IERG 4330

Tutorial 3

What 1s Kubernetes?

Kubernetes Is a portable, extensible, open-source platform for managing
containerized workloads and services, that facilitates both declarative
configuration and automation.

App App

App App

Virtual Machine Wirtwal Machine

App App App
| owengsyen

Traditional Deployment Virtualized Deployment Container Deployment

Why you need Kubernetes

In a production environment, you need to manage the containers
that run the applications and ensure that there is no downtime.
For example, if a container goes down, another container needs
to start. Wouldn't it be easier if this behavior was handled by a
system?

Before you begin

You need:

. One or more machines running a deb/rpm-compatible Linux OS; for
example: Ubuntu or CentOS.

. 2 GIB or more of RAM per machine--any less leaves little room for
your apps.

. At least 2 CPUs on the machine that you use as a control-plane node.

. Full network connectivity among all machines in the cluster. You can
use either a public or a private network.

Kubernetes Cluster Installation

Install docker
 Follow installation guide in the first tutorial

Installing kubeadm, kubelet and kubectl

« kubeadm: the command to bootstrap the cluster.

 kubelet: the component that runs on all of the machines in your cluster and does
things like starting pods and containers.

* kubectl: the command line tool to talk to your cluster.

Kubernetes Cluster Installation
Installing kubeadm, kubelet and kubectl

sudo apt-get update && sudo apt-get install -y apt-transport-https curl

curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -
cat <<EOF | sudo tee /etc/apt/sources.list.d/kubernetes.list

deb https://apt.kubernetes.io/ kubernetes-xenial main

EOF

sudo apt-get update

sudo apt-get install -y kubelet kubeadm kubectl

sudo apt-mark hold kubelet kubeadm kubectl

Creating a cluster with kubeadm

Kubeadm Init <args>

Kubeadm Init first runs a series of prechecks to ensure that the machine
IS ready to run Kubernetes. These prechecks expose warnings and exit

on errors.

Then it will download and install the cluster control plane components.
This may take several minutes.

Creating a cluster with kubeadm

After it finishes you should see:

Your Kubernetes control-plane has initialized successfully!

To start using your cluster, you need to run the following as a regular user:
mkdir -p $HOME/.kube
sudo cp -1 fetc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $({id -u):$(id -g) $HOME/.kube/config

You should now deploy a Pod network to the cluster.

Run "kubectl apply -f [podnetwork].yaml™ with one of the options listed at:

fdocsfconcepts/cluster-administration/addons/

You can now join any number of machines by running the following on each node
as root:

kubeadm join <control-plane-host>:<control-plane-port> --token <token> --discovery-token-ca-cert-hash sha256:<hash>

Installing a Pod network add-on

* See the list of add-ons that implement the Kubernetes networking

model.

* You can install a Pod network add-on with the following
command on the control-plane node

kubectl apply -f <add-on.yaml|>

https://kubernetes.io/docs/concepts/cluster-administration/networking/#how-to-implement-the-kubernetes-networking-model

Joining your nodes

The nodes are where your workloads (containers and Pods, etc) run. To
add new nodes to your cluster, do the following for each machine:

» SSH to the machine
» Become root (e.g. sudo su -)
* Run the command the following commands:

kubeadm join --token <token> <control-plane-host>:<control-plane-
port> --discovery-token-ca-cert-hash sha256:<hash>

Check the status of your cluster

kubectl get nodes
kubectl get pods --all-namespaces

An example output(calico Is one of the network pod):

AMESPACE

alico-system
alico-system
alico-system
alico-system

kube-system
kube-system

igera-operator

NAME

calico-kube-controllers-546d44f5b7-96zvc

calico—-node-kvbkd
calico-node—-qgcl9s
calico-typha-6dbc5b484b-rvw4h
calico-typha-6dbc5b484b-sbhwg
coredns—-74ff55c5b-4kc87
coredns-74f£f55c5b-p8c9q
etcd-master
kube-apiserver-master
kube-controller-manager—-master
kube-proxy-7ptl4
kube-proxy-jc4z5
kube-scheduler—-master
tigera-operator-657cc89589-6wbdd

STATUS

Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running

o= B o= RHf <> I <= I == Hll == B == IR o Bl <o Ji e I == Bl = K = i) == |

Run an example on your k8s cluster

Check the API version in your cluster:

kubectl api-resources

Create hello.yaml with the following code:

api\ersion: v1
King: Pod
Metadata:

name: first-hello
Spec:

containers:
- name: hello
image: hello-world

Run an example on your k8s cluster

Then run the following command to start:

kubectl create —f Tesing_for_Image pull.yaml

Use kubectl get pods --all-namespaces to check the status

first-hello (/1 Completed

Run an example on your k8s cluster

Get output by the following command:
kubectl logs first-hello

Hello from Docker!
his message shows that your installation appears to be working correctly.

o generate this message, Docker took the following steps:

1. The Docker client contacted the Docker daemon.
The Docker daemon pulled the "hello—world"™ image from the Docker Hub.
(amd64)
The Docker daemon created a new container from that image which runs the
executable that produces the output you are currently reading.
The Docker daemon streamed that output to the Docker client, which sent it
to your terminal.

o try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
https://hub.docker.com/

For more examples and ideas, visit:
https://docs.docker.com/get-started/

Q&A

