System Architecture
	Version
	Release Date
	Remarks
	Author

	0.1
	
	Ongoing
	Alfred & Ying

1. Overview

1.1 System Functions

The CUHK Application Level Events (ALE) middleware provides the following functions:
1. Receiving EPCs from one or more data sources

2. Accumulating data over intervals of time

3. Filtering

· eliminate duplicate EPCs

· filter off EPCs that are not of interest

4. Manipulating (grouping & counting) to reduce volume of data

5. Reporting
1.2 Standard Compliances
The CUHK middleware implements the EPCglobal standard, “The Application Level Events (ALE) specification, version 1.0.
There is no vendor extension to the ECSpec and ECReports XML Schemas.
The middleware supports the optional FILE Notification URI for writing of ECReports in XML to a file.

1.3 CUHK Extensions

The standard does not specify the mechanism for the middleware to receive EPCs from data sources. Therefore, we have devised a reader to middleware protocol. The middleware implements this neutral protocol. For any other readers that do speak this protocol, an adaptor is needed to be developed for the translation.
To facilitate system administration, we also provide means for the middleware to connect to a CUHK middleware management console, which provides a bird-view of the running system and provides administrative and management functions.
2. System Architecture
2.1 Platform Considerations
Among many available platform products in the market, we choose MySQL and JBoss for the implementation. In this section we will talk about the reason of using these platforms briefly.

Why MySQL?

MySQL is the world's most popular opensource database. It got fast performance, high reliability, high usability and high quality technical support.

MySQL has a very good support for different OS, such as Windows, Linux, HP-UX, AIX, etc. Moreover, it also support common database API such as ODBC and JDBC which ease the development tasks.

From a real case study [Friendster], MySQL works smoothly with data of total size over 7TB, 100 millions of row, without service degrading. Considering the fact that middleware should be of much less scale than the above, the use of MySQL is a feasible solution.

Why JBoss?

JBoss (AS) is the world's most widely used Java Application server. It's a J2EE certificed platform, it's open sourced (GPL), it's widely supported by the community developers.

JBoss provide a wide range of J2EE features, which may be missing in other well known J2EE platform, such as cluster, caching and persistence. Also, it is one of the first industrial grade Java application server which support J2EE 5.0 and EJB 3.0.

Considering performance, one of the useful benchmark could be found in [http://jbento.oscj.net/httpsession2.html]. In the benchmark the capability of thread handling, which is an essential part of application server, is measured. Jboss run with less than 25% cpu utilization, more than 250 tps throughput, less than 10ms response time, with 250 clients collected.

2.2 Major Components

[image: image1.emf]ALE

JBoss Server

DB (disk)

ECSpecValidator

ReportGenerator

ECSpecInstance

Timer

DB (memory)

ReaderAdaptor Reader

ReaderAdaptor Reader

CUHK Reader Controller /w integrated

ReaderAdaptor

ALEService

Notifier

ReaderManager

JDBC

ALEClient

R

M

I

/

J

R

M

P

R

M

I

/

J

R

M

P

R

M

I

/

J

R

M

P

S

O

A

P

H

T

T

P

/

T

C

P

JDBC

CUHK

Reader

RS232

Subscriber

ALEService is a stateless session bean, realized as ALEServiceBean. It implements the ALE main API class as defined in ALE Spec section 8.1. It is exposed as a web services. The clients access it via SOAP.

ECSpecValidator is a standard java utility class. It validates ECSpec according to rules defined in ALE Spec section 8.2.11.

ECSpecInstance is an entity bean, realized as ECSpecInstanceBean. It represents an ECSpec defined in the middleware. It also models the lifecycle of the ECSpec by supporting the Unrequested, Requested and Active state transition. It works with Timer to handle state transition triggered by timeout.

ReportGenerator is a stateless session bean. It generates ECReports for a given Event Cycle.

Notifier is a message driven bean. It performs HTTP, TCP and FILE notifications.

Timer is a built-in timer service in J2EE 1.4. It supports the various operations in the ALE Spec related to timeout.

ReaderManager is a stateless session bean. It is exposed as an EJB service endpoint. It allows reader registration and aggregates tag reads for middleware through interfacing with ReaderAdaptors, using RMI/JRMP. Tag reads are stored in the in-memory database for centralized & shared usage by the system.

ReaderAdaptor is a driver program, which interfaces with the native driver of a reader. It performs tag reads on the actual reader and submits the reads to ReaderManager via RMI/JRMP. It makes sure that EPCs sent to the middleware in a read cycle are distinct by removing duplicated reads. It also performs reader registration.
2.3 Service Endpoints

The middleware currently has 3 service endpoints, ALEService, ReaderManager and Notifier. The service endpoints serve as the point of communication with external clients. The ALEService can be accessible as web services using SOAP over HTTP. The ReaderManager can be accessible through RMI/JRMP. And the Notifier communicates with the subscribers using HTTP or TCP.
2.4 Database Storage

The middleware may need to deal with many active readers at the same time. To handle many tag reads simultaneously without performance impact, two database instances, one in memory, anther in disk, are used.

The in-memory database is used to store tag reads. The middleware doesn’t provide persistence for raw tag reads. Persistence of EPC data is not required in the ALE layer, (ref: ALE Spec line 236-240)

2.5 Reader Adaptation

The middleware implements one single neutral reader protocol, which assumes that readers are working in an autonomous mode. That means, the readers, when active, will fire tag reads to the middleware at a particular frequency. This is to minimize the complexity of middleware and eases the server implementation to support for various reader protocols.

Since the actual physical readers do not know about the standard neutral protocol, ReaderAdaptor is implemented to act as a relay between the physical reader and the middleware. To specify, the adaptor communicates with the physical reader using proprietary protocol and relays the EPC reads to the middleware using the standard protocol. If the physical reader supports autonomous mode, the adaptor simply acts as a relay. If the physical reader only supports poll mode (as in the CUHK reader), the adaptor will emulate autonomous mode by polling it in regular intervals (the Read Cycle).

The ReaderAdaptor also performs registration for the reader in the middleware.
The adaptor doesn't require a 1-1 mapping to the reader. If multiple readers are mapped to an adaptor, they are being treated and managed by the middleware as a single unit.

The adaptor is placed NEAR the reader, and AWAY from the middleware. This is to concern with the overhead during polling. If the adaptor is placed NEAR the middleware, then for every poll, the traffic will be across the network to the reader, which is inefficient. Since the adaptor is working in autonomous mode, meaning that the middleware-to-adaptor traffic is minimal, therefore, an adaptor placing NEAR the reader, says, in the same LAN, would be optimal. It is expected that adaptor-to-reader traffic is much more than adaptor-to-middleware traffic.
2.6 Reader Scheduling (Future Work)
The system only activates the needed readers and deactivates unused ones. This is achieved by using Reference Count (RC) maintained inside the ReaderAdaptor.

When the ECSpecInstance enters into Active state, it will call the ReaderManager for the activation of the lists of its logical readers. The ReaderManager then transforms the logical readers list to the mapped set of readers and notifies the corresponding ReaderAdaptors for activation. The ReaderAdaptor, upon receving the activation message, will increase the RC by 1.

When the ECSpecInstance leaves the Active state, it will call the ReaderManager for deactivation. The deactivation is similar to activation except that the ReaderAdaptor will decrease the RC by 1.

The ReaderAdaptor activates its associated reader when RC>0 and deactivate the reader when RC=0. Therefore, a deactivation request made by the ECSpecInstance to the ReaderManager may not immediately deactivate the actual readers. This reflects the fact that multiple ECSpecInstances may share the same reader.

2.7 Reader Intelligence

The ALE implementation assumes readers with minimal intelligence, i.e. readers can only report tag reads and cannot do advanced processing such as pattern filtering.
PAGE
1

_1217103800.vsd
Data�

�

JBoss Server�

DB (disk)�

ReaderManager�

ECSpecValidator�

ReportGenerator�

�

ECSpecInstance�

�

�

�

Timer�

Notifier�

DB (memory)�

JDBC�

Subscriber�

Reader�

ReaderAdaptor�

ReaderAdaptor�

Reader�

�

RMI/JRMP�

ALEClient�

RMI/JRMP�

CUHK Reader Controller /w integrated ReaderAdaptor�

RMI/JRMP�

ALEService�

SOAP�

HTTP/TCP�

JDBC�

ALE�

CUHK Reader�

RS232�

