User Guide for Building ECSpec XML with Xerlin
In this document, we will describe how to build an ECSpec XML via Xerlin. In particular there are two possible ways to do so. The first one is building the XML from an existing ECSpec XML, and the second one is building it from sketch.
1. Introduction of Xerline

Xerlin is an opensource XML modeling application written for the Java 2 platform (JDK1.2.2 or JDK1.3). Xerlin is being released by SpeedLegal Holdings, Inc.

as an opensource project. It is being written by a team of engineers interested in seeing a nice user interface for working with XML files.

2. Starting Xerlin

We first start the software by running Xerlin.bat 

[image: image16.jpg]
[image: image2.jpg]
3. Building XML from existing ECSpec template

First we open the ecspec_sample.xml via the user interface.

[image: image3.jpg]
[image: image4.jpg]
The following screen will be shown.
[image: image1.jpg]
All the fields can be edited and filled with desired attributes.

After editing, simply save the XML to a new file. And we are done! 
[image: image5.jpg]
4. Building an ECSpec XML from Sketch

To build a xml from sketch, we click the “create new” button.

[image: image6.jpg]
A window will pop up and ask for the DTD file. 

(Note: Schema file is too complicated for Xerlin that it cannot understand the ECSpec schema in W3C)
[image: image7.jpg]
Open the ale.dtd . This file is pre-converted from our ALE.xsd with equivalent structures.

[image: image8.jpg]
Enter the public id. This value is used for reference only.

[image: image9.jpg]
Choose the Root Element. In our case, we choose ECSpec.

[image: image10.jpg]
You will see the following screen. The ECSpec is colored in red, means that some attributes or elements are missing in order to have a valid ECSpec.
[image: image14.jpg]
The first step is to fill the required attributes.
[image: image11.jpg]
Then we add the required elements by right clicking the ECSpec node.
[image: image12.jpg]
And fill the attributes again.

[image: image15.jpg]
Finally, save the XML. And we are done!
[image: image13.jpg]
