System Tests and Results
	Version
	Release Date
	Remarks
	Author

	0.1
	
	Ongoing
	Alfred & Ying


1. Functional Test
The main purpose of having functional test is to ensure that the system is working according to the specification. Compared with unit test, functional test tell us more in a user prespective. Thus functional test must conform to what users are expecting the systems to work.

1.1 Functional Test Methods
Method 1: Via pre-programmed test case
This is done via 4 preprogrammed test cases:
1. NotifierTestCase

Test whether the system can send out notification via file, tcp socket, and http request.

2. ReportGeneratorTestCase

Test whether reports can be generated once a correct ECSpec event cycle elapsed.

3. ReportAndNotifyTestCase

Combination of 1 & 2.
4. SOAPALEServiceClientTestCase

Test whether the system can handle and response correctly to SOAP request according to ALE. The ECSpec is fetched from a local XML file.
The source code of these test are in CVS/ale-r1/src/cuhk/junit/ . 
Precondition: Reader emulator is running or Tag loader is running, with the correct reader settings (refer to source code for the configuration, or modify the code to adjust for the new configuration)

[image: image1.jpg]
Test prodecures:

1. Start JBOSS

2. Open reader emulator / tag loader (a simple console mode java tag submitter)

3. Open eclispe, and run each junit test case one by one
4. Check junit results and output 

Results: These tests are run whenever there are major changes of logics, and we make sure that “green light” is on that the system work as expected. 
[image: image2.jpg]
Method 2: Via Ecspec Explorer 

We use ECSpec Explorer to test the systems to see if it complies with the EPCglobal Application ALE Specification, Chapter 8.1 line 597, internal states of ALE Middleware.
[image: image3.jpg]
In order to simulate the possible actions in the upper level application layer, we built an GUI, called ECSpec Explorer, which can perform all the ALE APIs (chapter 8, ALE Spec.). In particular, we would like to make sure that all internal states are go through when we simulate the function call flow as listed above.
Precondition: Reader emulator is running or Tag loader is running, with the correct reader settings (refer to source code for the configuration, or modify the code to adjust for the new configuration)

	[image: image4.jpg]


Test Procedure:

1. Start JBOSS

2. Open reader emulator / tag loader (a simple console mode java tag submitter)

3. Open ECSpec Explorer

4. Run the following sequence:
I. Define, Subscribe, Repeat (auto), Unsubscribe, Undefine

II. Define, Poll, Undefine

III. Immediate

5. Examine the output (jboss log, notification storage, database)

Results: We make sure that the logs indicated that the states are traversed, and the output XML stored is correct before marking the logic changes as stable.

2. Performance Test
The main purpose of having performance test is to ensure that the system is working within the capacity of the environment. In general performance test will measures static and dynamic resource consumption, e.g. cpu consumption, memory, virtual swap, and the relation with dynamic settings, e.g. number of request, variety of content processing, etc.
Test Environment
CPU: Pentium D 2.8GHz , PAE (Physical Address Extension)

Memory: 2GB 

Disk: 200GB
Test Tool

1. System internals’ Process Explorer 
· for monitoring realtime resource consumption within 1 hour.

2. Health Monitor from http://healthmonitor.zucchetti.com [GPL] 
· for monitoring cpu and memory consumption, sampled every 1 minute 

3. Apache Jmeter 

· for load testing with multiple SOAP messages

4. MySQL Administrator

· for monitoring mysql performance

Test Scripts
1. Tag Loader, which sends random tags to Reader Adaptor in predefined rate, e.g. 100 tag/s 
2. SOAPALEServiceClientLoadTestCase, which create predefined number of ECSpec.

2.1 Performance Test, Round 1

In first round test, we test the system against the following settings:
Test Duration:


12 hours

Number of ECSpec: 

1

Number of Physical Readers:
2
Number of Logical Readers:
1

Tag submission rate:

100 tag/s , randomly to 1 physical reader every 100 ms
Round 1 Result
[image: image5.jpg]
Resource Consumption of JBoss (Round 1)
[image: image6.jpg]
Resource consumption of Mysql (Round 1)
[image: image7.jpg]
Overall System Resource Consumption (Round 1)
Round 1 Findings

1. Jboss consumes less than 5% resource, with 1 ECSpec, 100tag/s

2. Mysql is using up many cpu resources

3. In view of memory, more than 50% of memory are still available after 12hours, i.e the system is stable over 12 hours.
2.2 Performance Test, Round 2

Improvement from Round 1:
Mysql queries optimization 

Test Duration:


24 hours

Number of ECSpec: 

2

Number of Physical Readers:
4

Number of Logical Readers:
2

Tag submission rate:

100 tag/s , randomly to 1 physical reader every 100 ms
Round 2 Result

[image: image8.jpg]
Resource Consumption of JBoss (Round 2)

[image: image9.jpg]
Resource consumption of Mysql (Round 2)

[image: image10.jpg]
Overall System Resource Consumption (Round 2)

Round 2 Findings
1. JBoss occupies less than 7 % (peak around 8%)

2. MySQL is using negligible amount CPU resources.
3. The system now use less memory, compared with round 1 test.
2.3 Performance Test, Round 3

Test Duration:


24 hours

Number of ECSpec: 

20

Number of Physical Readers:
4

Number of Logical Readers:
2

Tag submission rate:

100 tag/s , randomly to 1 physical reader every 100 ms
Round 3 Results
[image: image11.jpg]
Resource consumption of JBoss

[image: image12.jpg]
Resource consumption of MySQL

[image: image13.jpg]
Overall system resource consumption

Round 3 Findings
1. CPU resource is proportional to number of ECSpec - 4% CPU is allocated 1 ECSpec.

2. Memory consumption is constant.

Overall Finding
1. More tuning / disabling of debug logic is needed in order to have full performance of JBOSS.

2. JBOSS and Mysql are very stable – there are cases that the Windows hangs, i.e. no console input is accepted. But JBOSS and MySQL still running 

3. Even the JBOSS application server is stopped manually, since persistence has already been implemented, a restart of JBOSS will resume all the working state of the system without any failures. 
