System Interfaces
	Version
	Release Date
	Remarks
	Author

	0.1
	
	Ongoing
	Alfred & Ying

1. SOAP Application APIs
This is the interface between Middleware and any upper level applications which supports SOAP interface. A WSDL is defined according to W3C WSDL (http://www.w3.org/TR/wsdl/) which applications can utilize the webservice the ALE middleware server provided based on the WSDL defined.

Once the server is started, the WSDL can be accessed via :

http://<SERVER_NAME>:<SERVER_PORT>/ale-ws/aleservice?wsdl
e.g. http://localhost:8080/ale-ws/aleservice?wsdl
The content of the WSDL are based on the application APIs and the structure of the objects defined by EPCGlobal. A complete WSDL can be founded in the Appendix for reference.

The WSDL contains 4 major sections:

1. wsdl:messages

This represents the data being transmitted. In ALE, all request and response object are defined here.

2. wsdl:portType

This represents all the operations, and each operation refers to an input and output message.

3. wsdl:binding

Binding specifies the protocols and data formats for the operations and messages.

4. wsdl:service

Services defined the communication endpoints.

As compliant with the Epcglobal ALE standard, the following wsdl:operations are defined:

 <wsdl:operation name="define">...</wsdl:operation>

 <wsdl:operation name="undefine">...</wsdl:operation>

 <wsdl:operation name="getECSpec">...</wsdl:operation>

 <wsdl:operation name="getECSpecNames">...</wsdl:operation>

 <wsdl:operation name="subscribe">...</wsdl:operation>

 <wsdl:operation name="unsubscribe">...</wsdl:operation>

 <wsdl:operation name="poll">...</wsdl:operation>

 <wsdl:operation name="immediate">...</wsdl:operation>

 <wsdl:operation name="getSubscribers">...</wsdl:operation>

 <wsdl:operation name="getStandardVersion">...</wsdl:operation>

 <wsdl:operation name="getVendorVersion">...</wsdl:operation>
2. Adaptor to ALE Interface

This is an interface between the Reader Adaptor and the ALE’s Reader Manager. Currently, only 2 methods are defined.

public void submitALEPhysicalReaderInfo(String readerID, PhysicalReaderInfo physicalReaderInfo) throws Exception

The Adaptor uses this method to submit to the ALE the connected hardware reader’s information. Since the physical reader must be defined in the ALE before the adaptor can submit tags to ALE, the adaptor should call this method to do reader registration on the first time connecting to the server. This method can be also be used to update the reader information in the ALE, by doing another submission to an already-defined reader. The PhysicalReaderInfo is a class with the following attributes: manufacturer, model and IP address.

public void submitALETags(String readerID, List<String> tags) throws Exception

This Adaptor uses this method to submit the tags read in every read cycle to ALE. The ReaderAdaptor should call this method regularly (i.e. at a particular frequency) to submit tags to the server. In a read cycle, the tags submitted should be distinct without duplicates and in the "Tag URI" format defined EPCGlobal Tag Data Specification (e.g. "urn:epc:tag:gid-96:21.300.1"). An exception would be thrown if the readerID is not yet defined in the ALE.

2.1 Notes
There is currently no method to do reader de-registration in ALE. It is expected the ALE middleware to implement some timeout mechanism for the liveliness of the reader using the latest event time received from the reader or rely on the administrator to do the de-registration in the management console.

No reader authentication is implemented at this stage. So it is possible for a malicious adaptor to fake the identity of another reader simply by using its readerID to do tag submission and reader registration. But it is easy to incorporate authentication under the current architecture.

2.2 Implementation

The Reader Manager is implemented as a stateless session bean using EJB. The ReaderAdaptor should be implemented as an EJB client using the exported library adaptor-client.jar. The protocol in between is RMI/JRMP.

2.3 Logging
All logs related to this interface are stored in the ALE server in this path:

{jboss.home}\server\ale\log\adaptor.log

Daily log rotation is enabled with pattern yyyy-MM-dd which rollover at midnight of each day.

3. Reader Emulator
The reader emulator is the software which generates user defined tags periodically and sends to the middleware. It facilitates development and testing without the need of the hardware reader.
[image: image1.png]
Server Address: the hostname/IP address of the middleware

Reader ID: the ID of the emulated reader
Read Cycle: the emulator generates tags and submit them to the middleware in every specified cycle

Tags: the tags generated, in the form of a “;” separated tag list. The tags specified can be fixed or with a random generation rule. A fixed tag is a tag specified in EPC Tag URI format, e.g. urn:epc:tag:gid-96:20.300.1. Tags with random generation rules are just like fixed tags, but its numeric field can be in [lo-hi:cycle] format. This means that a random value between lo and hi is generated and will be stable for the specified cycle (we don’t want the value to be changed in every read cycle). 1 or more numeric fields can be in this format.
For example, with urn:epc:tag:gid-96:20.300.[5000-9999:3], here is one of the possible output sequences:
read cycle 1, epc:tag:gid-96:20.300.5899 (5000 < 5899 < 9999)

read cycle 2, epc:tag:gid-96:20.300.5899 (stable for 3 read cycles)
read cycle 3, epc:tag:gid-96:20.300.5899

read cycle 4, epc:tag:gid-96:20.300.6233 (a new value is generated)
4. ECSpec Explorer
TBD

5. ECSpec Manual Editing

Here, we will describe how to build an ECSpec XML via Xerlin. In particular there are two possible ways to do so. The first one is building the XML from an existing ECSpec XML, and the second one is building it from sketch.

5.1 Introduction of Xerline

Xerlin is an opensource XML modeling application written for the Java 2 platform (JDK1.2.2 or JDK1.3). Xerlin is being released by SpeedLegal Holdings, Inc.

as an opensource project. It is being written by a team of engineers interested in seeing a nice user interface for working with XML files.

5.2 Starting Xerlin

We first start the software by running Xerlin.bat

[image: image2.jpg]
[image: image3.jpg]
5.3 Building XML from existing ECSpec template

First we open the ecspec_sample.xml via the user interface.

[image: image4.jpg]
[image: image5.jpg]
The following screen will be shown.

[image: image15.jpg]
All the fields can be edited and filled with desired attributes.

After editing, simply save the XML to a new file. And we are done!

[image: image6.jpg]
5.4 Building an ECSpec XML from Sketch

To build a xml from sketch, we click the “create new” button.

[image: image7.jpg]
A window will pop up and ask for the DTD file.

(Note: Schema file is too complicated for Xerlin that it cannot understand the ECSpec schema in W3C)

[image: image8.jpg]
Open the ale.dtd . This file is pre-converted from our ALE.xsd with equivalent structures.

[image: image9.jpg]
Enter the public id. This value is used for reference only.

[image: image10.jpg]
Choose the Root Element. In our case, we choose ECSpec.

[image: image11.jpg]
You will see the following screen. The ECSpec is colored in red, means that some attributes or elements are missing in order to have a valid ECSpec.

[image: image16.jpg]
The first step is to fill the required attributes.

[image: image12.jpg]
Then we add the required elements by right clicking the ECSpec node.

[image: image13.jpg]
And fill the attributes again.

[image: image17.jpg]
Finally, save the XML. And we are done!

[image: image14.jpg]
