
MoSSOT: An Automated Blackbox Tester for
Single Sign-On Vulnerabilities in Mobile Applications
Shangcheng Shi

The Chinese University of Hong Kong
ss016@ie.cuhk.edu.hk

Xianbo Wang
The Chinese University of Hong Kong

wx017@ie.cuhk.edu.hk

Wing Cheong Lau
The Chinese University of Hong Kong

wclau@ie.cuhk.edu.hk

ABSTRACT
Mobile applications today increasingly integrate Single Sign-On
(SSO) into their account management mechanisms. Unfortunately,
the involved multi-party protocol, i.e., OAuth 2.0, was originally
designed to serve websites for authorization purpose. Due to the
complexity of the adapted protocol, a large number of insecure
SSO implementations still exist in the wild. Although the security
testing for real-world SSO deployments has attracted considerable
attention in recent years , existing work either focuses on websites
or relies on the manual discovery of specific and previously-known
vulnerabilities. In the paper, we design and implement MoSSOT
(Mobile SSO Tester), an automated blackbox security testing tool
for Android applications utilizing the SSO services from three main-
stream service providers. The tool detects the vulnerabilities within
the practical SSO implementations by fuzzing related network mes-
sages. We used MoSSOT to examine over 500 first-tier third-party
Android applications from US and Chinese app markets. According
to the test result, around 72% of the tested applications incorrectly
implement SSO and are thus vulnerable. Besides, our test identifies
an unknown vulnerability as well as a new variant, in addition to
four known ones. The vulnerabilities enable the attacker to illegally
log into the mobile applications as the victims or gain access to the
protected resources. MoSSOT has been released as an open-source
project.

CCS CONCEPTS
• Security and privacy → Software and application security.

KEYWORDS
OAuth 2.0; Single Sign-On; Security Testing; Mobile App Authenti-
cation

ACM Reference Format:
Shangcheng Shi, Xianbo Wang, and Wing Cheong Lau. 2019. MoSSOT: An
Automated Blackbox Tester for Single Sign-On Vulnerabilities in Mobile
Applications. In ACM Asia Conference on Computer and Communications
Security (AsiaCCS ’19), July 9–12, 2019, Auckland, New Zealand. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3321705.3329801

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6752-3/19/07. . . $15.00
https://doi.org/10.1145/3321705.3329801

1 INTRODUCTION
As the open standard for authorization, OAuth 2.01 enables end-
users to grant third-party applications the data access right to
their private resources stored on the service provider. Driven by
the broad adoption of OAuth and the boom of mobile apps, many
prestigious Identity Providers (IdPs), e.g., Facebook and Sina Weibo,
have recently tailored OAuth to support SSO for third-party mobile
apps, which act as Relying Party (RP) under the context of OAuth.
The IdPs also provide RPs SDKs to integrate their SSO services and
documents to follow. Therefore, a mobile RP app, e.g., Ctrip, can
authenticate a user based on his/ her profile from the IdP, e.g., Sina
Weibo, without requiring other identity credentials, e.g., password.

It is worth to note that OAuth was initially designed to provide
secure authorization service for web applications. The protocol
is actually re-purposed for authentication when used for SSO in
mobile platforms. However, few specifications can explicitly guide
developers to authenticate users across platforms. Considering
the complexity of multi-party authentication and authorization in
OAuth, average developers are prone to misinterpret the protocol
and do not know how to properly deploy the mobile SSO services.
As a result, various vulnerabilities, e.g., Profile Vulnerability [49]
and App Secret Disclosure [11, 47], have been discovered by the
literature in recent years. Although the SSO security testing has
received increasing attention [47, 50, 53], all the existing studies
either work on web applications or rely on the manual or semi-
automatic discovery of known and specific vulnerabilities.

Nevertheless, it is not trivial to develop the security testing tool
for mobile SSO due to the following three challenges.
• Challenge 1: Difficult to Manipulate App State
The mobile apps are stateful, which may involve some client-
side logic, e.g., encoding the user credential, so it is hard to
manipulate the expected app state for the testing.
• Challenge 2: Heterogeneous SSO Customizations
Given the platform difference, both IdPs and RPs tend to
customize the SSO service and the tool needs to cater to the
app-specific implementations adaptively.
• Challenge 3: Unexpected App Behaviors
The mobile app may perform unexpectedly, e.g., loading
dynamic pop-ups, during execution. Thus, detecting the ab-
normal state and recovering the app from it are difficult.

To tackle the challenges, we design a model-based blackbox se-
curity testing framework and further implement it into MoSSOT
(already open sourced at [34]). Though we may manually extract
the SSO-related logic from the app via reverse-engineering to ma-
nipulate the app state, it is not scalable to perform the analysis on

1For the rest of the paper, we use OAuth to denote OAuth 2.0 and other OAuth 2.0-based
protocols, e.g., OpenID Connect (OIDC), if not specified otherwise.

Session 4A: Mobile Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

269

https://doi.org/10.1145/3321705.3329801
https://doi.org/10.1145/3321705.3329801

1) authorization request

9) Resp4: user identity

RP server
mobile device

IdP server

6) Req4: RP authentication request
(with AT & user info)

5) AT & user info

7) Req5: API request for user profile (with AT)

8) IdP server responds Req5 (with user profile information)

IdP server responds Req3
(with AT & user info)

IdP appRP app

2) Req1: IdP authenticates its app

4) Req3: User authorizes RP

3) Req2: IdP app gets RP info

Figure 1: Implicit flow of OAuth 2.0 for mobile platforms

each app under the blackbox setting. As a workaround, the tool per-
forms an SSO in each test such that the app will reach the expected
state halfway. Thus, we develop a module to automatically simulate
related UI operations. Then, the tool can complete normal SSOs
and learn the customizations from the resultant network traffic to
generate meaningful test cases. Finally, we build a robust testing
architecture with the capability of real-time app state tracking and
exception recovery. We summarize our contributions as follows:
• We propose a blackbox security testing framework for the
SSO implementations in Android apps.
• We design and implement the proposed framework into an
automatic testing tool, MoSSOT.
• Using MoSSOT, we conduct security assessments for over
500 top-ranked RP apps. Our tool has identified a previously-
unknown vulnerability, in addition to four known ones, as
well as a new variant.

The rest of the paper is organized as follows. Section 2 intro-
duces the adapted OAuth protocol flows for mobile apps. Section 3
describes the system architecture of MoSSOT and more design de-
tails are given in Section 4. Section 5 summarizes the testing result
as well as the detected vulnerabilities. Section 6 discusses some
limitations of MoSSOT and presents potential solutions. We review
related work in Section 7 and conclude the paper in Section 8.

2 BACKGROUND
The OAuth framework consists of three parties: IdP, RP, and User
(User-Agent). Under a mobile environment, IdP and RP map to the
backend servers of the IdP (IdP server) and the third-party mobile
app (RP server) respectively. Meanwhile, the User-Agent switches
to the mobile apps of the IdP (IdP app) and RP (RP app). For ease of
presentation, we use the notations in the parentheses to denote the
four parties in the rest of the paper.

The target of OAuth, when used for SSO in mobile apps, is for
the IdP server to issue a credential, e.g., access token (AT) for OAuth
2.0, to the RP server. Then, the RP server can use the credential
to extract user profiles from the IdP server for authentication and
finally logs the user in. Among the four types of authorization flows
defined in OAuth 2.0 [21], implicit flow and authorization code flow
are adopted by the mobile platform. Within the studied IdPs, Sina
Weibo adopts the implicit flow, while WeChat utilizes the latter.

OpenID Connect [37], on the other hand, builds an identity layer
on the top of OAuth for more efficient authentication, as OAuth
was originally designed for authorization. Facebook adopts OpenID
Connect in their SSO service. We introduce call flows of the two
authorization flows within OAuth and OpenID Connect here.

Req4’

Req3Req2Req1 S3S0
(init)

S1 S2

S4
Req5Resp4

Req4
S7

Req7’: Revoke
Authorization

Req2’

Resp4’

S5(b)

Req5’

Req6: User
logs out
RP app

Second
Round

Req6’

RP
customizations

invisible
state/action

IdP
customizations

Unobservable
states related to

RP server & IdP server
interactions

 Error (back to S0) Error Error

 Error
Error

S6(a)

Illegal log into RP app as the victim
=>Vulnerability!!!

S6(b)

Resp4’

S5(a)

Figure 2: One state machine example for Sina Weibo
• The path in black represents the normal SSO process in Fig. 1.
• The colored dashed part stands for IdP/ RP customizations.

2.1 The Implicit Flow of OAuth 2.0
Since OAuth was not originally designed for mobile apps, neither
the RFC nor the IdPs provide a complete call-graph diagram to
mobile RP developers. After revising the specifications [21, 40], one
practical realization of the implicit flow is shown in Fig. 1.

In the implicit flow, the access token (AT in Fig. 1) goes through
the mobile device (Step 4 to 6). Then, the access token is consumed
by the RP server to extract user profiles from the IdP server in Step
7, so it must be protected by Transport Layer Secure (TLS). Besides,
the RP server should authenticate the user based on the user profile
information returned in Step 8 after verifying the access token.

2.2 The Authorization Code Flow of OAuth 2.0
The authorization code flow of OAuth 2.0 (Fig. 7 in Appendix. A.1)
is actually an augmented implicit flow. Compared to the implicit
flow (in Fig. 1), the IdP server responds an intermediate token, i.e.,
code, instead to the IdP app. After receiving the code, the RP server
needs to exchange it for an access token (Step 6 to 7 in Fig. 7).

There are two important properties associated with the autho-
rization code flow: (1) the code alone is useless because the IdP
server needs to first verify the appended app_secret (Step 6 in Fig. 7),
a pre-shared secret as the identity proof of RP to IdP, before issuing
the access token. (2) the code must be short-lived and single-use.

Due to the properties, the authorization code flow is more secure
than the implicit flow at the cost of one more round-trip between
servers. Besides, RP needs to maintain the app_secret on its server.

2.3 The OpenID Connect Protocol
The OAuth 2.0 suffers high-latency when adapted for SSO, e.g. Step
6 to 9 in Fig. 7. To overcome the limitation, some IdPs, e.g., Facebook,
have adopted OpenID Connect [37] (OIDC) for their SSO services.
OIDC builds an identity layer upon the OAuth 2.0. OIDC supports
three types of authentication flow, but only implicit flow is utilized
in mobile platforms, so we only concentrate on it in the paper.

As depicted in Fig. 8, the major extension that OIDC makes to
OAuth is a newly-introduced token called id token dedicated for
authentication. The id token is in the form of JSONWeb Token [26]
and digitally signed by the IdP server. In particular, it contains

Session 4A: Mobile Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

270

a user identifier (1234 in Fig. 8) and can be extracted by the RP
server. Given that the signature cannot be tampered or forged by
the attacker, the RP server can identify the user directly based on
the identifier without the extra communication with the IdP server.

2.4 The Customized Implementations by IdPs
The diagrams in the section only describe the basic scenario, while
IdPs tend to add the following customizations to their SSO service.

Adoption of WebView.When the IdP app is not installed, its
role will be replaced by an embedded web browser in the RP app.

Authorization Revocation. Although how to revoke the au-
thorization is not defined in the protocol specifications, some IdPs,
e.g., Facebook, provide an app management page on which the user
can review and revoke all the authorized RPs.

Automatic Authorization. When a user has authorized an RP
app before, the IdP may skip the user-consent for authorization, e.g.,
Step 3 in Fig. 1. Thus, the login process involves no user interactions.

2.5 Threat Model
In our threat model, the target of an attacker is to break the authen-
tication of a mobile app, i.e., logging into an RP app illegally with
the identity not belonging to himself. We assume the mobile de-
vice is not compromised, the IdP is benign and the communication
between the IdP server and RP server is well-protected.

In particular, we consider two types of attackers, namely (1)
a network attacker and (2) a malicious RP attacker. A network
attacker can intercept, replay or tamper the unencrypted network
traffic through the victim’s device, while a malicious RP attacker
may act as a benign RP to steal the credentials of the victim.

The attacker is also able to log into benign RPs as normal users
and analyze or modify the network traffic of his own. Besides, the
attacker may decompile the IdP/ RP app.

3 SYSTEM OVERVIEW
In the section, we introduce the system architecture of MoSSOT,
followed by the detailed workflow.

3.1 Overall System Architecture
To traverse every possible path in the call flow of OAuth (e.g., Fig. 1),
we build our tool on the top of PyModel [23], an open-source model-
based testing (MBT) framework. PyModel takes a state-machine-
based system model as input and automatically generates test cases,
which can formally enumerate all the possible paths in the given
model and thus guarantee test coverage to some extent.

Fig. 3 presents the system architecture of MoSSOT. The tool is
composed of five modules: UI Explorer, Test Engine, Test Learner,
System Model, and Test Oracle. The framework tackles the chal-
lenges discussed in Section 1 and can be divided into three portions.
• UI Explorer (Section 4.1), is responsible for solving Challenge
1. The module automatically explores the UI widgets within
the mobile apps that need triggering to reach the desired
destination, e.g., login page. Then, Test Engine (Section 4.3.1)
can automatically perform SSOs and drive the app to the
expected state for the actual testing.
• Test Learner and System Model (Section 4.2) cope with Chal-
lenge 2. We first construct an initial model manually based on

protocol specification [21, 37] and IdP documentation (e.g.,
[14]), which caters to the IdP customizations (mentioned in
Section 2.4). Then, Test Learner analyzes the network traffic
from normal SSOs to learn the app-specific implementations
by RPs, which complement the initial model.
• Test Engine and Test Oracle (Section 4.3) tackle Challenge 3.
To execute concrete test cases, Test Engine performs SSOs
and drives the mobile app to the expected state. At the same
time, Test Engine feeds back observations to Test Oracle for
monitoring the state change and identifies potential vulnera-
bilities. Besides, once unexpected app behaviors are detected,
the tool will try to recover the app to the correct state.

We elaborate on the design of each portion in the next section.

3.2 Workflow of MoSSOT
Given the APK of the RP app, MoSSOT works as follows:

(1) The input APK is unpacked to extract necessary informa-
tion, e.g., package name. Then, the app is installed and its
information is passed to UI Explorer and Test Learner.

(2) UI Explorer executes the RP app and tries to find the set of
widgets that lead to a certain page, e.g., SSO login page. The
result is output to Test Engine for automatic UI driving.

(3) Test Learner requests Test Engine to perform normal SSOs
on the RP app. The network traces between the device and
the RP or IdP server are captured.

(4) Test Learner analyzes the network traces and learns the
app-specific customizations.

(5) Based on the specifications and documents (e.g., [21] and
[14]), we build an initial model beforehand, which is then
augmented with the learned app-specific customizations.

(6) With System Model, MoSSOT automatically generates test
cases in the form of abstract HTTP(S) requests. Then, Test
Engine performs SSOs and tampers the network traffic ac-
cording to the test cases.

(7) Test Oracle collects (UI & network) observations from Test
Engine. If the app is detected to perform unexpectedly, the
module will try to recover it from the error state.

(8) Test Oracle extracts the expected system behavior from Sys-
tem Model and compares it with the observations to deter-
mine whether the latter is normal or not.

(9) For any abnormal behavior, MoSSOT determines whether it
is exploitable or not. If so, the tool will output the test case.

(10) If the test case leads to the expected result, i.e., logging into
the RP with the identity in the IdP, System Model will re-
move associated test cases and then output the next one to
Test Engine (i.e., Step 6). The system continues the iterative
process until achieving the pre-defined requirements.

4 DETAILED DESIGN OF MOSSOT
In the section, we first introduce the framework of UI automation.
Then, we describe how to learn the customizations within practical
SSO implementations for constructing a comprehensive system
model. Finally, we talk about the actual model-based testing, give a
running example, and discuss some implementation challenges.

Session 4A: Mobile Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

271

Output:
Test

Report

2. UI paths

IdP / RP

6. test
 cases

9. list of
vulnerabilities

Module C:
Test Learner

Module A:
UI Explorer

(+Noise Reducer)

Module B:
Test Engine

Module D:
System Model

Module E:
Test Oracle

Input1: APK Input2: Protocol specs
 & IdP docs

1(a). app
 info

3. request to
perform normal

SSOs

4. reference
network traces

0. initial
model

5. app-specific

key parameters

http(s) request
 response

 7. observed
system behavior

8. expected
system behavior

10. rectification

1(b). app info

Tackling Challenge 3 (in Sec. 4.3)

Tackling Challenge 2 (in Sec. 4.2)

Tackling Challenge 1
(in Sec. 4.1)

(fuzzed)
Network

traffic

Test Engine

UI Navigator
(+Noise Reducer)

Proxy
(MitM Proxy)

Mobile OS Emulator

Instructions to
the apps

Network traffic
to/from the apps

IdP & RP
app

IdP / RP

Status of
the apps

Input1:
UI paths
(from UI

Explorer)

Input2:
Test cases

(from System
Model)

Output:
Observations

(to Test Oracle)
Snapshots

Figure 3: System architecture of MoSSOT

4.1 UI Automation Framework
Our testing system requires automated and repeated state manipu-
lation on a large number of mobile apps with only blackbox level
information as described in Challenge 1. To guarantee scalability,
efficiency, and robustness, we have to complete the following tasks:

(1) Targeted UI search: To support large-scale testing, our testing
system needs to automatically find the path to the target
login page of an RP app, where efficiency and accuracy are
the major requirements.

(2) Robust recording and replaying: Our testing needs to per-
form the login process repeatedly so a convenient UI path
recording method and a robust replay tool are essential.

(3) Handling random UI components: Many apps tend to dynam-
ically load remote resources and display them, e.g., adver-
tisements, which introduces randomness and makes the UI
automation complex and unstable.

We design three modules, namely UI Explorer, UI Navigator, and
Noise Reducer, to complete the three tasks. UI Explorer (Module A
in Fig. 3) is used to search for the set of UI elements that drive the
app to the destination page. The result is saved as the UI path and
later fed into UI Navigator, which is integrated into Test Engine
(Module B in Fig. 3) for replaying the UI paths to perform SSOs. On
the other hand, Noise Reducer provides a consistent environment
so that the other two can operate on the tested app robustly. We
discuss each of the three modules in detail here.

4.1.1 Modeling the UI System
Before the discussion, we need to first clarify a few terminolo-

gies. (1) element: Android UI layout, is made up of UI widgets with
several attributes. However, there is no single attribute that can act
as a unique identifier. In our framework, we define an element as
an object with the following properties: type, text, id, desc, click-
able, Xpath, screenshot. Some of these properties directly map to
XML attributes in the UI layout, while the others store additional
information, e.g., screenshot. The identifier of an element, either a
single property or a combination of some, is generated on the fly to
guarantee its uniqueness. (2) page: In most time, pages directly map
to Android activities. However, the content and layout may change
dramatically under the same activity, which appears to users as
multiple pages. Our abstracted page object hence is identified by

both activity name and page layout. (3) UI path: A UI path is de-
fined as an ordered list of elements that need triggering and a set of
matching conditions to identify the target page.

4.1.2 UI Explorer
UI Explorer (Module A in Fig. 3), as indicated by its name, auto-

matically searches for the UI path towards a destination. The input
of the module is simply a desired destination. In our SSO testing,
the destination is configured to be SSO login page and we developed
two exploration algorithms. Algorithm I is a novel heuristic-based
algorithm called level-based keyword scan (LKS), designed for effi-
ciency, while Algorithm II is a depth-first-search (DFS) algorithm
with custom prioritizing, built for higher accuracy. Details of the
algorithms are given in the following paragraphs. For scalability,
both algorithms purely rely on UI information instead of code anal-
ysis like done in [4, 7]. Our approach guarantees that obfuscated
or packed apps can also be tested. Besides, unlike previous work
[2, 12, 20, 32] focusing on test coverage, we aim at finding the target
UI element/page with higher accuracy and speed.

Algorithm I (LKS). The idea of the algorithm is based on the
observation that there are some general semantic patterns when
navigating to the SSO login page. For instance, one commonly seen
path is home → profile → login. To translate it into a heuristic
algorithm, we start with crafting a 2D-list containing keywords
commonly appear in each stage of pages with semantically similar
keywords in the same inner list (level). Based on that, the algorithm
first tries to find a matching keyword in the level representing the
stage of page closest to the destination, then tries consecutive levels
till the farthest one. Given the space restriction, we elaborate on
the algorithm and the generation of keyword list in Appendix B.1.

Algorithm II (DFS). The algorithm is an adapted DFS, where we
model the connection of elements and pages as a directed graph. In
the graph, pages and elements are vertices and transitions between
pages (via interacting with elements) is modeled as directed edges.
Notice that the graph could be cyclic, so our adapted DFS needs
to detect cycles and cut the loops. Meanwhile, within each page,
there are normally tens of elements. Instead of random searching,
a smart ordering improves efficiency greatly. We achieve this by
assigning weights to edges and do a prioritized DFS. In addition,
in our case, both the weight and search depth should be bounded
as most of the low-weight elements are not worth trying and login
page normally sits at a shallow path. Lastly, limited by Android UI

Session 4A: Mobile Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

272

behavior, we cannot always simply jump back to the parent vertex,
so we achieve that by returning to the root and revisit the path.
More details of the algorithm are given in Appendix B.2.

4.1.3 UI Navigator
The module is for UI path replay and integrated into Test Engine

as shown in Figure 3. [27] shows that all state-of-the-art record
and replay tools have limitations, which make them less suitable
for production. Our tool, instead of trying to solve this general
problem, targets at providing a robust and efficient UI replay with
only simple user interactions. Instead of using coordinate-driven
navigation as done in [35], this module aims to find and trigger
widgets by their attributes, e.g., text, id, and even XPath, in a way
similar to [1]. This reason behind is that the former is sensitive to
noise, e.g., misaligned page, and scrolling. The exclusive feature of
our tool is the dynamic UI path handling. Given a UI path recorded
in JSON format, the module visits elements one by one till all of
them are consumed and the destination is matched. During the
process, it can happen that some target elements cannot be found
in the current page. Then, Noise Reducer will be triggered to detect
and clear noise until UI Navigator can resume the UI path replay.

4.1.4 Noise Reducer
The randomness of UI components motivates us to design Noise

Reducer, which can heuristically handle the contents considered as
noises, e.g., popups, advertisements, and loading pages. The module
first classifies the noises based on the features extracted from the
current UI layout, e.g., number of clickable elements, keywords,
and widget size. Then, for different types of noises, corresponding
handling strategies will be applied. For instance, the handler will try
to bypass a welcome page by swiping. Once Noise Reducer starts,
it runs in a loop until it cannot detect any noise. In our framework,
Noise Reducer is invoked passively when normal actions (e.g., taps)
fail in the other two modules.

4.2 Modeling the Mobile SSO Protocols
System Model (Module D in Fig. 3) is actually a finite state machine
(FSM). The FSM consists of system states and corresponding actions,
i.e., the necessary triggers for the next state.

4.2.1 Constructing the Initial Model
Firstly, we construct a state machine (i.e., the black path in Fig. 2)

based on the normal SSO process, where each action exactly maps
to the request/ response in Fig. 1. As shown in Fig. 2, each circle
represents a particular state during the SSO process and each edge
stands for a certain message (request/ response) leading to a state
transition. For example, S1 represents the state that the IdP app just
receives the response of last request (Req1), while Req2 corresponds
to the request from the IdP app to its server, seeking RP information.

Nevertheless, as discussed in Section 2.4, IdPs usually customize
their SSO services, which is not included in the normal workflow.
Thus, we also consider the IdP customizations in the initial model.
For example, when the user has authorized the RP before SSO,
each IdP performs differently. Among the three IdPs we study, Sina
Weibo adopts Automatic Authorization, where S1 jumps to S3 in
Fig. 2, while Facebook utilizes a different API to process the SSO
request. In contrast, WeChat always performs the same as the first

 Req4
 {url: https://RP.com/sso,

 learnt_parameter: [<uid>,
 <access_token>]}

Reference
SSO trace(Alice)

Req3Req2Req1 S3S0
(init)

S1 S2

S4
Req5

Resp4

S6(a) S5(a)

https://api.weibo.cn
/2/account/login?
networktype=4g&
state=40d72bad&
session_id=2A4..&
aid=01Anwm...

https://api.weibo.cn
/2/account/login?
networktype=4g&
state=40d7e2c3&
session_id=2CE..&
aid=01Anwm...

Reference
SSO trace(Eve)

 {url: https://api.weibo.cn/2/account/login (known from IdP specs),
 learnt_parameter: [<state> , <session_id>]}

Reference
SSO Traces

Learn

 {learnt_parameter: <user_identifier> (reflecting RP login status),
 extracted_value: [38006(from Alice’strace) , 38045(from Eve’s trace)]}

Learn

Differential
Analysis

Figure 4: The learning process to augment initial model
• The italics highlighted in purple represent the learnt content.
• To avoid clutter, this example only shows the state transitions during
a normal SSO.

SSO attempt. Given the practical scenarios, we separate the involved
states into two versions: one for unauthorized login and the other
for pre-authorized login. System Model thereby can traverse both
situations via Req7, which revokes the authorization.

Besides, when analyzing the practical SSO network traffic, we
find that some RPs tend to deploy the server-to-server logics, e.g.,
Step 7 and Step 8 in Fig. 1, on the client side (RP app). Then, the
optional interaction between the RP app and IdP server becomes
visible to the mobile device. Therefore, we also reserve the corre-
sponding state in our initial model, i.e., S5(b) in Fig. 2, which will be
adaptively switched on/off according to the actual implementations.

4.2.2 Learning App-Specific SSO Implementations
However, the initial state machine is unaware of the app-specific

implementations. In other words, key parameters in each action
and the realization of Req4 and Resp4 (in Fig. 2) are unknown. Thus,
Test Learner (Module C in Fig. 3) needs to analyze practical SSO
network traffic to learn the implementation details.

Test Learner first requests Test Engine (Module B in Fig. 3) to
perform normal SSOs under particular settings, e.g., with different
IdP identities (Alice and Eve) and at a different time (logging as
Eve again). At the same time, the generated network traffic will
be intercepted and saved as reference network traces. As shown
in Fig. 4, Test Learner then performs differential analysis on the
traces to identify key parameters in each action. To confirm the
key parameters, Test Learner replays the request with the param-
eter removed. If the response remains the same, the parameter is
discarded, as the existence of a valuable parameter will affect the
consequent response. Ultimately, each action can be represented
by URL and learnt key parameters.

Another task of Test Learner is to identify the authentication
interaction between the RP app and its server, i.e., Req4 and Resp4 in
Fig. 4. Unlike the use of OAuth for websites, where the interaction is
realized by redirection, the OAuth standard does not define how the
RP app should deliver the received credential, e.g., access token, to
its backend server. In other words, it is implementation-specific and
subject to RP customizations. As such, Test Learner is responsible
for learning individual RP customization by examining the reference
network traces based on some heuristics. For instance, the edit

Session 4A: Mobile Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

273

distance between the domain name of the request URL and the
package name of the tested app (from Step 1(b) in Fig. 3) tends
to be small, e.g., douban.com and com.douban.movie. Besides, the
response (Resp4) should contain a user-identifier that are user-
dependent and session-independent. Then, Test Learner will record
the user identifier values, e.g., 38006 (Alice) and 38045 (Eve), within
the corresponding response (i.e., Resp4 in Fig. 4), so that Test Oracle
(Section. 4.3.2) can identify the RP login status in the test later.

4.2.3 Generating and Refining Test Cases
With the learnt parameters in each action, MoSSOT would gen-

erate test cases for the actual testing. Given the capability of the
attacker (defined in Section 2.5), he is able to tamper SSO-related
network traffic. For example, he may replace the access token by a
stolen one (from the same or a different RP app) in Req4 (i.e., Step 6
in Fig. 1). Once the verification within the RP server is incomplete/
incorrect, he may cheat the server into authenticating himself as
the victim. Thus, we design four types of test cases based on the
learnt key parameters:

(1) Remove or randomize a single parameter;
(2) Replace a single parameter with the one from a parallel

session (on the same app with a different identity);
(3) Replace a single parameter with the one from a different

session (on a different app with a different identity);
(4) Replace two parameters simultaneously with the ones from

a parallel/ different session.

The values for replacement are from the reference network traces,
so we will only log into the app with testing accounts without
affecting normal users. The property of protocol-defined parameters
will also be considered. For example, we prepare one extra unused
authorization code for replacement, as it is single-use (Section. 2.2).

The test cases are prioritized in the same order, where a single
parameter is fuzzed first. Once the current test case is identified to
be redundant, i.e., fuzzing does not affect RP login status, following
associated test cases will be ignored (i.e., Step 10 in Fig. 3).

Under the current implementation, we only consider the simul-
taneous replacement of up to 2 parameters. In principle, MoSSOT
can support more complicated cases like the combination of more
parameters and different operations, e.g., replacing access token
and randomizing uid in Req4. However, the number of test cases
will increase exponentially and thus slow down the testing.

4.3 Building a Robust Testing Architecture
To execute the test cases from System Model, Test Engine drives
the mobile app to the expected state. Then, Test Oracle tracks the
app state and identifies potential vulnerabilities, based the real-
time observations. The two modules construct a robust testing
architecture and thus solve Challenge 3.

4.3.1 Execution of Test Cases Under Test Engine
Test Engine (in Fig. 3) is made up of three components: UI Navi-

gator, Proxy, and Mobile OS Emulator. We first describe their func-
tionality and then discuss their integration for executing test cases.

UI Navigator. As discussed in Section 4.1.2, the module takes
the UI paths from UI Explorer as input to drive the apps in the
Mobile OS Emulator for simulating user behaviors.

False

True

Start

 Input1:
Observations

Abnormal App
State?

Error
Recovery

True

Credential
Leakage?

False

 Output1:
Leakage
Location

Testing
Requirement
Achieved?

End

False

Input2:
Expected
System

Behavior

Deviation?
Refining

System Model

True

Fuzzing
w/o the App

 Output2:
 Detected

Vulnerabilities

True

False

Exploitable?
False

True

Figure 5: Flow Chart of Test Oracle

Proxy. Since our testing relies on tampering SSO-related net-
work traffic, we set up a MitMProxy [33] in Test Engine. As the
MitMProxy is SSL-enabled, Proxy manages to monitor, intercept or
tamper the HTTP(S) traffic from apps to servers.

Mobile OS Emulator. Mobile OS Emulator in Fig. 3 is the execu-
tion environment of the IdP app and RP app. MoSSOT supports two
types of emulator, i.e., Genymotion [16] and Android Emulator [18].
As the snapshot capability of the latter can recover the app from
an error state efficiently, we use it in large-scale testing.

In the actual testing, UI Navigator first sends instructions to the
apps (in the emulator) to perform the SSO login process. Meanwhile,
UI operations lead the app to the expected state and trigger SSO-
related network traffic, which goes through Proxy. Then, Proxy
tampers the traffic according to the current test case. Afterward,
the observations from Proxy and UI Navigator are output to Test
Oracle (Section 4.3.2). Finally, UI Navigator resets the state of the
apps to execute the next test case.

4.3.2 Test Oracle
Fig. 5 presents the workflow of Test Oracle, which aims to com-

plete the following tasks.
Tracking the App State. Test Oracle keeps monitoring the

feedback from UI Navigator to track the app state. Once detecting
an abnormal app state, e.g., unexpected crash, the module will try
to recover the app to a correct one for resuming the test by (1)
resetting and restarting the app or (2) loading a prepared snapshot.

Detecting the Leakage ofCredentials. Test Oracle also checks
the protection of user/ app identity credentials (e.g., access token
and app secret), because the attacker can obtain the credentials via
sniffing the SSO sessions of victims/ himself (Section 2.5).

The module takes different strategies to detect the leakage. For
the former, it extracts credential values from the interactions be-
tween the IdP app and its server, e.g., Step 2 to 4 in Fig. 1, and
will generate an alarm once they are sent in plaintext (HTTP). For
the latter, we manually collect the list of network APIs provided
to the RP server (involving app secret) beforehand and their invo-
cations by the RP app indicate the leakage problem. The leakage
locations are then output, i.e., Credential Disclosure and App Secret
Disclosure in Table. 2.

Identifying the Vulnerabilities. The module identifies the po-
tential vulnerabilities by comparing the observations with expected
behavior (from System Model). If the testing does not lead to devi-
ation, the current test case is classified as redundant and System
Model will be rectified accordingly (discussed in Section 4.2.3).

Session 4A: Mobile Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

274

 {url: https://api.weibo.cn/
 oauth2/sso,

 learnt_parameter:
 [<scope>...]}

 {url: https://api.weibo.cn/
 2/account/login,

 learnt_parameter:
 [<idp_token>,,,]}

 {url: https://api.weibo.cn/
 2/account/login,

 learnt_parameter:
 [<state>...]}

Req3Req2Req1 S3S0
(init)

S1 S2

S4
Req5:

<access_token>S5(a)

 Req4
 (chosen message to be fuzzed)

 {url: https://RP.com/sso,
 learnt_parameter: [<uid>,

 <access_token(Eve)>
 (chosen)...]}

 replace with <access_token(Alice)>
 (from another RP)

Test Case:

S6(b)

Resp4’
<user_identifier>=38006(Alice)

 Eve illegally logs into
 RP app as Alice

 =>Vulnerability!!!

Figure 6: A running example of replacing access token

In contrast, the deviation may not be exploitable. For example,
removing access token in Req4 will cause the error response (Error
in Fig. 2). To verify whether the deviation can indeed be exploited,
Test Oracle will check RP login status by comparing the user iden-
tifier value within the authentication response (Resp4 in Fig. 2) and
the one of Eve from reference network traces (Section 4.2.2). As the
tester always logs into the app as Eve during the test, Test Oracle
will generate an alarm if the two differ, indicating that the system
enters an abnormal state (S6(b) in Fig. 2), i.e., logging into the RP
app illegally as another user (like Alice).

Fuzzing without the App. Sometimes, the server may detect
our fuzzing (e.g., removing access token) and respond with error
messages directly. Based on the context, Test Oracle will send tam-
pered requests according to the following test cases directly. Then,
Test Oracle can get immediate responses from the server. If error
messages disappear, Test Oracle will stop and replay the current test
case to investigate its real impact. The functionality helps speeding
up the test, as the UI operations are time-consuming.

4.3.3 Checkpointing and Error Recovery
Despite the recovery mechanism from Test Oracle, MoSSOT

crashes occasionally due to the internal errors in Emulator or UI
Navigator. As somemodules we use, e.g., Android Emulator [18], are
complex systems themselves, we cannot identify the exact causes.

To improve stability, we have implemented a checkpointing
function. Once the testing progress remains unchanged for a long
time, indicating the anomaly, checkpointing will start to work.

Specifically, the recovery consists of two stages: (1) recover to the
interrupted action (in SystemModel) (2) continue the remaining test
cases. Once exceptions happen, the checkpointing will resume the
interrupted action and reset the app state accordingly2 by loading
a prepared snapshot or launching a new emulator instance3. Then,
MoSSOT continues to execute the unfinished test cases.

4.4 A Running Example of Testing Phase
We give a running example here to illustrate the testing phase, in-
cluding how MoSSOT executes test cases and detects vulnerability.

2The function may also revoke the authorization to change the server state.
3The emulator sometimes is not responsive and we have to start a new one cloned
from the template instance.

As shown in Fig. 6, at a certain moment of our testing, MoSSOT
chooses to fuzz access token within Req4, where the test case is to
replace its value with the one of Alice (from another RP app).

(1) Then, MoSSOT asks Test Engine to perform the login process
via SSO and replace the access token within Req4, while
making no changes to other messages, e.g., Req1.

(2) After that, the tampered access token arrives the RP server
and is included in the request to the IdP server, i.e., Req5.

(3) If the verification on the RP server is incomplete, it will trust
the IdP response by mistake, authenticate the tester as Alice,
and returns her user identifier (e.g., 38006) to the RP app.

(4) By comparing the recorded user identifier value (from Sec-
tion. 4.2.2) and the real-time value, Test Oracle identifies that
the tester logs into the RP app illegally as Alice, i.e., entering
S6(b), indicating the vulnerability within the RP server.

4.5 Additional Implementation Challenges
In the preliminary test, we encountered several practical challenges.
We illustrate them here and give the current/ potential solutions.

Certificate Pinning. Both the IdP and RP may apply certificate
pinning to protect their mobile apps. In the situation, the app will
check the certificate and refuse to work as the certificate belongs to
Proxy. Thus, we install a universal unpinning tool on the emulator
to bypass the protection within most RP apps.

However, the tool does not work for the Facebook app. As a
workaround, we uninstall the app and then WebView (Section 2.4)
will be used instead, where certificate pinning is not available. Be-
sides, WebView works almost the same as the Facebook app in SSO
except that it utilizes different network APIs.

To generalize our tool, there are two solutions to tackle the
certificate pinning. First, we have written a tool to hook HTTP-
related functions in Android to tamper our interested data without
using Proxy. Second, we may hook the functions within the IdP
SDKs to intercept the interactions between the IdP and RP apps.
We plan to add the two functionalities into MoSSOT in the future.

API Changes of IdP. During the large-scale testing, we noticed
an abnormal number of failure cases for apps with WeChat SSO.
After some investigation, we found that WeChat is migrating to
a new API with A/B testing. Worse still, in the new API, all the
HTTP(S) messages are encoded. Consequently, Test Learner could
not extract necessary data from the messages, e.g., code, to identify
the interaction between the RP app and its server (Section 4.2.2).

Thus, we develop an XPosed [48] module to hook related func-
tions within the IdP app and force WeChat to use the old API.

Trouble of background animation. During the test of our UI
automation framework, we observed the extremely slow reactions
when the app contains continues UI animation.

We traced back and discovered a bug in theAndroid UIAutomator.
Later in January 2018, we submitted a patch to Google.

5 EMPIRICAL TESTING
We have implemented MoSSOT in Python with around 12000 lines
of code. Using the tool, we managed to assess the practical SSO
implementations within 550 RP apps that integrate the service from
three major IdPs, namely Sina Weibo, WeChat, and Facebook.

Session 4A: Mobile Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

275

Table 1: Success rates at different stages (under the fully
blackbox & automated setting)

IdP #Dowloaded
Apps

#Screener
Output

#UI Explorer
Output

#Success
Cases

Sina 12872 3322 (25.8%) 767 (23.1%) 196 (25.6%)
WeChat 12872 4692 (36.5%) 822 (17.5%) 226 (27.5%)
Facebook 11064 2095 (18.9%) 436 (20.8%) 128 (29.4%)

5.1 Dataset and Test Setup
We developed crawlers to download 12872 and 11064 Android Apps
(in Table. 1) from two third-party Android app store, i.e., Wandou-
jia [45] and Apkpure [3], respectively in June 2018. As Google Play
did not host many Chinese apps with Sina Weibo and WeChat SSO,
we used Wandoujia instead. Considering consistency, we chose
Apkpure as the dataset source for Facebook apps. According to [41]
and [52], they are both highly-ranked third-party app stores.

However, a majority of the apps do not have SSO support. As a
preprocessing step, we implement the Screener to heuristically filter
out the apps that have no indication of the SSO login integration
of the three studied IdPs. The remaining dataset is the initial input
to our MoSSOT framework (i.e., Input1 in Fig. 3).

Ultimately, we use MoSSOT to perform the large-scale testing
on a machine with a 2.4GHz quad-core CPU and 64GB memory
running Ubuntu 16.04. On average, the tool takes 2.85 hours to
complete the test of one RP app. Besides, only 550 RP apps com-
pleted the test under the fully automated and blackbox setting due
to various reasons. We delay the discussion of encountered issues
as well as potential solutions to speed up the testing in Section 6.

5.2 Efficiency and Detection Accuracy
Considering efficiency, the test cases are prioritized before execu-
tion (as mentioned in Section 4.2.3) so that single test cases (associ-
ated with known vulnerabilities) will be executed first. Afterward,
the tool turns to execute the combination cases, where two param-
eters are replaced simultaneously and may lead to the detection of
unknown vulnerabilities.

In terms of detection accuracy, there should be no false positives
as we confirmed that by manually validating the testing result of 30
randomly-chosen apps, where no false alarms were found. However,
there may be false negatives due to following two reasons.

First, there may be a large network delay before receiving the
final authentication response, due to server-to-server interactions,
e.g., Step 7 and 8 in Fig. 1. We heuristically set a timeout to be 5
seconds and MoSSOT will abort the current test once it is triggered,
which can result in false negatives. Second, after fuzzing, the RP
server may recognize us as new users and respond with unexpected
messages upon the first login, e.g., requirements to enrich user
profile, so that Test Oracle may misunderstand the response.

5.3 Security Testing Results
According to the statistics in Table. 2, around 72.4% of the tested
apps are susceptible to at least one vulnerability due to their poor
implementations on either the client (Android app) or server side.

MoSSOT has detected 4 types of known vulnerabilities manually
identified by the previous work, i.e., Access Token Replacement [11,
46], Profile Vulnerability [49], Credential Disclosure [47], and App

Secret Disclosure [11, 47]. Moreover, our tool improves the accuracy
in detecting App Secret Disclosure by a hybrid method.

In addition to the known vulnerabilities, the tool discovered a
new variant of Access Token Replacement and Profile Vulnerability,
Augmented Token Replacement, as well as a previously-unknown
vulnerability on the IdP side. All the vulnerabilities may be exploited
by the attacker to log into the RP as the victim or even impersonate
as the benign RP to IdP for conducting privileged operations.

5.3.1 Discovery of Augmented Token Replacement Attack
Observations: Table. 2 shows that 41.8% and 51.6% of the tested

apps are vulnerable to Access Token Replacement Attack [11, 46]
and Profile Vulnerability [49]. The former one replaces the access
token from the IdP server, e.g., Step 6 in Fig. 1, and the other tampers
the appended user information. Nevertheless, the two vulnerabil-
ities are only feasible when no verifications of the token (access
token/ id token) exist on the RP server side, as the user information
from its client (e.g., Step 6 in Fig. 1) differs from the one from the
IdP server (e.g., Step 8 in Fig. 1). In our test, MoSSOT discovers a
variant of the two vulnerabilities that can bypass the checking and
affect 57.8% tested apps.

In the original protocol specification [21], the access token is
issued on a per-user basis. In contrast, the tokens issued by the
three studied IdPs are per-app and per-user based, so RPs should
verify the binding between the received access token and itself from
the IdP response, e.g., Step 8 in Fig. 1, which tends to be missed.
Besides, the access tokens are all bearer tokens [25]. Thus, the
attacker can extract the associated user information of victims from
the IdP directly with either the stolen (i.e., network attacker) or
obtained (i.e., malicious RP attacker) token, e.g., replaying Step 7
in Fig. 1. Consequently, the attacker can inject both the token and
its corresponding user information in his own session, e.g., Step 6
of Fig. 1. As a result, the attacker can bypass the aforementioned
checking by augmenting the injected access token with related user
information and thus cheat the RP.

In terms of exploiting the vulnerability, there are two major dif-
ferences between WeChat and the others. First, WeChat customizes
the operation of extracting user information and requires the cor-
responding openid (an app-specific user id) in the request (Step 8
in Fig. 7). However, according to our manual test, WeChat server
actually will not check its value so the attacker can still extract
the user information with solely an access token. Second, WeChat
adopts the authorization code flow (Section 2.2) such that the access
token is invisible to the attacker-controlled handset in the normal
flow and thus cannot be tampered. Unfortunately, as mentioned in
Section 4.2.1, 74.3% (168 out of 226) RPs supporting WeChat SSO
implement the interaction (Step 6 and 7 in Fig. 7) on their client
sides (RP apps), making the exploit feasible again.

Security Impacts and Remedies: The impacts of the vulnerabil-
ity depend on the property of the injected access token and the
authenticator chosen by the RP server.

If the token is issued to the targeted RP, the attacker can log into
the RP app as the victim. For example, a network attacker may steal
a valid access token. Then, he can invoke the debug API from the
IdP to identify which RP the token is issued to and launch the attack
on the same one. According to our testing result, 94 (17.1%) tested
apps transmit the access token in the plaintext and thus vulnerable.

Session 4A: Mobile Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

276

Table 2: Statistics of the testing results from 550 RP apps

IdPs (# of
3rd-party RP app)

Augmented Token
Replacement

Profile
Vulnerability ‡

Access Token
Replacement

Credential
Disclosure

(Access Token)

Credential
Disclosure
(Code)

App Secret
Disclosure

#of vulnerable
RPs †

Sina Weibo (196) 145 140 125 48 N/A 88 149 (76%)
WeChat (226) 119 98 81 41 23 179 191 (84.5%)
Facebook (128) 54 46 24 5 N/A 0 57 (44.5%)
Summary 318 284 230 94 23 267 397 (72.2%) *
* 397 out of the 550 RPs (72.2%) are incorrectly implemented.
† One RP app may be susceptible to multiple vulnerabilities, e.g., access token replacement and profile vulnerability, simultaneously.
‡ The scope of the detected Profile Vulnerability is larger than [49], where we also take the user profile from malicious RPs into account.

In the scenario, the RPs that utilize the SSO services from Sina
Weibo and WeChat cannot detect the attack so that they must pro-
tect the access token well. In contrast, the RPs using the Facebook
SSO service can detect the injection by verifying the signature
within the id token (Section 2.3), if the signing key is not leaked.

In contrast, if the token is issued to a different RP, i.e., a malicious
RP attacker, the impacts rely on the chosen authenticator within
the user information (e.g., Step 8 in Fig. 1). If the authenticator
is shared among different RPs, e.g., email, the attacker can still
steal a benign RP account. Otherwise, the attacker may only forge
a malicious RP account with the IdP identities of victims. Using
the forged account, the attacker can post malicious content on
the RP and hurt the reputation of the victim. In many cases, some
information required for registration cannot be directly forged as
additional verification is needed, e.g., SMS verification. However, the
information returned by IdP is trusted by the RP, thus the attacker
can exploit the vulnerability to bypass the verifications and create
malicious accounts with valid user profiles (from the IdP).

To mitigate the vulnerability in the situation, the RP server
should verify the binding between the received token and itself.

5.3.2 Discovery of Code Maintenance Failure
Observations: In addition to the vulnerabilities resulted from the

incorrect implementations by RPs, MoSSOT also finds a new one
caused by the IdP. According to the protocol specification [21], the
code used in the authorization code flow should be short-lived.

However, after analyzing the testing result, we find that an un-
used code generated more than 100 minutes ago (10 times longer
than the claimed value in [44]) will still be accepted by the server.
Thus, the IdP server does not maintain authorization code properly.

Security Impacts and Remedies: The vulnerability facilitates an
attacker to exploit the stolen code (available through [15, 24, 28])
and log into the RP app as the victim. In the case of Credential
Disclosure [47], a network attacker may intercept the code from
the RP app to its server (Step 5 in Fig. 7). According to the testing
result, around 10% RP apps (23 out of 223 in Table. 2) indeed disclose
the code in the plaintext and thus is susceptible to the vulnerability.

It is the duty of IdP to fix the vulnerability, where its server needs
to shorten the validity period of codes and reject expired ones.

5.3.3 Improved Detection of App Secret Disclosure
Besides the three known vulnerabilities discussed above,MoSSOT

also detected App Secret Disclosure [11, 47].
The app secret is the identity proof issued by the IdP to RP and

required in the critical requests from the RP server to the IdP server.

However, as mentioned in Section 4.2.1, some RPs tend to customize
the logic on the client side (RP app). Then, the attacker can steal the
secret and use it to impersonate as the benign RP/ IdP for cheating
the other party. For example, in the Facebook case, the app secret
is used as the signing key of the id token (in Fig. 8). Consequently,
the attacker can impersonate as the benign IdP and forge a valid
signature to cheat the RP server into the wrong authentication.

Different from [11, 47], we extended MoSSOT and utilized a
hybrid method to improve the accuracy of detecting the known
vulnerability. Readers may refer to Appendix. C for more details
about the extension. Overall, 267 RP apps (48.5%) leak the app secret
and none of the Facebook apps is vulnerable, which may attribute
to the explicit warning in its documentation.

6 DISCUSSION AND FUTUREWORK
As reflected in Table. 1, MoSSOT encounters several obstacles in
the test. In the section, we elaborate the open issues in different
testing phases and give some proposed solutions.

6.1 Misclassification in Dataset Screening
Misclassification in the screening (Section 5.1) is unavoidable. We
apply conservative strategies to limit the false negative rate, as
UI Explorer (Section 4.1.2) can eliminate false positives. We run
the Screener against the whole dataset and randomly selected 200
passed apps to evaluate its performance. We manually examined
each of them to get the true positives and analyzed the rest for
failure investigation. The result is shown in Table 3.

The high false positive rate, 84 out of 200 (42%), is mainly due to
the fact that many apps include SSO SDKwithout using it. However,
it is possible to improve the accuracy so that UI Explorer will not
waste time on those apps. One potential solution is to extract the
call flow graph from the APK and check the usage of SSO SDK.

6.2 UI Automation Failure
The most challenging part in UI automation is the exploration. The
step is crucial as it feeds input to Test Engine (Module B in Fig. 3).
Based on the ground truth in Table 3, we evaluate and compare the
performance of UI Explorer with both Algorithm I and Algorithm
II (described in Section 4.1.2). The success rate and average running
time are summarized in Table 3. The result indicates the choice
between Algorithm I and Algorithm II is actually a tradeoff between
false negative rate and efficiency. In our experiments, the runtime
overhead of Algorithm II is mainly caused by the penalty of false
positives. For example, if there is a button appearing to be a login

Session 4A: Mobile Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

277

Table 3: Performance evaluation dataset: 200 sample apps that passed Screener

Apps that pass
manual SSO test *

73/200

Performance of Algorithm I & II
Algorithm I (LKS) Algorithm II (DFS) Both Algorithms failed

47/73 (64.4%), t̄ = 236s † 57/73 (78.1%), t̄ = 376s 14/73 (19.2%)

Apps that cannot pass
manual SSO test

127/200

Reasons that manual SSO test failed
SSO not integrated Launch failure ‡ Update required
84/127 (66.1%) 33/127 (26.0%) 10/127 (7.9%)

* The manual SSO test was done in an emulator. † t̄ is the average running time per app. ‡ The failure can be caused by the
emulator or the app itself (e.g., unable to connect to its server).

Table 4: Statistics of the failure cases in Test Learner

Failure Reasons #Cases
(percent)

Fixable with
manual config.

Fixable with
RP’s support

App Error 18 (30%) × ×

RP Account
Settings 14 (23.3%) ✓ ✓

Failure to Extract
User Login Status 27 (45%) × ✓

Captcha Required 1 (1.7%) × ✓

button but turns out it is not, then both algorithms will choose it
first. After clicking the button, Algorithm I will cut off directly as
there is no targeted keyword in the new page. However, the other
will try every new button because its core is depth-first search.

The overall accuracy of UI Explorer is reasonable and failure
cases (19.2%) are mainly due to the imperfection of Noise Reducer.
Our current design cannot handle some corner cases, e.g., UI widgets
with no identifiable characteristics. Some of them can be fixed with
one-time human assistance. For the purpose, we developed a tool
which enables users to navigate the app to the login page and
take snapshots of the emulator via web browsers. Then, MoSSOT
simply reloads that snapshot to reach the login page during the test.
Meanwhile, we plan to apply static analysis on the app (APK) to
extract input constraints and solve them to assist the UI exploration.

Besides, many apps (26.0%) in the sample set cannot be launched.
For example, their backend servers are no longer maintained, which
is unfixable. Some others refuse to run in the emulator and can be
tested with proper setup, as MoSSOT can execute on real devices.

6.3 Obstacles in the Learning Phase
According to Table. 1, only 27% of the apps could pass the whole
testing phases after the UI exploration, which is mainly caused
by the failures in learning app-specific SSO implementations (Sec-
tion 4.2.2). We manually analyzed 60 failure cases, which can be
categorized into four types as shown in Table. 4.

App Error: Although the tool did not tamper any message in
the step, two of the apps crashed frequently. In the other cases, the
backend RP servers responded with error messages.

RPAccount Settings: In the category, the RP accounts required
special settings beforehand, e.g., phone number binding, so that the
tool could not finish the whole SSO process.

Failure to Extract User Login Status: MoSSOT relies on the
RP authentication response to identify the RP login status (Sec-
tion 4.3.2). However, MoSSOT may fail to learn it as these RPs use
customized protocols so that our tester cannot capture the message.

At the moment, we do not have a proper solution to the issue as
there does not exist a uniform method to parse the TCP messages.

CaptchaRequired:We encountered one app requiring Captcha
verification, which our UI automation module could not handle.

As indicated in Table. 4, RP Account Settings can be fixed with
the one-time manual configuration so that the success rate at the
stage can increase to around 44.2%. Besides, Failure to Extract User
Login Status and Captcha Required may be solved given the support
from the RP, where the rate can increase to around 78.1% further.

6.4 Speeding up the Execution of Test Cases
Most apps could complete the test once they passed the previous
phases due to the special handling mentioned in Section 4.5. How-
ever, our tester still suffers a large time cost, which is mainly caused
by network delay and UI navigation (Section 4.1).

In the normal flow, the RP server will not reply the authentication
request (e.g., Step 6 in Fig. 1) to the app until the handshake between
the servers (e.g., Step 7 and 8 in Fig. 1) is finished. Since one of our
targets is to find the vulnerabilities in the blackbox servers, the
testing must be online and the network delay cannot be avoided.

Besides, the UI Navigation is also time-consuming because every
widget in the UI path needs triggering in each round. Worse still,
once noise appears, e.g., advertisement popup, Noise Reducer needs
to take more time to recover the app to the normal state.

There are two possible solutions to increase the speed. The first
one is to use the snapshot functionality from the Android Emula-
tor [18]. Then, the tool can take the snapshot of the RP login page
after the UI exploration and reload it in the test, whose time cost is
expected to be lower and not affected by the noise.

The second solution is to skip the interactions between the IdP
app and IdP server, e.g., Step 2 to 4 in Fig. 1. From the perspective
of the RP developers, they are only interested in assessing their
own SSO deployments. Then, we may prepare some valid data, e.g.,
access token and user profile, and configure the proxy beforehand.
Consequently, once the requests from the IdP app is detected, Proxy
will impersonate as the real IdP server and respond immediately.

7 RELATEDWORK
UI automation for Android app testing. Many projects have
been done in recent years on automated Android app testing. Most
of them aim at exploring the app with larger coverage. In contrast
to traditional random exploration used by Monkey [19], they apply
more systematic strategies. GUIRipper [2], SwiftHand [12], PUMA
[20], and DroidBot [30] crawl an app and dynamically build a fi-
nite state machine to represent the app’s UI model. Among them,

Session 4A: Mobile Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

278

Table 5: Comparison with Previous Work on SSO Testing
Selected Work Level of Automation Scope of Study Target

Zhou et al.(SSOScan) [53] Automatic 1660 websites 4 specific vulnerabilities
Sun et al. [43] Semi-automatic 96 websites 5 specific vulnerabilities

Shernan et al. [39] Automatic 10000 websites Assessing the usage of the state variable
Li et al. [29] Manual 103 websites 3 specific vulnerabilities

Shehab et al. (OAuthManager) [38] Automatic 430 Android apps 3 specific vulnerabilities *

Wang et al.(AuthDroid) [47] Semi-automatic 100 Android apps 6 specific vulnerabilities †

Wang et al. [46] Semi-automatic 79 websites, 85 Android apps
& 77 iOS apps 5 specific vulnerabilities ‡

Our work (MoSSOT) Automatic 550 Android apps General model-based testing (detecting
4 known and 2 unknown vulnerabilities)

* The vulnerabilities are about the improper usage of Android WebView [17] and is out of the scope of our study.
† [47] also takes the inter-app (e.g., Step 1 & 5 in Fig. 1) and server-to-server (e.g., Step 7 & 8 in Fig. 1) communication into account.
‡ [46] considers the usage of access token (instead of id token) in OIDC (Section 2.3) as a vulnerability, which may not be exploitable.

GUIRipper allows the tester to configure inputs to be used during
exploration. SwiftHand uses an exploration strategy that can min-
imize the app restarts. PUMA provides a framework to combine
model-based exploration with random monkey inputs. Instead of
dynamically building the model, some other tools, e.g., A3E [4]
and FraudDroid [13] extract activity transition graph beforehand
with static code analysis to guide the UI testing. More recently,
researchers start to explore advanced strategies like a stochastic
model [42] and machine learning [9, 36]. However, all these tools
try to construct a map of every activity in an app for exploration
while our task is to look for SSO login interfaces. Our algorithms
eliminate the overhead of map construction to achieve better effi-
ciency. Whatsmore, all mentioned tools lack the ability to replay
their recorded UI path reliably as indicated in [27]. To address the
challenge, we packaged three modules, i.e., Explorer, Navigator and
Noice Reducer, into our work to make UI path replay possible.

The projects with more relevant goals to ours are Brahmastra [7]
and AuthScope [54], both focusing on driving apps to the targeted
activity. While [7] looks for activity transition paths with static
analysis, [54] implements prioritized DFS for targeted UI explo-
ration. Nevertheless, [54] only works with Facebook SSO login. In
contrast, our work is more extensible and is capable of handling
multiple IdPs. Although both of our work and [54] utilize DFS for
UI exploration, [54] only uses keywords and action bindings as
prioritization criteria, while our work calculates a score for each
element based on more attributes and a smarter algorithm (Sec-
tion. 4.1.3) for better accuracy and efficiency. Besides, our work
also supports LKS. Since [54] is close-sourced, we did not manage
to make a comparison between their DFS and our LKS algorithm.
However, according to the experiment result (in Table. 3), LKS is
more efficient in finding targeted activity than DFS. Besides, as LKS
is orthogonal to DFS, it helps to increase the success rate further.

OAuth security studies from the protocol perspective. RFC
specifications [21, 31] discuss the security considerations and threat
models for OAuth 2.0. Focusing on the classical web attacks like
XSS, CSRF, and the intentional attacks specifically designed for
OAuth, these standards hope to exclude these common pitfalls. Hu
et al. [22] present the App Impersonation attack. Besides, under
the assumption that the TLS is utilized properly, the authorization
code flow has been proven to be secure cryptographically [10].

On the other hand, the formal method is widely adopted by the
previous work to assess OAuth Security. Bansal et al. [6] model
different configurations of the OAuth protocol and analyze them
by ProVerif [8], which leads to the discovery of Token Redirection
Attack and Social CSRF Attack. Similarly, AuthScan [5] performs a
whitebox code analysis and a blackbox fuzzing to extract the pro-
tocol specifications from real implementations and find 7 security
flaws. Following their work, Fett et al. [15] use an expressive FKS
model to perform an extensive analysis of all four grant flows.

These studies prove/ improve the security for OAuth 2.0 from the
viewpoint of protocol design. However, since the OAuth protocol
was initially designed to serve the authorization need for websites,
the focus of the paper, namely the authentication services on mobile
platforms, is thus not considered by the studies.

Analyses of mobile OAuth-based SSO systems. In contrast
to the wide deployment, there are few security analyses on the mo-
bile OAuth-based SSO systems. Chen et al. [11] show how practical
OAuth system may fall into the common pitfalls when utilizing the
OS-provided components, e.g., Intent, improperly. Shehab et al. [38]
reveal 3 vulnerabilities in WebView, which affect OAuth security.
Ye et al. [51] utilize the model checking method to analyze the
OIDC-like protocol implemented by Facebook on Android platform
and discover a problem on unauthorized storage access. Wang et
al. [46, 47] perform static code analysis and dynamic analysis on
the real-time network messages, leading to the detection of sev-
eral vulnerabilities across both Android and iOS platforms. Using
similar approaches, Yang et al. [49] find Profile Vulnerability.

Previous work relies on the manual discovery of vulnerabilities,
which is not scalable. Compared to the state-of-the-art, MoSSOT
can discover vulnerabilities automatically.

SSO security testing tool. Motivated by the prevalence of vul-
nerabilities in real-world SSO systems, large-scale security test-
ing has received increasing attention. Sun et al. [43] build a semi-
automatic tool to test specific vulnerabilities for 96 applications.
SSOScan [53] investigates five specific attacks on Top 1600 Face-
book websites. Shernan et al. [39] analyze the known CSRF attack
on 10,000 websites by checking the existence of state. Li et al. [29]
report the security quality of 103 Google-enabled RP websites.

Nevertheless, all the work mentioned so far only studies the spec-
ifications/ implementations of SSO in the web applications, where

Session 4A: Mobile Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

279

the interactions for secure authentication are well specified. In con-
trast, we focus on the mobile platform, where such interactions of
our interest are error-prone and overlooked.

The projects most relevant to ours are [50] and [54]. [50] also
utilizes the model-based testing to assess real-world SSO deploy-
ments, but targets web applications instead of mobile apps, where
the situation is not so complicated. For example, [50] may enter
any state in their model by constructing a proper URL request. In
contrast, we are incapable of maintaining the app state directly and
have to rely on UI to trigger SSO-related network messages. On the
other hand, although our method is similar to [54], our target is the
vulnerabilities within the SSO (authentication), while [54] focuses
on the authorization issues after the authentication process.

8 CONCLUSION
In this paper, we present an automated blackbox security testing
tool, MoSSOT, to systematically test the implementations of SSO by
the RPs/ IdPs as well as their backend servers. We implement the
tool and perform the test on 550 RP apps. The tester identified one
previously-unknown vulnerability and a new variant, in addition
to four known ones. All of them can break the authentication of
the RP apps and lead to privacy leakage of the victims.

We have open sourced MoSSOT at [34] and plan to extend it for
other protocols, e.g., mobile payment protocols, in the long run.

ACKNOWLEDGEMENT
We thank our shepherd Dr. Guangdong Bai and the anonymous re-
viewers for their valuable comments and suggestions.We also thank
Yihui Zeng, Ronghai Yang, Zhuowei Zhong, Guanchen Li, and Chak-
man Li for their contributions in the development of MoSSOT. The
work is supported in part by the ITF of HK (project#ITS/216/15), the
CUHKTBF (project#TBF18ENG001), the CUHK PIEF (project#31330
43), and the 2018 Facebook/USENIX Internet Defense Prize.

REFERENCES
[1] 2017. Culebra. https://github.com/dtmilano/AndroidViewClient/wiki/culebra
[2] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore

De Carmine, and Atif M Memon. 2012. Using GUI ripping for automated testing
of Android applications. In ASE12. ACM.

[3] Apkpure. 2017. Apkpure. https://apkpure.com/.
[4] Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and depth-first exploration

for systematic testing of android apps. In ACM Sigplan Notices, Vol. 48. ACM.
[5] Guangdong Bai, Jike Lei, GuozhuMeng, Sai Sathyanarayan Venkatraman, Prateek

Saxena, Jun Sun, Yang Liu, and Jin Song Dong. 2013. AUTHSCAN: Automatic
Extraction of Web Authentication Protocols from Implementations. In NDSS13.

[6] Chetan Bansal, Karthikeyan Bhargavan, and Sergio Maffeis. 2012. Discovering
Concrete Attacks on Website Authorization by Formal Analysis. In CSF12.

[7] Ravi Bhoraskar, Seungyeop Han, Jinseong Jeon, Tanzirul Azim, Shuo Chen,
Jaeyeon Jung, Suman Nath, Rui Wang, and David Wetherall. 2014. Brahmastra:
Driving Apps to Test the Security of Third-Party Components.. In USENIX14.

[8] Bruno Blanchet. 2014. The ProVerif homepage. http://prosecco.gforge.inria.fr/
personal/bblanche/proverif/

[9] Nataniel P Borges Jr, Maria Gómez, and Andreas Zeller. 2018. Guiding app testing
with mined interaction models. In MOBILESoft18. ACM.

[10] Suresh Chari, Charanjit S. Jutla, and Arnab Roy. 2011. Universally Composable
Security Analysis of OAuth v2.0. Cryptology ePrint Archive, Report 2011/526.

[11] Eric Y Chen, Yutong Pei, Shuo Chen, Yuan Tian, Robert Kotcher, and Patrick
Tague. 2014. OAuth demystified for mobile application developers. In CCS14.

[12] Wontae Choi, George Necula, and Koushik Sen. 2013. Guided gui testing of
android apps with minimal restart and approximate learning. In ACM Sigplan
Notices, Vol. 48. ACM.

[13] Feng Dong, Haoyu Wang, Yuanchun Li, Yao Guo, Li Li, Shaodong Zhang, and
Guoai Xu. 2017. FrauDroid: An Accurate and Scalable Approach to Automated
Mobile Ad Fraud Detection. arXiv preprint arXiv:1709.01213 (2017).

[14] Facebook. 2017. Facebook SSO developer document. https://developers.facebook.
com/docs/facebook-login/.

[15] Daniel Fett, Ralf Küsters, and Guido Schmitz. 2016. A Comprehensive Formal
Security Analysis of OAuth 2.0. CCS16 (2016).

[16] Genymotion. 2017. Genymotion. https://www.genymotion.com/
[17] Google. 2017. Android webview. http://developer.android.com/reference/

android/webkit/WebView.html
[18] Google. 2017. AVD. https://developer.android.com/studio/run/emulator.
[19] Google. 2017. Monkey. http://developer.android.com/tools/help/monkey
[20] Shuai Hao, Bin Liu, Suman Nath, William GJ Halfond, and Ramesh Govindan.

2014. PUMA: programmable UI-automation for large-scale dynamic analysis of
mobile apps. In MobiSys14. ACM.

[21] Dick Hardt. 2012. The OAuth 2.0 authorization framework.
[22] Pili Hu, Ronghai Yang, Yue Li, and Wing Cheong Lau. 2014. Application im-

personation: problems of OAuth and API design in online social networks. In
COSN14.

[23] Jonathan Jacky. 2011. PyModel: Model-based testing in Python. In SciPy11.
[24] Wang Jing. 2017. Covert Redirect Vulnerability.
[25] M Jones and Dick Hardt. 2012. The OAuth 2.0 Authorization Framework: Bearer

Token Usage. Technical Report. RFC 6750, October.
[26] Michael Jones, Paul Tarjan, Yaron Goland, Nat Sakimura, John Bradley, John

Panzer, and Dirk Balfanz. 2012. JSON Web Token (JWT). (2012).
[27] Wing Lam, Zhengkai Wu, Dengfeng Li, Wenyu Wang, Haibing Zheng, Hui Luo,

Peng Yan, Yuetang Deng, and Tao Xie. 2017. Record and replay for Android: are
we there yet in industrial cases?. In ESEC/FSE17. ACM.

[28] Wanpeng Li, Chris J Mitchell, and TomChen. 2018. Your code is my code: Exploiting
a common weakness in OAuth 2.0 implementations.

[29] Wanpeng Li and Chris J. Mitchell. 2016. Analysing the Security of Google’s
implementation of OpenID Connect. In Proceeedings of DIMVA16.

[30] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2017. Droidbot: a
lightweight ui-guided test input generator for android. In ICSE17. IEEE.

[31] Torsten Lodderstedt, Mark McGloin, and Phil Hunt. 2013. OAuth 2.0 threat model
and security considerations.

[32] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: An input
generation system for android apps. In ESEC/FSE13. ACM.

[33] mitmproxy. 2017. Man in the Middle Proxy. https://mitmproxy.org/
[34] MoSSOT. 2019. MoSSOT. https://github.com/MoSSOT/MoSSOT.
[35] Vaibhav Rastogi, Yan Chen, and William Enck. 2013. AppsPlayground: automatic

security analysis of smartphone applications. In ACM CODASPY13.
[36] Ariel Rosenfeld, Odaya Kardashov, and Orel Zang. 2018. Automation of Android

Applications Functional Testing Using Machine Learning Activities Classification.
In MOBILESoft18. ACM.

[37] Natsuhiko Sakimura, J Bradley, M Jones, B de Medeiros, and C Mortimore. 2014.
OpenID Connect core 1.0. (2014).

[38] Mohammed Shehab and Fadi Mohsen. 2014. Towards Enhancing the Security of
OAuth Implementations In Smart Phones. In IEEE MS14.

[39] Ethan Shernan, Henry Carter, Dave Tian, Patrick Traynor, and Kevin Butler. 2015.
More Guidelines Than Rules: CSRF Vulnerabilities from Noncompliant OAuth
2.0 Implementations. In DIMVA15. Springer.

[40] Sina. 2017. Sina Developer Documentation. http://open.weibo.com/wiki/
[41] Softonic. 2017. Softonic. https://bit.ly/2DUAjhp.
[42] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang

Pu, Yang Liu, and Zhendong Su. 2017. Guided, stochastic model-based gui testing
of android apps. In ESEC/FSE17. ACM.

[43] San-Tsai Sun and Konstantin Beznosov. 2012. The devil is in the (implementation)
details: an empirical analysis of OAuth SSO systems. In CCS’12.

[44] Tencent. 2017. WeChat SSO developer document. https://open.weixin.qq.com.
[45] Wandoujia. 2017. Wandoujia App Market. https://www.wandoujia.com/.
[46] Hui Wang, Yuanyuan Zhang, Juanru Li, and Dawu Gu. 2016. The Achilles Heel

of OAuth: A Multi-platform Study of OAuth-based Authentication (ACSAC ’16).
[47] Hui Wang, Yuanyuan Zhang, Juanru Li, Hui Liu, Wenbo Yang, Bodong Li, and

Dawu Gu. 2015. Vulnerability Assessment of OAuth Implementations in Android
Applications. In ACSAC15. ACM.

[48] Xposed. 2017. Xposed Module Repository. https://repo.xposed.info
[49] Ronghai Yang, Wing Cheong Lau, and Shangcheng Shi. 2017. Breaking and

Fixing Mobile App Authentication with OAuth2.0-based Protocols. In ACNS17.
[50] Ronghai Yang, Guancheng Lee, Wing Cheong Lau, and Kehuan Zhang. 2016.

Model-based Security Testing: an Empirical Study on OAuth 2.0 Implementations.
In ASIACCS 2016.

[51] Quanqi Ye, Guangdong Bai, Kailong Wang, and Jin Song Dong. 2015. Formal
Analysis of a Single Sign-On Protocol Implementation for Android. In ICECCS15.

[52] E. YOO. 2017. Technode. https://bit.ly/2Zi1JVn.
[53] Yuchen Zhou and David Evans. 2014. SSOScan: Automated Testing of Web

Applications for Single Sign-On Vulnerabilities. In USENIX14.
[54] Chaoshun Zuo, Qingchuan Zhao, and Zhiqiang Lin. 2017. Authscope: Towards

automatic discovery of vulnerable authorizations in online services. In CCS17.

Session 4A: Mobile Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

280

https://github.com/dtmilano/AndroidViewClient/wiki/culebra
https://apkpure.com/
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
https://developers.facebook.com/docs/facebook-login/
https://developers.facebook.com/docs/facebook-login/
https://www.genymotion.com/
http://developer.android.com/reference/android/webkit/WebView.html
http://developer.android.com/reference/android/webkit/WebView.html
http://developer.android.com/tools/help/monkey
https://mitmproxy.org/
https://github.com/MoSSOT/MoSSOT
http://open.weibo.com/wiki/
https://bit.ly/2DUAjhp
https://open.weixin.qq.com
https://www.wandoujia.com/
https://repo.xposed.info
https://bit.ly/2Zi1JVn

A MORE ON MOBILE SSO PROTOCOLS
A.1 Protocol Flow of Authorization Code Flow

1). auth request

10). user identity

RP server
mobile device

IdP Server

2). authentication
& authorization

5). code 4). code 3). code

6). AT request: code + app_id + app_secret

7). AT + openid

8). API request for user profile: AT + openid

9). User profile information

Figure 7: Authorization code flow of OAuth 2.0 for mobile
platforms

A.2 Protocol Flow of OpenID Connect

1). auth request

RP server
mobile device

IdP server

2). authentication
& authorization

5). AT & id_token 4). AT & id_token 3). AT & id_token

6). user identity
{"name":"alice",
"user_id":"1234“,
……}
+ signature

Figure 8: Implicit flow of OpenID Connect for mobile plat-
forms

B MORE ON UI EXPLORATION
B.1 Details of Algorithm I

Algorithm 1: Pseudocode for Algorithm I (LKS) of Explorer
1 initialize ladder[n] to be the predefined list of keywords;
2 initialize UI path as an empty list;
3 Function LKS(ladder)
4 i ← 0 ;
5 page← source code of current activity;
6 if page is the desired destination then

// end of recursive call

7 return recorded UI path;
8 while i < len(ladder) do
9 foreach keyword in ladder[i] do

10 if an element in page matches keyword then
11 click on the element;
12 append element to UI path;
13 ladder← ladder [0..i] ;

// recursive call

14 return LKS(ladder);
15 i ← i + 1;
16 return cannot find path to the destination;

To generate the list of keywords in Algorithm I (LKS), we man-
ually logged into 100 Android apps via SSO for each studied IdP.
At the same time, a self-developed XPosed [48] module records the
information of the triggered widgets and outputs related keywords.
Then, we prioritized the keywords into different levels according
to their occurrence frequency. On average, there are around 25
keywords for each IdP and 5 keywords for each level. One example
of the prioritized keyword list for Facebook is listed as follows,
where widgets with the keywords on the upper level have a higher
probability to link to the SSO login page.

Level 5 "facebook", "fb"
Level 4 "third-party login", "login", "log in", "signin", "sign in", "register"
Level 3 "username", "avatar", "nick", "profile", "account", "personal

info", "user", "head", "edit"
Level 2 "setting", "option"
Level 1 "logged out", "personal", "mine", "drawer", "menu", "home"

Based on the list, Algorithm I will search for the keyword from
top to down and trigger the associated widget during UI exploration.

B.2 Details of Algorithm II
To utilize the DFS algorithm, wemodel the Android UI as a weighted
directed graph G = (V ,E). There are two types of vertices: Ve ⊂
V is the set of element vertices, and Vp ∈ V is the set of page
vertices. Similarly, we define two subsets representing two types
of edges. Particularly, Epe ∈ E is the set of page-to-element edge,
modeling the action when the user interacts with an element in a
page. Eep ∈ E is element-to-page edges, modeling the behavior of
jumping to a new page after an element is tapped. A simplified graph
representation of a toy app with four pages is shown in Figure 9 to
give readers a concrete idea. In the figure, larger circles with labels
are page vertices, and those smaller circles are element vertices.
We are only interested in the elements that lead to different pages
and ignore those edges representing intra-page jump. Therefore,
in our graph model, vertices v ∈ Ve are all disconnected, same for
v ∈ vp . Also, ∀v ∈ Ve , the outdegree deд+(v) ∈ {0, 1}, meaning
that an element can either lead to a particular page or nowhere. The
indegree deд−(v) = 1, showing that an element can only appear on
one page. For a page vertex v ∈ Vp , we have deд−(v) ∈ N+, since
different elements can point to the same page. Vertex p0 and p1
in Figure 9 are examples of this case. The graph can be cyclic, the
dashed line in the figure shows an example when the back edge
leads to a cycle. Weights are assigned to page-to-element edges to
represent the preference among elements in the same page. Under
this graph model, two major challenges for the DFS algorithm are
loop cutting and prioritizing.

Loop Cutting. Since the graph can be cyclic, we need to detect
and cut the loop when running the DFS. We use the standard cycle
detection method, namely keeping track of visited vertex to detect
the back edge. The actual challenge for this is the ability to detect
identical elements in different contexts, as no single attribute is
unique for UI elements. Our solution is combining several attributes
to determine if two elements are identical. We begin by checking
whether all of the string type attributes (id, text, and desc) are
equal. If so, we further calculate the perceptual hash to quantify the
similarity of their screenshot image. If the similarity ratio is above
a certain threshold, we consider these two elements to be identical.

Session 4A: Mobile Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

281

p0

p1 p2

p3

Figure 9: Graph representation of Android UI
• Vertices with labels are Vp , while the others are Ve .

Prioritizing. Each page vertex has outgoing edges linking to
element vertices, displaying the relation that a group of elements
contained in the same page. When DFS arrives at a page, it is more
efficient if some heuristics can be applied to first try those more
promising elements rather than choosing randomly. To achieve
that, we define a scoring function F : Epe 7→ [0, 1] to calculate a
weight for each of page-to-element edge. More specifically, F is a
weighted sum of individual scoring functions for each property of
the element the edge points to, namely F (e) =

∑
wi fi (e). Properties

we select as scoring components are id, desc, text, clickable, type.
Weights for each property is set empirically. For instance, clickable
is a strong indicator comparing to type, so we put more weights on
it. For individual scoring function, we would like to mention two
of our major innovations here.
• String score function. We introduce a unified string score
function for string type properties (id, desc, text). First, we
build a weighted keyword database based on the same key-
word statics we used in Algorithm I. Weights are assigned
based on the frequency of keywords. Given a string-type
property of an element, we search for all substring matches
in the keyword database, for each of them we get a raw score
s , which is equal to the keyword weight. Instead of directly
using this raw score, we calculate an adjusted score s ′ = cs
based on the length of the property string and the matched
substring. Finally, the maximum adjusted score among all
matches is returned. The adjustment coefficient c is defined
by

c =
L − x

Lkx
, where x = min{L, ls − lm }

In this equation, ls , lm represents the length of the property
string and matched substring respectively, L is maximum
acceptable string length, and k is a parameter controlling
the steepness of decrease for the function. We fixed its value
to be 1.1. The intuition behind the adjust function is that a
string with longer unmatched part usually has less semantic
similarity to the matched keyword. For example, a UI widget
with text "login now" looks more promising as a login button
compared to a UI widget with the text "you can login with
email or mobile number", even though both of them match
the keyword login. Here, we set L as an upper bound because
widgets with very long text are mostly descriptive, e.g., arti-
cles, which is not interactive. Lastly, we did not use linear

Figure 10: String score adjust function, when L = 32

function (i.e., setting k = 1) since the semantic vanishes
sharply when the unmatched length increases. Figure 10
shows the curves of the adjust function with different k .
• Identify clickable elements. Clickable elements often lead to
new pages. Android UI element natively has an attribute
called clickablewhich defineswhether it reacts to click events.
However, elements can overlay on each other and present to
users on the same surface. From the user’s point of view, an
element is clickable if some events can be triggered when tap-
ping on its area, regardless of its clickable property. Therefore,
we call an element with clickable property to be explicitly
clickable, while element not declared clickable but appears
to be clickable to users as implicitly clickable. To identify all
implicitly clickable elements, we calculate the union of areas
covered by explicitly clickable elements and then mark other
elements intersecting with the area to be implicitly clickable.

C EXTENSION FOR DETECTING APP SECRET
DISCLOSURE

Originally, MoSSOT detected the vulnerability indirectly by moni-
toring the network traffic through Proxy, where the appearance of
critical requests (involving app secret) indicates the vulnerability
(Section. 4.3.2). However, the method suffers false negatives as RP
developers may hardcode the secret in their APKs without using it.
Thus, we extended MoSSOT for better detection accuracy.

Similar to the method in [47], the extended tool forges the criti-
cal requests (appended with the app secret) to the IdP server and
confirms the leaked secret based on the response content, where
the potential app secret is available from the decompilation result
of the APK, i.e., Step 1(b) in Fig. 3. Typically, the kind of requests
involves three parameters, namely app id, app secret, and a creden-
tial (e.g., access token), and the IdP server verifies them in the same
order. Thus, once the app id is correct, we can get the judgment of
the chosen app secret from the IdP server. Previous work [47] at-
tempted to obtain the app id via reverse engineering and might fail
due to the protection on the APK. In contrast, our tool extracts the
app id from the reference network traffic (Step.4 in Fig. 3), which
always appears in the interactions between the IdP app and its
server (e.g., Step 3 in Fig. 1). Therefore, our tool is expected to have
higher accuracy in detecting the vulnerability.

With the extension, MoSSOT detected 187 vulnerable apps and
99 of them were not captured by the original method.

Session 4A: Mobile Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

282

	Abstract
	1 Introduction
	2 Background
	2.1 The Implicit Flow of OAuth 2.0
	2.2 The Authorization Code Flow of OAuth 2.0
	2.3 The OpenID Connect Protocol
	2.4 The Customized Implementations by IdPs
	2.5 Threat Model

	3 System Overview
	3.1 Overall System Architecture
	3.2 Workflow of MoSSOT

	4 Detailed Design of MoSSOT
	4.1 UI Automation Framework
	4.2 Modeling the Mobile SSO Protocols
	4.3 Building a Robust Testing Architecture
	4.4 A Running Example of Testing Phase
	4.5 Additional Implementation Challenges

	5 Empirical Testing
	5.1 Dataset and Test Setup
	5.2 Efficiency and Detection Accuracy
	5.3 Security Testing Results

	6 Discussion and Future Work
	6.1 Misclassification in Dataset Screening
	6.2 UI Automation Failure
	6.3 Obstacles in the Learning Phase
	6.4 Speeding up the Execution of Test Cases

	7 Related Work
	8 Conclusion
	References
	A More on Mobile SSO Protocols
	A.1 Protocol Flow of Authorization Code Flow
	A.2 Protocol Flow of OpenID Connect

	B More on UI Exploration
	B.1 Details of Algorithm I
	B.2 Details of Algorithm II

	C Extension for Detecting App Secret Disclosure

