Tag Data Reading & Writing Design Draft

Architecture

There are 3 Reader Adaptor interfaces. 1) Tag Reading Interfaces 2) Tag Writing Interfaces and 3) Tag Submitting Interfaces. Of the 3 interfaces, only the Tag Submitting Interface is compulsory. The other 2s are optional.
In the Tag Reading and Writing interfaces, the ALE middleware acts as the client and the Adaptor as the server, while the Adaptor is a client in the Tag Submitting interface. So if an Adaptor is implementing all the interfaces, it works as both a client and server.
The interfaces are implemented using Java RMI.
The Reader Adaptor may serve more than 1 hardware readers, so hardware readers can share 1 Reader Adaptor to save resources. So the API interfaces contain parameters to identify individual readers in the adaptor.
Each Reader Adaptor, when acts a server, has a server URI (beginning with rmi://). This URI is stored in the URI field (existing the IPADDRESS field) in the reader table in ALE as a reader property.
Tag Writing Interfaces
Application -> ALE:

void writeTag(String logicalreaderID, String tagID, byte[] b, int off) throws RemoteException;

// writes b.length bytes from the specified byte array to the tag at offset off in its storage using the readers mapped to logicalreaderID.
// the ALE will dereference the logicalreaderID and call the corresponding ALE -> Adaptor writeTag interface for corresponding hardware readers one by one.
// the writeTag invocations for the underlying hardware readers are done sequentially.

// on the first success invocation to the underlying hardware readers, indicated by no exception is being thrown, the function returns. If all fails, an exception is thrown.
// this is a blocking operation

// E.g. if ‘door1a’ maps to ‘READER1’ & ‘READER2’. Then a writeTag to door1a will invoke writeTag to READER1 first, and if it fails, it will then try READER2.
ALE -> Adaptor:
void writeTag(String readerID, String tagID, byte[] b, int off) throws RemoteException;

// writes b.length bytes from the specified byte array to the tag at offset off in its storage using the readerID.
// an exception is thrown if the data cannot be written.
Other Concerns:

a clear() function to clear all data??

a size() function to get the size of writing area?
Tag Reading Interfaces

Application -> ALE:

int readTag(String logicalreaderID, String tagID, byte[] b, int off) throws RemoteException;

// try to read as much as b.length bytes to the specified byte array from the tag at offset off from the readers mapped to logicalreaderID.

// the ALE will dereference the logicalreaderID and call the corresponding ALE -> Adaptor readTag interface for corresponding hardware readers one by one.

// the readTag invocations for the underlying hardware readers are done sequentially.

// on the first success invocation to the underlying hardware readers, indicated by no exception is being throw, the function returns. If all fails, an exception is thrown.

// this is a blocking operation

// E.g. if ‘door1a’ maps to ‘READER1’ & ‘READER2’. Then a readTag to door1a will invoke readTag to READER1 first, and if it fails, it will then try READER2.

ALE -> Adaptor:
int readTag(String readerID, String tagID, byte[] b, int off) throws RemoteException;

// try to read as much as b.length bytes to the specified byte array from the tag at offset off from readerID.

// an exception is thrown if the data cannot be read.
Tag Submit Interfaces

Adaptor -> ALE:
/**

 * The ReaderAdaptor should call this method regularly (i.e. at a particular

 * frequency) to submit tags to the server. In a read cycle, the tags

 * submitted should be distinct without duplicates.

 *

 * @param readerID

 * @param tags

 * list of distinct tags in EPCGlobal Tag Data Specification "Tag

 * URI" format (e.g. "urn:epc:tag:gid-96:21.300.1")

 * @return true if the database changed as a result of the call.

 */

boolean submitTags(String readerID, List<String> tags)

throws RemoteException;

/**

 * The ReaderAdaptor should call this method the first time connecting to

 * the server.

 *

 * @param readerID

 * @param readerInfo

 * @return true if the database changed as a result of the call.

 */

boolean submitReaderInfo(String readerID, ReaderInfo readerInfo)

throws RemoteException;
PAGE
1

