Processing systems using these Public Cloud Services 

¢ The IE DIC (Data-Intensive Cluster):
l Already Setup with Hadoop 2.0/ YARN, MapReduce, Hadoop 

Distributed File System (HDFS), Pig, Hive, Spark, Kubernetes, etc

¢ You may use your own cluster installed over the free 
public cloud service or learn to use the IE DIC to run 
different Parallel/ Distributed Programming tasks. 
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This course is not for you…
¢ If you’re not genuinely interested in the topic

¢ If you can’t put in the time

¢ If you’re not ready to do a lot of work

¢ If you’re not open to thinking about computing in new ways

¢ If you can’t cope with the uncertainty, unpredictability, etc. 
that comes with bleeding edge software

v If you do not have any Operating System Internals 
background, e.g., from
l An undergrad course in O.S. and/ or 
l Managing/Running a Linux-based computer

You would need to pick-up such skills yourself promptly but this can be 
VERY time-consuming, ADDITIONAL 30-40 hours per Homework !!

Otherwise, this will be a richly rewarding course!
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Zen
¢ We will be using bleeding edge technologies (= immature!)

l Bugs, undocumented features, inexplicable behavior
l Data loss(!)

¢ Don’t get frustrated (take a deep breath)…
l Those W$*#T@F! moments

¢ Be patient… 
l We will inevitably encounter “situations” along the way

¢ Be flexible…
l We will have to be creative in workarounds

¢ Be constructive…
l Tell me how I can make everyone’s experience better
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Web-Scale, Big Data
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How many users and objects?
¢ Flickr has >6 billion photos

¢ Facebook has 1.15 billion active users

¢ Google is serving >1.2 billion queries/day on more than 27 
billion items

¢ >2 billion videos/day watched on YouTube

24

University of Pennsylvania
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How much data?
¢ Modern applications use massive data:

l Rendering 'Avatar' movie required >1 petabyte 
of storage

l eBay has >6.5 petabytes of user data
l CERN's LHC will produce about 15 petabytes of 

data per year
l In 2008, Google processed 20 petabytes per day
l German Climate computing center dimensioned 

for 60 petabytes of climate data
l Someone estimated in 2013 that Google had 

10 exabytes on disk and ~ 5 exabytes on tape backup
l NSA Utah Data Center is said to have 5 zettabyte (!)

¢ How much is a zettabyte?
l 1,000,000,000,000,000,000,000 bytes
l A stack of 1TB hard disks that is 25,400 km high25

25,400 km
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Who cares?
¢ Ready-made large-data problems

l Lots of user-generated content 
l Even more user behavior data
l Examples: Facebook friend suggestions, Google ad placement
l Business intelligence: gather everything in a data warehouse and 

run analytics to generate insight

¢ Utility computing
l Provision Hadoop clusters on-demand in the cloud
l Lower barrier to entry for tackling large-data problem
l Commoditization and democratization of large-data capabilities 
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What to do with More Data? 
l User Behavior Analysis
l AB Test Analysis
l Ad Targetting
l Trending Topics
l User and Topic Modeling
l Recommendations (Collaborative Filtering)
l Predictions
l Novel/ Abnormality Detection
l Training/Building AI, e.g. Alpha Go, Apple Siri, Google Translate

¢ Following Theory, Experiment and Simulation,

Big Data has become the 4th-Paradigm of Science

Knowledge Discovery via Scalable Information Analytics, e.g. 

Scalable Data Mining, Statistical Modeling, Machine Learning

s/knowledge/data/g
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There’s no Data like more Data!

(Banko and Brill, ACL 2001)
(Brants et al., EMNLP 2007)

How do we get here if we’re not Google?

By 2001, we have learned that, for many tasks, 
there’s no real substitute for using lots of data
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…and in 2009
Eugene Wigner’s article “The Unreasonable Effectiveness of Mathematics 
in the Natural Sciences” examines why so much of physics can be neatly 
explained with simple mathematical formulas such as f = ma or e = mc2. 
Meanwhile, sciences that involve human beings rather than elementary 
particles have proven more resistant to elegant mathematics. Economists 
suffer from physics envy over their inability to neatly model human 
behavior. An informal, incomplete grammar of the English language runs 
over 1,700 pages. 

Perhaps when it comes to natural language processing and related fields, 
we’re doomed to complex theories that will never have the elegance of 
physics equations. But if that’s so, we should stop acting as if our goal is 
to author extremely elegant theories, and instead embrace complexity and 
make use of the best ally we have: the unreasonable effectiveness of data.

Norvig, Pereira, Halevy, “The Unreasonable Effectiveness of Data”, 2009
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Emphasis of this course
¢ We will stress on:

l Parallel/ Distributed Programming Models and 
Architectures for processing Massive Datasets !

l Open-source de facto Standard Frameworks
l Scalability 

1/11/23
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What will we learn?

¢ We will learn to process/ compute with different types of 
Big Data:
l Data is of Large Volume (Terabyte-sized files)
l Data from a Large Graph
l Data is Infinite/ never-ending (Stream)
l Data comes in Batches and can afford offline processing
l Data comes in Fast and requires Low-latency processing

¢ We will learn to use computation models beyond single 
machine:
l Programming and Running Datacenter-scale Computing Clusters

1/11/23
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I ♥data

How do you want that data?
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How do we scale up 
processing for Big Data ?
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Single Node Architecture

1/11/23

Memory

Disk

CPU
“Classical”
Machine Learning, Statistics, 
Data Mining
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Motivation: Google Example
¢ 20+ billion web pages x 20KB = 400+ TB

¢ 1 computer reads 30-35 MB/sec from disk
l ~4 months to read the web

¢ ~1,000 hard drives to store the web

¢ Take even more to do something useful 
with the data!

¢ Today, a standard architecture for such problems is 
emerging:
l Cluster of commodity Linux nodes
l Commodity network (Ethernet) to connect them

1/11/23
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Interconnection via a 3-stage Clos Network 
(instead of a Tree) 
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Clos Networks’ Reappearance in Datacenter Networks
(aka the Spine and Leaf Topology, or 

Folded Clos, or Fat-Trees) 

The Top of Rack (ToR) switches are the Leaf switches
Each ToR is connected to multiple  Core switches which represent the Spine.
# of Uplinks (of each ToR) = # of Spine switches
# of Downlinks (of each Spine switch) = # of Leaf switches
Multiple ECMP exists for every pair of Leaf switches
Support Incrementally “Scale-out” by adding more Leaf and Spine switches 

“Jupiter Rising: A Decade of Clos Topologies and Central Control in Google’s Datacenter Networks,”ACM Sigcomm 2015.
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Commoditized Big Data Processing 
via 

Cloud Computing?
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The best thing since sliced bread?
¢ Before clouds…

l Grids
l Vector supercomputers
l …

¢ Cloud computing means many different things:
l Large-data processing
l Rebranding of web 2.0
l Utility computing
l Everything as a service
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Utility Computing
¢ What?

l Computing resources as a metered service (“pay as you go”)
l Ability to dynamically provision virtual machines

¢ Why?
l Cost: capital vs. operating expenses
l Scalability: “infinite” capacity
l Elasticity: scale up or down on demand

¢ Does it make sense?
l Benefits to cloud users
l Business case for cloud providers

I think there is a world 
market for about five 
computers. 
– Thomas J Watson of 
IBM, 1943
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Enabling Technology: Virtualization
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Everything as a Service
¢ Utility computing = Infrastructure as a Service (IaaS)

l Why buy machines when you can rent cycles?
l Examples: Amazon’s EC2, Google Compute Engine, Rackspace

¢ Platform as a Service (PaaS)
l Give me nice API and take care of the maintenance, upgrades, …
l Example: Google App Engine, Google Kubernetes

¢ Software as a Service (SaaS)
l Just run it for me!
l Example: Gmail, Office 360, Salesforce.com



Overview 46

Offerings of a Leading
Cloud Computing Service Provider:

Amazon Web Services (AWS) 
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Overview of AWS Services

Coordination services

47
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What is Amazon Web Services (AWS) ?
¢ AWS provides a collection of services for building 

cloud applications

¢ Services for:
l Storage: S3, EBS
l Computation: Elastic Cloud Computing (EC2), scaling/load balancer, 

Elastic Map/Reduce, Elastic Beanstalk
l Databases: RDS, DynamoDB, ElastiCache
l Coordination: Simple Notification Service, Simple Workflow Framework
l Content delivery network
l Amazon CloudFront
l Amazon Mechanical Turk (MTurk)

A 'marketplace for work’
l …

¢ All services are paid depending on use
http://phx.corporate-ir.net/phoenix.zhtml?c=176060&p=irol-corporateTimeline

48
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Using AWS Services
¢ AWS Management Console

l Easy to use, great for manual configurations
l Use username / password provided

¢ Command line tools
l For writing scripts

• e.g., create a set of machines to analyze data every day 
l Use access key ID and secret access key, or certificates for EC2

¢ AWS API
l Integrating cloud services into your applications

• e.g., storing data on the cloud, running computation in the background
l Use access key ID and secret access key, or certificates for EC2

¢ SSH into EC2 instances is performed using a different 
keypair

49
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Setting up an AWS account

50

University of Pennsylvania

aws.amazon.com

n Sign up for an account on aws.amazon.com
n You need to choose an username and a password
n These are for the management interface only
n Your programs will use other credentials (RSA keypairs, 

access keys, ...) to interact with AWS
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AWS credentials

¢ Why so many different types of credentials?
51

Sign-in credentials X.509 certificates

EC2 key pairs Access keys

AWS web site and
management console

Command-line tools
SOAP APIs

REST APIsConnecting to an
instance (e.g., via ssh)
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The AWS management console

¢ Used to control many AWS services:
l For example, start/stop EC2 instances, create S3 buckets...

52

University of Pennsylvania
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REST and SOAP

¢ How do your programs access AWS?
l Via the REST or SOAP protocols
l Example: Launch an EC2 instance, store a value in S3, ...

¢ Simple Object Access protocol (SOAP)
l Not as simple as the name suggests
l XML-based, extensible, general, standardized, but also 

somewhat heavyweight and verbose
l Increasingly deprecated (e.g., for SimpleDB and EC2)

¢ Representational State Transfer (REST)
l Much simpler to develop than SOAP
l Web-specific; lack of standards

53
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How do we scale up 
processing for Big Data ?

Or: How to run a Job on MANY potentially FAULTY boxes ?



Overview 55

Using Commodity Hardware
• 80-90’s: High Performance Computing

Very reliable, custom built, expensive

• Now: Consumer hardware
Cheap, efficient, easy to replicate,
BUT not very reliable, 

• MUST deal with it!
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Why commodity machines?

Source: Barroso and Urs Hölzle (2009); performance figures from late 2007
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• Performance goal
• 1 failure per year
• for a 1000-machine Cluster

• Poisson approximation

• Assume failure rate     per machine
• Poisson rates of independent random variables are additive, 

so we can combine
=> With Fault Intolerant Engineering

We need a rate of 1 failure per 1000 years per machine
• Fault tolerance

Assume we can tolerate k faults among m machines in t time 
units

Fault Tolerance
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Fault tolerance

Fault-tolerant
Level of the cluster

QoS
Reliability of 
One Machine

fault free

k
k

k
k

k
k
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Performance Characteristics 
of 

Hardware in a 
Datacenter-scale Computer
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Slide from talk of Jeff Dean: 
http://research.google.com/people/jeff/stanford-295-talk.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//people/jeff/stanford-295-
talk.pdf

http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/people/jeff/stanford-295-talk.pdf
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“Facts” about Jeff Dean

¢ Compilers don’t warn Jeff Dean.  Jeff Dean warns compilers.

¢ Jeff Dean builds his code before committing it, but only to check 
for compiler and linker bugs.

¢ Jeff Dean writes directly in binary. He then writes the source 
code as a documentation for other developers.

¢ Jeff Dean once shifted a bit so hard, it ended up on another 
computer.

¢ When Jeff Dean has an ergonomic evaluation, it is for the 
protection of his keyboard.

¢ gcc -O4 emails your code to Jeff Dean for a rewrite.

¢ When he heard that Jeff Dean's autobiography would be 
exclusive to the platform, Richard Stallman bought a Kindle.

¢ Jeff Dean puts his pants on one leg at a time, but if he had 
more legs, you’d realize the algorithm is actually only O(log n)
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CPU
• Multiple cores (e.g. Intel Xeon E7 series 

has 4-24 cores per CPU @2016)
• Multiple sockets (1-4) per board
• 2-4 GHz clock
• 10-100W power
• Several cache levels (hierarchical, 8-

16MB total)
• Vector processing units (SSE4, AVX) 

http://software.intel.com/en-us/avx/
• Perform several operations at once
• Use this for fast linear algebra (4-8 

multiply adds in one operation)
• Memory interface 20-40GB/s
• Internal bandwidth >100GB/s
• 100+ GFlops for matrix matrix multiply
• Integrated low end GPU

http://software.intel.com/en-us/avx/
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GPU
• nVidia GeForce10 has 400 to 4000 

cores / drawing many 100’s of Watt
• Cores have hierarchical structure

tricky to synchronize threads
(interrupts, semaphores, etc.)

• Upto 10’s of GB memory (Tesla 
V100 has 32GB) 

• 1 TFlop (single precision)
• Max. Memory Bandwidth ~1000GB/s
• 192GB/s PCIe 4.0 bus  bottleneck?
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Computer Memory Hierarchy

http://www.anandtech.com/show/3851/everything-you-always-wanted-to-know-about-sdram-memory-but-were-afraid-to-
ask

http://www.anandtech.com/show/3851/everything-you-always-wanted-to-know-about-sdram-memory-but-were-afraid-to-ask
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DRAM
• 2-4 channels (32 bit wide)
• 1GHz speed
• High latency ( ~10ns for DDR4)
• High burst data rate (>10 GB/s)
• Avoid random access in code if possible. 
• Memory align variables
• Know your platform (FBDIMM vs. DDR)

(code may run faster on old MacBookPro than a Xeon)

http://www.anandtech.com/show/3851/everything-you-always-wanted-to-know-about-sdram-memory-but-were-afraid-to-
ask

http://www.anandtech.com/show/3851/everything-you-always-wanted-to-know-about-sdram-memory-but-were-afraid-to-ask
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Storage
• Harddisks (SATA3 – 6 Gbps) circa 2018 -
• 4-8 TB of storage (30GB/$)
• 150 MB/s bandwidth (sequential)
• 5 ms seek (200 IOPS)
• cheap

• SSD (SATA3 – 6Gbps) circa 2018 -
• 128-4096 GB storage (3-5GB/$)
• 500 MB/s bandwidth (sequential read/write)
• 100,000 IOPS /  < 1 ms seek (queueing)
• Reads a little  faster than writes 

• e.g. 550 vs. 520 MB/s for Samsung 850Pro
• reliable (but limited lifetime - NAND)

• NVMe (M.2 port) /PCIe SSD circa 2018 -
• 128-2048GB storage 
• (3D XPoint: 0.7GB/$  - NAND-based 2 GB/$)
• 1500 – 3500 MB/s (sequential read/write)
• 150,000 – 500,000 IOPS



Overview 68

Numbers (Jeff Dean says) 
Everyone Should Know

~= 10x

~= 15x

~= 100,000x
slower than 
main mem       
access

40x
diff
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A typical disk
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What do we count?

¢ Compilers don’t warn Jeff Dean.  Jeff Dean warns 
compilers.

¢ ….

¢ Memory access/instructions are 
qualitatively different from disk access

¢ Seeks are qualitatively different from 
sequential reads on disk

¢ Cache, disk fetches, etc work best when 
you stream through data sequentially

¢ Best case for data processing: stream 
through the data once in sequential 
order, as it’s found on disk.



Overview 71

Seeks vs. Scans
¢ Consider a 1 TB database with 100 byte records

l We want to update 1 percent of the records

¢ Scenario 1: random access
l Each update takes ~30 ms (seek, read, write)
l 108 updates = ~35 days

¢ Scenario 2: rewrite all records
l Assume 100 MB/s throughput
l Time = 5.6 hours(!)

¢ Lesson: avoid random seeks!

Source: Ted Dunning, on Hadoop mailing list
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Other lessons (circa 2007)  

* but not important 
enough for this class’s 
assignments….

*

•This “conventional” wisdom may become out-dated already !
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More recent Observations on 
Spark Performance Analysis

[K. Ousterhout et al, NSDI 2015]

(on-disk data)

deserialized
in-memory 

data

up to 10x
spark.apache.org

6x or more
amplab.cs.berkeley.e

du/benchmark/

Faster

serialized + 
compressed        

on-disk
data

serialized + 
compressed        
in-memory 

data

I/O related
19%
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Switches & Colos

...

• In theory perfect point to point bandwidth (e.g. 10Gb Ethernet)
• Big switches are expensive 

crossbar bandwidth linear in #ports, 
BUT price superlinear

• Real switches have finite buffers
• many connections to a single machine => bad
• buffer overflow / dropped packets / 

collision avoidance
• Hierarchical structure

• more bandwidth within rack
• lower latency within rack
• lots of latency between Colos

• Hadoop gives you machines where the data is (not necessarily 
on same rack!)
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Clos Networks’ Reappearance in Datacenter Networks
(aka the Spine and Leaf Topology, or 

Folded Clos, or Fat-Trees) 

The Top of Rack (ToR) switches are the Leaf switches
Each ToR is connected to multiple  Core switches which represent the Spine.
# of Uplinks (of each ToR) = # of Spine switches
# of Downlinks (of each Spine switch) = # of Leaf switches
Multiple ECMP exists for every pair of Leaf switches
Support Incrementally “Scale-out” by adding more Leaf and Spine switches 

“Jupiter Rising: A Decade of Clos Topologies and Central Control in Google’s Datacenter Networks,”ACM Sigcomm 2015.



76

Clos Networks’ Reappearance in Datacenter Networks 
(aka the Spine and Leaf Topology, or 

Folded Clos, or Fat-Trees) 
The Original Fat-Tree Topology [Leiserson 85]:
Servers (Processors) are the leafs ;
For every non-leaf node (Switch) in the tree, 
# of links to its Parent = # of links to its Children
=> Links at “Fatter” towards the top of the tree

Source: http://clusterdesign.org/fat-trees/

Example:
All Leaf (Edge) or 
Spine (Core) switches 
are identical 
36-port switches ;
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Communication Cost ?
¢ Nodes need to talk to each other!

l SMP (Symmetric Multi-Processor machine): latencies ~100 ns
l LAN: latencies ~100 us

¢ Scaling “up” vs. scaling “out”
l Smaller cluster of SMP machines vs. larger cluster of commodity 

machines
l E.g., 8 128-core machines vs. 128 8-core machines
l Note: no single SMP machine is big enough

¢ Let’s model communication overhead…

Source: analysis on this and subsequent slides from Barroso and Urs Hölzle, “The Datacenter as a Computer,” 2009.
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Modeling Communication Costs
¢ Simple execution cost model:

l Fraction of local access inversely proportional to size of cluster
l n nodes (each node is a shared-memory SMP domain, ignoring 

cores for now) 
l Total cost = cost of computation + cost to access global data

• Light communication: f =1
• Medium communication: f =10
• Heavy communication: f =100

¢ What are the costs in parallelization?

= 1 ms + f x [100 ns / n + 100 us x (1 - 1/n)]
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Cost of Parallelization
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Advantages of scaling “out”

So why not?
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Data Intensive Computing
¢ Data collection too large to transmit economically over 

Internet --- Petabyte data collections
¢ Computation produces small data output containing a high 

density of information
¢ Implemented in “Clouds”
¢ Easy to write programs, fast turn around.

¢ MapReduce. 
• Map(k1, v1) -> list (k2, v2)
• Reduce(k2,list(v2)) -> list(v3)

¢ Hadoop (Yarn), PIG, HDFS, Hbase 

¢ Sawzall, Google File System, BigTable
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The datacenter is the computer
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“Big Ideas”
¢ Scale “out”, not “up”

l Limits of SMP and large shared-memory machines

¢ Move processing to the data
l Cluster have limited bandwidth

¢ Process data sequentially, avoid random access
l Seeks are expensive, disk throughput is reasonable

¢ Seamless scalability
l From the mythical man-month to the tradable machine-hour
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Building Blocks

Source: Barroso and Urs Hölzle (2009)
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What's in a data center?
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¢ Hundreds or thousands of racks

Source: 1&1
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What's in a data center?
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¢ Massive networking

Source: 1&1
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What's in a data center?
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¢ Emergency power supplies

Source: 1&1
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What's in a data center?
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¢ Massive cooling

Source: 1&1
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Storage Hierarchy

The sense of scale…
Source: Barroso and Urs Hölzle (2009)

What is an industrial  “Commodity Machine” ?
2009 – 8 cores, 16GB RAM, 4x1TB Disks
2012 – 16+ cores, 48-96GB RAM, 12x(2~3)TB Disks
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Storage Hierarchy

Source: Barroso and Urs Hölzle (2009)
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Anatomy of a Datacenter

Source: Barroso and Urs Hölzle (2009)
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Energy matters!

¢ Data centers consume a lot of energy
l Makes sense to build them near sources of cheap electricity
l Example: Price per KWh is 3.6ct in Idaho (near hydroelectric 

power), 10ct in California (long distance transmission), 18ct 
in Hawaii (must ship fuel)

l Most of this is converted into heat ® Cooling is a big issue!
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Company Servers Electricity Cost
eBay 16K ~0.6*105 MWh ~$3.7M/yr
Akamai 40K ~1.7*105 MWh ~$10M/yr
Rackspace 50K ~2*105 MWh ~$12M/yr
Microsoft >200K >6*105 MWh >$36M/yr
Google >500K >6.3*105 MWh >$38M/yr
USA (2006)

Source: Qureshi et al., SIGCOMM 2009
10.9M 610*105 MWh $4.5B/yr
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Scaling up

¢ What if even a data center is not big enough?
l Build additional data centers
l Where? How many?
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PC Server Cluster Data center Network of data centers
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Global distribution

¢ Data centers are often globally distributed
l Example above: Google data center locations (inferred)

¢ Why?
l Need to be close to users (physics!)
l Cheaper resources
l Protection against failures
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Trend: Modular data center

¢ Need more capacity? Just 
deploy another container!
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Justifying the “Big Ideas”
¢ Scale “out”, not “up”

l Limits of SMP and large shared-memory machines

¢ Move processing to the data
l Cluster have limited bandwidth

¢ Process data sequentially, avoid random access
l Seeks are expensive, disk throughput is reasonable

¢ Seamless scalability
l From the mythical man-month to the tradable machine-hour
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Recap
¢ Web-Scale Data – their sources and uses

¢ What is Web-Scale Information Analytics: 
l Data Mining, Statistical Modeling, Machine Learning, and…

¢ What is this Course about ?

¢ Computing Infrastructure for Web-scale Data Processing

¢ How to scale out hardware for Web-scale Data processing 
?


