RFID ALE Middleware Design Specification

	Version
	Release Date
	Remarks
	Author

	0.11
	20, Dec 2005
	System Architecture updated
	Alfred & Ying

	0.1
	16, Dec 2005
	First release
	Alfred & Ying

1. System Functions

1. Receiving EPCs from one or more data sources

2. Accumulating data over intervals of time

3. Filtering

· eliminate duplicate EPCs

· filter off EPCs that are not of interest

4. Manipulating (grouping & counting) to reduce volume of data

5. Reporting
6. Reader scheduling
2. System Architecture

[image: image1.emf]ALE

JBoss Server

DB (disk)

ECSpecValidator

ReportGenerator

ECSpecInstance

Timer

DB (memory)

Adaptor Cluster

ReaderAdaptor Reader

ReaderAdaptor Reader

ReaderAdaptor

Reader

Controller

ALEService

Notifier

ReaderManager

JDBC

ALEClient

S

O

A

P

S

O

A

P

S

O

A

P

S

O

A

P

H

T

T

P

/

T

C

P

JDBC

CUHK

Reader

CUHK Reader

Middleware Interface

RS232

2.1 Major Components

ALEService is a stateless session bean, realized as ALEServiceBean. It implements the ALE main API class as defined in ALE Spec section 8.1. It is exposed as an EJB service endpoint. The clients access it via SOAP.

ECSpecValidator is a standard java utility class. It validates ECSpec according to rules defined in ALE Spec section 8.2.11.

ECSpecInstance is an entity bean, realized as ECSpecInstanceBean. It represents an ECSpec defined in the middleware. It also models the lifecycle of the ECSpec by supporting the Unrequested, Requested and Active state transition. It works with Timer to handle state transition triggered by timeout.

ReportGenerator is a stateless session bean. It is exposed as EJB service endpoint. It generates ECReports for a given Event Cycle.

Notifier is a message driven bean. It performs HTTP and TCP notifications.

Timer is a built-in timer service in J2EE 1.4. It supports the various operations in the ALE Spec related to timeout.

ReaderManager is a stateless session bean. It is exposed as an EJB service endpoint. It manages readers and aggregates tag reads for middleware through interfacing with ReaderAdaptors, using SOAP. Tag reads are stored in the in-memory database for centralized & shared usage by the system.

ReaderAdaptor is a driver program, which interfaces with the native driver of a reader. It performs tag reads on the actual reader and submits the reads to ReaderManager via SOAP. It makes sure that EPCs sent to the middleware in a read cycle are distinct by removing duplicated reads. It also manages the activation and deactivation of the reader using Reference Count.

2.2 Service Endpoints

The middleware currently has 2 service endpoints, ALEService and ReaderManager. The service endpoints serve as the point of communication with external clients. They can be accessible as Web Services using SOAP.

2.3 Database Storage

The middleware may need to deal with many active readers at the same time. To handle many tag reads simultaneously without performance impact, two database instances, one in memory, anther in disk, are used.

The in-memory database is used to store tag reads. The middleware doesn’t provide persistence for raw tag reads. Persistence of EPC data is not required in the ALE layer, (ref: ALE Spec line 236-240)

2.4 Reader Adaptation

The middleware implements one single neutral reader protocol, which assumes that readers are working in an autonomous mode. That means, the readers, when active, will fire tag reads to the middleware at a particular frequency. This is to minimize the complexity of middleware and eases the server implementation to support for various reader protocols.

Since the actual physical readers do not know about the standard neutral protocol, ReaderAdaptor is implemented to act as a relay between the physical reader and the middleware. To specify, the adaptor communicates with the physical reader using proprietary protocol and relays the EPC reads to the middleware using the standard protocol. If the physical reader supports autonomous mode, the adaptor simply acts as a relay. If the physical reader only supports poll mode (as in the CUHK reader), the adaptor will emulate autonomous mode by polling it in regular intervals (the Read Cycle).

The ReaderAdaptor also performs activation and deactivation of the reader.

The adaptor doesn't require a 1-1 mapping to the reader. If multiple readers are mapped to an adaptor, they are being treated and managed by the middleware as a single unit.

The adaptor is placed NEAR the reader, and AWAY from the middleware. This is to concern with the overhead during polling. If the adaptor is placed NEAR the middleware, then for every poll, the traffic will be across the network to the reader, which is inefficient. Since the adaptor is working in autonomous mode, meaning that the middleware-to-adaptor traffic is minimal, therefore, an adaptor placing NEAR the reader, says, in the same LAN, would be optimal. It is expected that adaptor-to-reader traffic is much more than adaptor-to-middleware traffic.
2.5 Reader Scheduling (Optional)
The system only activates the needed readers and deactivates unused ones. This is achieved by using Reference Count (RC) maintained inside the ReaderAdaptor.

When the ECSpecInstance enters into Active state, it will call the ReaderManager for the activation of the lists of its logical readers. The ReaderManager then transforms the logical readers list to the mapped set of readers and notifies the corresponding ReaderAdaptors for activation. The ReaderAdaptor, upon receving the activation message, will increase the RC by 1.

When the ECSpecInstance leaves the Active state, it will call the ReaderManager for deactivation. The deactivation is similar to activation except that the ReaderAdaptor will decrease the RC by 1.

The ReaderAdaptor activates its associated reader when RC>0 and deactivate the reader when RC=0. Therefore, a deactivation request made by the ECSpecInstance to the ReaderManager may not immediately deactivate the actual readers. This reflects the fact that multiple ECSpecInstances may share the same reader.

2.6 Reader Intelligence

The ALE implementation assumes readers with minimal intelligence, i.e. readers can only report tag reads and cannot do advanced processing such as pattern filtering.
3. Sequence Diagrams

[image: image2.png]Direct Subsarptian

* alecien PrE—— — — — T ——— —— e — —

i 21) define(spechiame spec) i

L ernseepimesen ! :

12) valdate(specyisval

o9 atee
e 22

14) ejpCreate(spectiame spec)

e toygcrete
| 2/6) define. - ----" e - -
- H
L ai7) submibe(spectiame poiesionu) |

a/8) susscrbeottcationur) !

a19) actvaeReaders(ogicafteaders)

Acive state : activateq

-«

a114) subsorbe ' '

T

SlbTimeout)

i b /1) .deactivateReadersogiviReaders)

Reauestza mj ! '

b 12) deactivateReatiers
-« i

acivate)

onMelsage(subsotbers eports)

[E—— !
. aibTineou : : :

| b17) activateReadersiogicaReaders)

D mgj ; ; actvate)
: b 1) actvteReader

115) unsubcribespechiame ofifcstionUR)

@ 118).unsubstribe(notficationURT)

T —

a/18)unsubcrine

120) goRemove)

— o _ EiZgRemoe

! #122)undetne '
«)

Created with Poseidon for UML Comrmunity Edtion. Not for Commercial Use.

4. Software Packages

1. cuhk.epcglobal – for classes described in ALE Spec
2. cuhk.ale – for new classes introduced
5. TBD

· StableSetInterval Calculation

· Sending of NULL by ReaderAdaptor in the case that no tag reads in the read cycle

· Behavior when Read Cycle > stableSetInterval

· Transaction configuration in EJB for ECSpec state transition
· ECFilterSpec & ECGroupSpec support; need to ask EE for sample tag reads
6. Prototype Exclusions

PAGE
4
RFID ALE Middleware Design Specification

_1196543357.vsd
Data�

�

JBoss Server�

DB (disk)�

ReaderManager�

ECSpecValidator�

ReportGenerator�

�

�

ECSpecInstance�

�

�

�

Timer�

Notifier�

DB (memory)�

JDBC�

Adaptor Cluster�

Reader�

ReaderAdaptor�

ReaderAdaptor�

Reader�

�

SOAP�

ALEClient�

SOAP�

ReaderAdaptor�

Reader Controller�

SOAP�

ALEService�

SOAP�

HTTP/TCP�

JDBC�

ALE�

CUHK Reader�

CUHK Reader Middleware Interface�

RS232�

