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ABSTRACT
Recognizing the diversity of big data analytic jobs, cloud providers

offer awide range of virtual machine (VM) instances or even clusters

to cater for different use cases. The choice of cloud instance con-

figurations can have a significant impact on the response time and

running cost of data-intensive, production batch-jobs, which need

to be re-run regularly using cloud-scale resources. However, identi-

fying the best cloud configuration with a low search cost is quite

challenging due to i) the large and high-dimensional configuration-

parameters space, ii) the dynamically varying price of some instance

types (e.g. spot-price ones), iii) job execution-time variation even

given the same configuration, and iv) gradual drifts / unexpected

changes of the characteristics of a recurring job. To tackle these

challenges, we have designed and implemented Accordia, a sys-

tem that enables Adaptive Cloud Configuration Optimization for

Recurring Data-Intensive Applications. By leveraging recent al-

gorithmic advances in Gaussian Process UCB (Upper Confidence

Bound) techniques, the design of Accordia can handle time-varying

instance pricing while providing a performance guarantee of sub-
linearly increasing regret when comparing with the static, offline

optimal solution. Using extensive trace-driven simulations and em-

pirical measurements of our Kubernetes-based implementation,

we demonstrate that Accordia can dynamically learn a near-cost-

optimal cloud configuration (i.e. within 10% of the optimum) after

fewer than 20 runs from over 7000 candidate choices within a 5-

dimension search space, which translates to a 2X-speedup and a

20.9% cost-savings, when comparing to CherryPick.
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1 INTRODUCTION
Nowadays, the number of big data applications running in cloud

environments, such as MapReduce [34], Spark [1], SQL queries

[2, 3] and Deep learning [5] are increasing rapidly. The job profiles

are also becoming more diverse and the number of VM instances

required by different jobs can vary substantially. For example, users

can specify the number of mappers and reducers themselves when

running MapReduce applications in a cloud. Meanwhile, the re-

source configuration for each mapper or reducer task, such as CPU,

RAM, disk-space and network bandwidth can differ a lot across ap-

plications. To better support the diverse nature of the computation

needs of their users, public cloud providers [6, 7] have offered a

large number of types of VM instances or even clusters to cater

for different use cases. As such, cloud-service customers can have

great flexibility to select the cloud configuration for each specific

application. The choice of cloud configurations can have a signifi-

cant impact on the response time and the overall running cost of

big data analytics jobs. As reported in [33], choosing configurations

poorly can substantially degrade the response time by 5x-6x on

average, and may increase the cost by 10x in the worst-case. It is

particularly important for recurring data-intensive jobs to select

a matching cloud configuration as they need to be re-run many

times on a regular basis, e.g., daily log parsing as well as hyper-

parameter-tuning for Deep Learning jobs. In this paper, we focus

on the effective search of the best cloud configuration for recur-

ring batch jobs to minimize the job running cost while meeting its

completion deadline. The running cost here is defined as the sum

of the costs charged by a cloud for holding all the instances until a

job completes. Besides this, we also want to keep the job execution

time to be shorter than a given threshold.

An efficient searching scheme will yield a small number of runs

before identifying the best configuration for a recurring job. How-

ever, it is quite challenging to achieve this goal without careful

design. Firstly, the running time of a big data analytics job is af-

fected by the amount of configured resources in an unpredictable

way. Increasing the amount of resources by selecting a more pow-

erful type of VMs may only result in a marginal performance gain.

In general, the relationship between resource-cost and job perfor-

mance is non-trivial (e.g. non-linear and multi-modal) and difficult

to characterize using a simple well-formed function. Secondly, since

the computing resources in a cloud are often shared by multiple

users/ jobs with non-perfect separation/ isolation, stragglers can

happen easily [10]. As such, the running time of the same job/

application under the same cloud configuration may still suffer

from a large variance, which makes performance prediction much

more complex. Thirdly, public cloud service providers, such as AWS,

have offered the so-called of Spot Instances Pricing [14] with typical

savings of 70-90% over On-Demand instance types to make their

service/ pricing more competitive. As such, there is a high incentive

and essential to leverage the spot-instance model by considering

and predicting the time-varying behavior of different configura-

tion options. Besides choosing the instance types provided in a

cloud, users have another flexibility to configure the number of in-

stances for holding different parts of a job (e.g., the Map and Reduce

phase). As a result, the configuration space can consist of thousands

of choices even for a simple big data analytics job. Exhaustively

searching for the best one without relying on an accurate prediction

mechanism can lead to an unacceptable overhead. If not designed

properly, one may need hundreds of test runs to identify a suitable

cloud configuration, which is quite time-consuming and costly for

big data jobs as each run would require a long time to finish.



In this paper, we discuss the design and implementation of Ac-

cordia, a system which enables Adaptive Cloud Configuration Op-

timization for Recurring Data-Intensive Applications. Accordia

adopts the Gaussian-Process based (GP) approach to model the

cloud configuration optimization problem. In particular, it relies on

the Gaussian-Process model to estimate the mean and variance of

job completion time for the not-yet observed configurations and

calculate the first-order increment between two successive prices

in the last two runs to predict the timely price of VM instances.

Based on the estimated job completion time and VM instances price,

Accordia uses the Upper Confidence Bound (UCB) algorithm to

select a valuable configuration from the candidate set for the next

run. To further reduce the overhead caused by those less-valuable

runs, Accordia supports an early abort mechanism, under which the

system will abort a partially-run job and seek another alternative

cloud configuration if the predicted job completion cost is much

larger than the best solution observed so far. Even though other

state-of-the-art schemes, such as CherryPick[9] and Arrow[18],

have also taken the Gaussian-Process based approach, Accordia

goes further by leveraging and extending the recent advances in

Gaussian-Process Upper Confidence Bound (GP-UCB) techniques

[23, 30] which enable Accordia to handle time-varying instance pric-

ing and provide a performance guarantee of sub-linearly increasing
regret when comparing with the static, offline optimal solution.

To evaluate the performance of Accordia, we have conducted

extensive trace-driven simulations and empirical measurements

on our actual Kubernetes-based implementation of Accordia under

the AWS cloud with fixed and time-varying instance prices. For

the simulation study, we consider the 16 different real-world ap-

plication traces collected by [18–20], which are mostly large-scale

data-intensive applications, and use the same candidate set of cloud

configurations as that in CherryPick. The experimental results show

that Accordia can find a near-cost-optimal configuration (i.e. within

10% of the optimal cost) within 6 test runs for most cases, whereas

CherryPick needs around 10 runs to do so. For the empirical evalu-

ation of our actual implementation, we have run different mixes of

recurring Spark jobs over the Google public cloud. In our experi-

ments, Accordia dynamically learns the best cloud configuration

from over 7000 candidate choices within a 5-dimensional parameter

space, covering the number of executors, as well as the number of

CPU cores and memory (RAM) allocation for the driver and the ex-

ecutor pods. Empirical measurements show that Accordia can find a

near-cost-optimal configuration for a recurring job with fewer than

20 runs, which translates to a 2X-speedup and a 20.9% cost-savings

when comparing to CherryPick. To highlight Accordia’s capability

to handle abrupt/unexpected changes of the characteristics of a

recurring job, we even dynamically switch the type of a recurring

job (without notifying Accordia) over exponentially-distributed

time-intervals. Under such cases, Accordia can still obtain up to

18.6% cost-savings comparing to CherryPick.

The rest of the paper is organized as follows. After Section 2 in-

troduces the literature work related to Accordia, Section 3 presents

the optimization framework of Accordia and Section 4 discusses

the solution approach. Then Section 5 evaluates the performance of

Accordia by trace-driven simulations. Accordia is also implemented

on top of Kubernetes and evaluated by empirical measurements in

Section 6 and Section 7. Finally, we conclude the paper in Section 8.

2 RELATEDWORK
In recent years, many related efforts try to handle the cloud con-

figuration selection problem. Some heuristic dynamic allocation

algorithms, such as dynamic allocation [4] in Apache Spark and

DS2 [21] in Apache Flink, have been implemented in distributed

platforms. The dynamic allocation of Apache Spark allows to auto-

matically remove the idle executors and exponentially increase the

number of executors for pending tasks in the application. And DS2

[21] in Apache Flink is an automatic scaling controller which can

maximize the executors’ processing and output rate based on the

knowledge of computational dependencies. These kinds of dynamic

allocation algorithms are based on heuristic arguments and lack of

modeling or analytic effort.

Supervised machine learning strategies also have been applied

to predict the performance of the candidate cloud configurations.

For example, Paris [32] and Wrangler [31] collect and run a set of

benchmarking jobs to train the random forest and SVMmodel, then

use the representation task of a given application to predict the

running time and cost for a set of candidate cloud configurations.

However, the accuracy of supervised learning algorithms heavily

depends on the quality and amount of training data, which is hard

to collect and leads to heavy overhead in the offline benchmarking

phase. It is even worse when the supervised learning models like

Paris and Wrangle need to re-train every 10 hours.

Selecta [22] uses latent factor collaborative filtering to predict

the performance of a given application for a set of candidate cloud

configurations, based on sparse data collected in the offline bench-

marking phase. Latent factor collaborative filtering is a kind of

recommendation system algorithm, which can capture the perfor-

mance correlation across the applications and cloud configuration.

It can suffer from less amount of overhead than the supervised

machine learning algorithms. However, this kind of overhead can

be avoided by an online learning based approach like ours.

LinkedIn [24] and Saboori A et. al [28] use genetic and evo-

lutionary algorithms to search the optimal cloud configurations

for Hadoop applications and three-tier web systems. Genetic and

evolutionary algorithms are online algorithms without the offline

overhead and commonly used to search the optimum for black-box

optimization problems. Under genetic and evolution algorithms,

cloud configurations with better performance will have a higher

probability to survive and evolute in the following selection. How-

ever, in practice, measuring performance is often expensive. It may

take hours or days to complete the recurring big data analytics

applications. This discards the genetic and evolutionary algorithms,

as they usually require hundreds or thousands of evaluations to

converge.

Bayesian optimization [11] [29] is also a popular online frame-

work to search the optimum for black-box optimization problems. It

models objective function drawn from a statistic process and keeps

updating the posterior distribution to compute the confidence in-

terval, the range of values that the objective function is most likely

to fall into. CherryPick [9], Arrow [18] and BOAT [16] assume

the cost of candidate cloud configurations following the Gaussian

Process and use the EI algorithm, selecting the next round cloud

configuration with the maximum expected improvement, to handle

the Bayesian optimization problem. CherryPick directly uses the
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cloud configuration as the parameter to unearth the cheapest cloud

configuration to complete the application. Arrow combines cloud

configuration and low-level running time information (e.g., CPU uti-

lization andmemory utilization) to accelerate the search. And BOAT

leverages the contextual information, the human understanding

of the application’s behavior, to handle the high dimensions selec-

tion case. However, the performance of the traditional Bayesian

optimization based algorithms, e.g. EI algorithm and PI algorithm,

heavily depends on the choice of initial samples and may suffer

from a long search with bad initial sampling.

Cao Z. et. al [13] compare the performance among different

selection algorithms, including simulated annealing, genetic algo-

rithm, Deep Q-Networks and Bayesian optimization EI algorithm.

In most of the cases, the Bayesian optimization based algorithm

is the fastest algorithm to find the optimal cloud configuration. It

is also the most similar method of our work. However, all of the

above algorithms assume the per-unit price of cloud configuration

is time-invariant and can not provide a performance guarantee. In

our system model, we go further to consider the time-varying price

case and achieve sub-linearly increasing regret compared to the

static optimal solution.

3 ANALYTICAL MODEL FOR ACCORDIA
Accordia focuses on recurring data-intensive applications. The de-

sign goal of Accordia is to identify the optimal or a near-optimal

cloud configuration that satisfies the job completion time require-

ment and in the meanwhile, minimizes the total execution cost. To

overcome the offline overhead, we adopt the online optimization

framework for the Accordia system as shown in Figure 1. Accordia

starts with an initial cloud configuration, runs it, and feeds the cloud

configuration details and job completion time into the performance

model, which can base on the existing observation to estimate the

confidence interval of job completion time for candidate cloud con-

figurations. Then Accordia sequentially selects the next-run cloud

configuration based on the current understanding. In this section,

we carefully present this online optimization framework under

Accordia in both the fixed and time-varying price cases.

Start with intial 
cloud config.

Update perf. model
(update the confidence 
interval for candidate 
cloud config.)

Select and run a new config.
(Select the cloud config. for 
next run using Accordia)

step-1
step-2 step-3

Figure 1: Accordia Workflow

3.1 Online Selection Problem under Fixed
Pricing of the Cloud Service

Consider a public computing cloud that consists of hundreds of

instance types. The price of each instance type is fixed at any

time. Users can request resources for any type, so as to fit their

requirements. Besides configuring the cloud resource types, users

have certain flexibility to configure the number of instances running

different parts of a big data analytics job. For instance, users may

want to specify the number of instances running for Map phase

and Reduce phase individually.

Formally, let д | x → R define the job completion time function

for a given recurring big data application. The job completion time

depends on the cloud configuration vector x , which includes the

number of instances for each portion of the job, number of CPU

cores, memory size, network interface, network bandwidth and

other resource configurations for each instance. All the candidate

cloud configurations form a search space X. Moreover, denote by

p | x → R the function which captures the per unit time cost for

all instances under cloud configuration x .
Accordia aims to find the best cloud configuration that minimizes

the total running cost, which yields the following optimization

problem (P1):

min

x
д(x) · p(x)

s .t . д(x) ≤ Tmax,

x ∈ X,

(1)

where д(x) ·p(x) characterizes the total cost for running a job under
the cloud configuration x . And Tmax is the maximum running

time that can be tolerable (i.e., the deadline). In other words, P1

is essential to obtain the most economic cloud configuration x∗

as long as as the running time of x∗ is upper bounded by Tmax.

Mathematically, x∗ is given by:

x∗ = arg min

x ∈X
д(x) · p(x), s .t . д(x) ≤ Tmax. (2)

3.1.1 Multi-armed bandit framework. Since д is not known in ad-

vance, we need to run multiple test runs before we identify x∗.
However, exhaustively searching for x∗ is not scalable since X may

consist of a huge number of candidate configurations, especially

when x∗ is a high dimension vector. To avoid this, we need to de-

sign a searching scheme that yields a small number of runs for

identifying x∗.
To design an efficient searching algorithm, we reformulate P1

using the Multi-armed Bandit (MAB) framework where each con-

figuration is treated as one arm [12]. To be specific, for a given re-

curring job, we sequentially select cloud configurations to optimize

the objective function. In each round t , we select a cloud configu-

ration xt and run the recurring job as a test. The job completion

time is observed only after a job completes. And the observation is

perturbed by a random noise: дt = д(xt ) + ϵt , where ϵt ∼ N (0,σ 2)

follows a Gaussian distribution. Based on the current observation

and understanding, we select the next round cloud configuration

xt+1 and deploy it in the cloud until reaching the stop condition.

The stop condition aims to prevent Accordia from struggling to

make small improvements in the fixed price case. The pseudo-code

of the MAB framework is exhibited in Algorithm 1.

3.1.2 Reformulation of P1. Regarding the performance of a search-

ing algorithm, we adopt static regret [26] as the evaluation metric.

Static regret is a commonly-used metric in the MAB literature. In

our case, it captures the cumulative difference between the cost of

all runs achieved under Accordia and that under the optimal config-

uration x∗. The existence of regret is due to the lack of knowledge

about д(x) beforehand.
To better fit into the conventional definition of regret, we redefine

a new function f | x → R to denote the job completion ratio, i.e., the

multiplicative inverse of job completion time where f = 1/д. Under
this new definition, P1 transforms to the following maximization
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Algorithm 1 Online Searching Framework under the fixed-price

case

Input: p(x): price function;
x1: initial cloud configuration;

Tmax : maximum tolerated running time;

X: search space;

Output: optimal cloud configuration x∗

1: Use the initial cloud configuration x1 to run the recurring job;

2: Observe the perturbed job completion time д1 = д(x1) + ϵ1;
3: Store x1,д1;
4: repeat for round t = 2, 3, · · ·

5: Select the current time-slot cloud configuration xt based
on the current observation and understanding;

6: Use the cloud configuration xt to run the job;

7: Observe the perturbed job completion ratio value дt ;
8: until Reach the stop condition;

problem (P2):

max

x
f (x)/p(x)

s .t . f (x) ≥ 1/Tmax.

x ∈ X.

(3)

Then, the static regret Reg
s
T is defined as follows:

Reg
s
T =

T∑
t=1

f (x∗)/p(x∗) −
T∑
t=1

f (xt )/p(xt ), (4)

where T is the total number of test runs. A selection algorithm

which can achieve a small sub-linearly increasing regret with re-

spect to timeT is preferable. For instance, a regret bound ofO(logT )
means the difference between f (xt ) and f (x∗) is only logT /T ,
which converges quickly to zero whenT increases. For this case, we

can identify the optimal configuration, i.e.,x∗ = argmaxx f (x)/p(x),
with a very few number of runs.

Remark 1. With the per dollar job completion ratio as the perfor-
mance metric, we do not need to guarantee that the recurring job has
been completed at each run, as long as we can get a good estimation
for a given cloud configuration. It means that we may not need to
waste money on some obviously poor cloud configuration. In our im-
plementation, Accordia supports an early abort mechanism, under
which the system will abort (i.e., kill) a partially-run job if its per
dollar job completion ratio is 30% less than the largest one observed
so far.

3.2 Online Selection Problem under
Time-varying Pricing of the Cloud Service

When considering a dynamic cloud where the price of an instance

changes over time (e.g., Amazon EC2 spot instance), we usept | x →

R to capture the price per-unit time for the t-th round. Paralleling P1,
in each round t , we need to solve the following online optimization

problem (P2):

max

x
f (x)/pt (x)

s .t . f (x) ≥ 1/Tmax ,

x ∈ X.

(5)

Since the price of cloud instances is not fixed, the optimal solu-

tion to P2 also changes over time and may not converge. We need

to remove the stop condition and keep searching. It is essential to

trace the most economic cloud configuration x∗t , as characterized
in the below.

x∗t = argmax

x
f (x)/pt (x), s .t . f (x) ≥ 1/Tmax. (6)

In order to dynamically choose the optimal cloud configuration,

we need to predict both the computing ratio and the time-varying

price of the candidate cloud configurations. Both of them are un-

known before making decisions. As such, we extend the static regret

in Eq.(4) to the dynamic one for evaluating the performance of an

online selection method [25]. In particular, the dynamic regret in

our case is given by:

Reg
d
T =

T∑
t=1

f (x∗t )/pt (x
∗
t ) −

T∑
t=1

f (xt )/pt (xt ). (7)

Remark 2. The price function pt (x) for all the candidate cloud
configurations can be observed one time-slot later, which is the online
optimization setting. However, the job completion ratio f (x) only
can be observed for already tested cloud configuration, which is the
bandit setting. Our online selection problem under the time-varying
price case is the hybrid online optimization and multi-armed bandit
problem.

4 DESIGN DETAILS OF ACCORDIA
In this section, we present the design of Accordia. At a high level,

Accordia mainly includes two parts, namely, how to pick the next-

round configuration and when to stop the searching. For the first

part, we shall make use of the Gaussian-Process UCB method to

solve the multi-armed bandit online selection problem, in both

the fixed and time-varying price cases. For the second part, we

adopt machine learning algorithms to decide when to early stop

the searching.

4.1 Insights of the Gaussian-Process UCB
Approach

Towards this end, at each round, our algorithm needs to pick the

next-round cloud configuration and balance exploitation (i.e., re-

gions with a high probability of containing optimum) and explo-

ration (i.e., regions with high uncertainty of containing optimum).

We use the Upper Confidence Bound(UCB) [12] algorithm to handle

the exploitation v.s. exploration dilemma, which is the state-of-the-

art algorithm to deal with the multi-armed bandit problem and can

be analyzed clearly. The basic idea behind the UCB algorithm is

that we should explore the arms more often if they are promising

or not well-explored. Specifically, inadequate exploration reduces

the chance of moving away from a local optimum, and inadequate

exploitation impacts the efficiency of identifying the global opti-

mum.

For the recurring big data analytics jobs, job completion time

with similar cloud configurations is highly correlated. We should

not waste too many resources to explore similar cloud configu-

rations. In this case, We add the smoothness assumption on the

job completion ratio function f (x), that f (x) is sampled from a
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Gaussian process [27]. In this assumption, the job completion ra-

tios have a high probability to be close, if they have similar cloud

configurations.

The Gaussian-Process UCB algorithm [23], combining the UCB

algorithm and Gaussian process model, can capture the high cor-

relation across the cloud configurations and balance exploitation

v.s. exploration. In our work, we extend the Gaussian-Process UCB

algorithm to handle the online selection problem for both the fixed

and time-varying price cases.

4.2 Gaussian-Process UCB Algorithm for the
Fixed Price Case

In our system, we assume the job completion ratio function f (x)
sampled from a Gaussian process (GP ): a collection of dependent

random variables, one for each x ∈ X, every finite subset of

which is multivariate Gaussian distributed in an overall consis-

tent way [27]. AGP(µ(x),k(x,x ′)) is specified by its mean function

µ(x) = E[f (x)] and covariance (or kernel) function k(x,x ′) =

E[(f (x) − u(x))(f (x ′) − u(x ′))].

A major advantage of working with GP is the existence of sim-

ple analytic formula for mean and covariance of the posterior

distribution. For noisy samples yt = {y1,y2, · · · ,yt } at points

At = {x1,x2, · · · ,xt }, the posterior over f is a GP distribution

again, with mean ut (x) and variance σ 2

t (x):

µt (x) = kt (x)
T (Kt + σ

2I )−1yt

kt (x,x
′) = k(x,x ′) − kt (x)

T (Kt + σ
2I )−1kt (x

′)

σ 2

t (x) = kt (x,x)

(8)

where kt (x) = [k(x1,x),k(x2,x), · · · ,k(xt ,x)]T and Kt is the

positive definite kernel matrix [k(x,x ′)]x ,x ′∈At . There are a range

of commonly used kernel functions, such as squared exponential

kernel, linear kernel and Matern kernel. In Accordia, we adopt

the squared exponential kernel since it is easy to compute when

solving optimization problems. In addition, the computing ratio

with similar cloud configurations are also highly correlated.

In round t , we have observed the noisy job completion ratio

yt−1 = {y1,y2, · · · ,yt−1} under the cloud configuration At−1 =

{x1,x2, · · · ,xt−1}. We can use the above Equations.(8) to predict

the mean and covariance of the job completion ratio for all the can-

didate cloud configurations. Then we extend the Gaussian-Process

UCB algorithm to select the current round cloud configuration. In

round t , we choose the cloud configuration as the optimal solution

to the following optimization problem (P3):

max

xt ∈X
µt−1(xt )/p(xt ) + β

1/2
t σt−1(xt )/p(xt )

s .t . µt−1(xt ) − β
1/2
t σt−1(xt ) ≥ 1/Tmax ,

(9)

where βt = 2loд(|X|t2π 2δ/6) and δ ∈ (1,∞). The above constraint

in optimization problem P3(9) guarantees that the job completion

ratio under the selected cloud configuration has ≥ 1− 1/δ probabil-

ity to satisfy the deadline requirement in the optimization problem

P1. The pseudo-code of our algorithm is provided in Algorithm 2.

To solve P3, we do not need to enumerate all the candidate

configurations to search the optimal solution. Instead, we only

apply the convex optimization approach, i.e., the dual approach to

Algorithm 2 The Modified Gaussian-Process Bandit Algorithm

under Time-invariant Price Case

Input: p(x): price function;
x1: initial cloud configuration;

Tmax : maximum tolerated running time;

X: search space;

Output: optimal cloud configuration x∗

1: Use the initial cloud configuration x1 to run the recurring job;

2: Observe the perturbed computing ratio value y1 = f (x1) + ϵ1;
3: Add y1 into y1 and add x1 into A1;

4: repeat for round t = 2, 3, · · ·

5: Use At−1,yt−1 to update the posterior distribution of the

objective function to get µt−1(x) and σ 2

t−1(x) as Eq.8;
6: Select the current round cloud configuration xt based on

µt−1(x) and σ 2

t−1(x) as Eq.9;
7: Use the cloud configuration xt to run the job;

8: Observe the perturbed computing ratio value yt ;
9: Add yt into yt and add xt into At ;

10: until Reaching the stop condition;

directly handle P3. Specifically, we first relax all the values in each

configuration dimension to be continuous numbers. We then solve

P3 in its dual space and obtain a relaxed solution. Finally, we round

back all the fractional solutions to integers.

Remark 3. Comparing to the original Gaussian-Process UCB al-
gorithm [23], our modified algorithm adds the constraint µt−1(xi ) +
β
1/2
t σt−1(xt ) ≥ 1/Tmax , which can guarantee the deadline-constraint
f (x) > 1/Tmax has ≥ 1− 1/δ probability to be satisfied. At the same
time, the objective function of the original Gaussian-Process UCB
algorithm is sampled from a Gaussian process. However, the objective
function of our model is divided by another known function p(x).

The performance of our algorithm can be characterized by static

regret as follows:

Theorem 4.1. Let x ∈ X ⊂ Rd and δ ∈ (1,∞). Running our Ac-
cordia algorithm with βt = 2loд(|X|t2π 2δ/6), we can obtain a regret
bound of O(

√
(d + 2)loд |X|TloдT with high probability. Precisely,

Pr {ReдsT ≤ O(

√
log (δ |X|)T (loдT )d+1)} ≥ 1 −

1

δ
. (10)

while the deadline constraint { f (xt ) > 1/Tmax ,∀t} is also satisfied
with probability at least (1 − 1

δ ).

Proof. First of all, we want to show that {| f (x) − µt−1(x)| ≤

β
1/2
t σt−1(x), ∀x ∈ X,∀t > 1} holds with probability at least (1− 1

δ ).

If r ∼ N (0, 1) is drawn from a Gaussian distribution, one can

show that:

Pr {r ≥ c} ≤ (1/2)e−c
2/2. (11)

In the Gaussian Process model as (8), f (x) ∼ N (µt−1(x),σ 2

t−1(x))
is also drawn from a Gaussian distribution. We set r = (f (x) −

µt−1(x))/σt−1(x) and c = β
1/2
t , we can get:

Pr {| f (x) − µt−1(x)| ≥ β
1/2
t σt−1(x)} ≤ exp(−βt /2). (12)

With βt = 2loд(|X|t2π 2δ/6), we can modify the above (12) as:

Pr {| f (x) − µt−1(x)| ≥ β
1/2
t σt−1(x)} ≤ 6/(π 2t2δ |X|). (13)
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Due to

∑
(1/t2) = 6/π 2

andx ∈ X, we can get {| f (x)−µt−1(x)| ≤

β
1/2
t σt−1(x),∀x ∈ X,∀t > 1} holds with probability ≥ 1 − 1

δ .

Secondly, we shall show that the difference in f (x)/p(x) between
the optimal configuration x∗ and xt produced by the optimization

problem has an upper bound.

Since x∗ is the optimal cloud configuration satisfied f (x∗) ≥

1/Tmax in the optimization problem P1. If {| f (x) − µt−1(x)| ≤

β
1/2
t σt−1(x),∀x ∈ X,∀t > 1} holds, we have:

µt−1(x
∗) + β

1/2
t σt−1(x

∗) ≥ f (x∗) ≥ 1/Tmax . (14)

In this sense, x∗ is a feasible solution of the optimization problem

P3 (9) and xt is the selected cloud configuration at this round, we

have:

f (xt ) ≥ µt−1(x
∗) − β

1/2
t σt−1(x

∗) ≥ 1/Tmax . (15)

In this sense, the deadline constraint { f (xt ) ≥ 1/Tmax } is satis-

fied. At the same time, consider xt is the optimal solution of the

optimization problem P3 and x∗ is a feasible solution, we have:

µt−1(xt )/p(xt ) + β
1/2
t σt−1(xt )/p(xt )

≥ µt−1(x
∗)/p(x∗) + β1/2t σt−1(x

∗)/p(x∗)

≥ f (x∗)/p(x∗).

(16)

Therefore, the f (x)/p(x) difference between the optimal cloud

configuration x∗ and our algorithm xt is bounded with probability

≥ 1 − ϵ , as follows:

f (x∗)/p(x∗) − f (xt )/p(xt )

≤ µt−1(xt )/p(xt ) + β
1/2
t σt−1(xt )/p(xt ) − f (xt )/p(xt )

≤ 2β
1/2
t σt−1(xt )/p(xt ).

(17)

Thirdly, by Cauchy-Schwarz inequality, we can bound the static

regret in Eq.4 as:

(ReдTs )
2 = (

T∑
t=1

f (x∗)/p(x∗) − f (xt )/p(xt ))
2

≤ T
T∑
t=1

(f (x∗)/p(x∗) − f (xt )/p(xt ))
2

≤
4TβT
p2

T∑
t=1

σ 2

t−1(xt ).

(18)

where p = minx ∈X p(x) is the minimal price of the candidate cloud

configurations and βt is monotone increasing with t .

Finally, we want to proof

∑T
t=1 σ

2

t−1(xt ) is bounded via analyz-

ing the maximum information gain [15]. Maximum information
gain comes from Bayesian Experimental Design, where the infor-

mativeness of a set of sampling points A ⊂ X for f is measured by

the information gain, which is defined as the mutual information

between f and observations yA = fA + ϵA at these points:

I (yA; f ) = H (yA) − H (yA | f ). (19)

It measures the reduction in uncertainty about f from observ-

ing yA. The problem of finding the maximum information gain

max |A | ≤T I (yA; f ) is NP-hard. If the covariance function k(x,x ′)

follows the squared exponential kernel, it can be bounded by γT =

O((loдT )d+1) [17].

In our setting, we observe the function f (x) at points AT after

T rounds. Following the same method as [23], by analyzing the

information gain of f (x), we can prove that:

T∑
t=1

σ 2

t−1(xt ) ≤ 2γT /loд(1 + σ
−2). (20)

We leave the detail proof of Eq.(11) and (20) to the Appendix.

Reformulate Eq.(20) and combine Eq.(18), we can bound the static

regret as:

(ReдTs )
2 ≤

8βTγTT

loд(1 + σ−2)p2
. (21)

With γT = O((loдT )
d+1) and βT = 2loд(|X|T 2π 2δ/6), we can get:

Pr {ReдTs ≤ O(
√
βTγTT )} ≥ 1 −

1

δ
. (22)

This completes the proof of Theorem 4.1. �

4.3 Extending Gaussian-Process UCB
Algorithm for the Time-varying Price Case

In the time-varying price case, the price of spot instances can change

gradually based on long-term trends in supply and demand. Due

to the unknown time-varying price, we need to predict the price

of cloud configurations. The predicted price is a function of all the

past prices observed. Formally, let pt denote the predicted price in

the t th test run, pt is given by:

pt = h(p1,p2, · · · ,pt−1), (23)

where h is the prediction function.

To get an accurate prediction, we can apply deep learning meth-

ods such as RNN and LSTM. Nevertheless, the actual price of spot

instance in Amazon EC2 is based on long-term trends in supply

and demand in a cloud, the change of spot prices in practice is rela-

tively gradual (e.g. overall significant changes often take days and

weeks) and highly predictable. The first-order increment estimation

is already good enough for common big data analytic jobs which

can complete within several hours. Due to this, Accordia adopts

the following formula to update the time-varying price:

pt (xt ) = pt−1(xt ) +
(pt−1(xt ) − pt−2(xt ))

2µt−1(xt )
. (24)

With the predicted time-varying price for all the cloud con-

figurations, we extend the Gaussian Process Bandit approach to

dynamically select the current cloud configuration, via solving the

following optimization problem (P4):

argmax

xt
µt−1(xt )/pt (xt ) + β

1/2
t σt−1(xt )/pt (xt )

s .t . µt−1(xt ) − β
1/2
t σt−1(xt ) ≥ 1/Tmax .

(25)

The pseudo-code of the modified Gaussian-Process bandit algo-

rithm is provided in Algorithm 3.

Paralleling Theorem 4.1, we show in the following theorem that,

if the prediction in Eq.(23) is accurate enough, then the dynamic

regret defined in Eq.(7) can be bounded with a high probability.

Theorem 4.2. Let x ∈ X ⊂ Rd and δ ∈ (0, 1). Running Algorithm
3 with βt = 2loд(|X|t2π 2δ/6), when���pt (xt ) − pt (xt )

��� = o( 1

√
T
), ∀xt ∈ X.
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Algorithm 3 The Modified Gaussian-Process Bandit Algorithm

under Time-varying Price Case

Input: x1: initial cloud configuration;

Tmax : maximum tolerated running time;

X: search space;

Output: optimal cloud configuration x∗

1: Use the initial cloud configuration x1 to run the recurring job;

2: Observe the perturbed computing ratio value y1 and the price

p1;
3: Add y1 into y1, add x1 into A1 and record the price p1(x);
4: repeat for round t = 2, 3, · · ·

5: Use At−1 and yt−1 to update the posterior distribution of

the objective function to get µt−1(x) and σ 2

t−1(x) as Eq.8;
6: Use µt−1(x) to predict the time-varying pricept (x) as Eq.24;
7: Select the current round cloud configuration xt based on

µt−1(x), σ 2

t−1(x) and pt (x) as Eq.9;
8: Use the cloud configuration xt to run the job;

9: Observe the perturbed computing ratio value yt and the

price pt ;
10: Add yt into yt , add xt into At and record the price pt (x);
11: until Stop by user;

we can obtain a dynamic regret bound of O(
√
(d + 2)loд |X|TloдT

with high probability. Precisely,

Pr {ReдdT ≤ O(

√
log (δ |X|)T (loдT )d+1)} ≥ 1 −

1

δ
. (26)

while the deadline constraint { f (xt ) > 1/Tmax ,∀t} is also satisfied
probability at least (1 − 1

δ ).

We leave the detail proof of THEOREM 4.2 to the Appendix.

4.4 Initial Cloud Configuration and Stopping
Condition of Accordia

In this part, we present more details of Accordia. We shall first

introduce the choices of the initial cloud configurations. In the

sequel, we describe how to apply machine learning methods to

early stop not useful test runs.

4.4.1 Starting Point.
We use four c4.xlarge instances as the initial cloud configuration in

our algorithm. The choice of initial cloud configuration can give

Gaussian Process model a starting point to estimate the shape of

the search space. For that, Bayesian optimization based methods,

e.g. EI and PI algorithms [11, 29] always need to randomly sample

a few points (e.g. three) from the sample space to provide an es-

timation about the shape of the job completion cost model. They

need to make sure that the selected initial cloud configurations are

as diverse as possible and can cover the sample space uniformly. It

helps the prior function to avoid making wrong assumptions about

the sample space. The performance of these Bayesian optimization

methods heavily depends on the initial samples. They may suffer

long-time trials from bad initial samples.

In our trace-driven study, it is shown that the choice of initial

cloud configuration does not influence the performance of UCB-

based algorithms. We can just use four c4.xlarge instances as the

initial cloud configuration. Each c4.xlarge instance has 4 CPU cores

and 8 GB memory in Amazon EC2. It is suitable for most of the big

data analysis applications. Abandoning the unnecessary first three

random samplings, our algorithm can quickly move into the search

phase.

4.4.2 Stopping Condition.
We use stopping condition to prevent Accordia from struggling to

make small improvements in the fixed price case. For that, other

methods always [9] [18] define the stopping condition based on

predicted variance σ (x) in Eq.8 and the number of runs. They will

stop their algorithm when the variance σ (x) of the selected cloud

configuration is less than a threshold (e.g. 10% of the initial value)

and at least N (e.g.N = 10) cloud configurations have been observed.

However, this kind of stopping condition may suffer from testing

the same cloud configuration many times, until the variance σ (x)
decreases below the threshold.

Table 1: 11-dimensionLow-level RunningTime Information

Feature Description

cpu.%usr Percentage of CPU utilization.

task.proc/s Total number of tasks created per second.

memory.%usr Percentage of used memory.

swap.%used Percentage of used swap space.

swap.%cad Percentage of cached swap memory in rela-

tion to the amount of used swap space.

disk.rd/s Number of sectors read from the device.

disk.wt/s Number of sectors written to the device.

disk.%util Bandwidth utilization for the device.

network.rxpck/s Total number of packets received per second.

network.txpck/s Total number of packets transmitted per sec-

ond.

network.%util Bandwidth utilization for the network.

In the fixed price case, we define the stopping condition based on

the 11-dimension low-level running-time performance metrics as

Table 1. Our algorithm aims to achieve the cloud configuration with

minimal job completion cost, which may benefit from high CPU

utilization, memory utilization and etc. The low-level running-time

performance metrics should be highly correlated to the job comple-

tion cost. In this sense, we use the large-scale performance dataset

[18] [19] [20] to train a logistic regression model to predict whether

a big data analytic job obtains its optimal cloud configuration under

the given low-level running-time information. The dataset includes

17 workloads, thousands of big data analytics jobs and its low-level

running-time information. When we train the logistic regression

model, we ignore the workload name and use the jobs across all

the workloads.

The stop condition of Accordia is defined as the cloud config-

uration achieving the current minimum job completion cost and

logistic regression result larger than 0.8. In the experiment, the cross

entropy of the logistic regression is 0.76 and the logistic regression

result is highly correlated to the job completion cost. Accordia can

quickly stop as long as obtaining the optimal cloud configuration.

When we consider the time-varying price and dynamic cloud envi-

ronment, the optimal cloud configuration is time-varying and may
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(a) Compute optimized instance family (b) General purpose instance family (c) Memory optimized instance family

Figure 2: Time-Varying Price of AWS Instances Collected in Three Months

not converge. We need to keep searching and never stop. In this

case, we remove the stop condition.

5 TRACE-DRIVEN SIMULATIONS
In this section, we evaluate the performance of Accordia via con-

ducting extensive numerical simulations based on the large-scale

performance dataset [18–20].

5.1 Experimental Setup
The simulations are driven by the large-scale performance dataset

[18–20] containing Hadoop and Spark applications running on

AWS EC2 instances and AWS time-varying price history collected

in a three-month period.

Application: The large-scale dataset has 16 workloads, includ-
ing supervised learning such as regression and classification ap-

plication, unsupervised learning such as K-means clustering, and

statistic tools such asWordCount and PCA. For each application, the

dataset collects its job completion time and its low-level running-

time information using [sar] [8].

Cloud Configuration: There are three instance families {c4,

m4, r4 } and three instance size {large, xlarge, 2xlarge } (available

in AWS EC2) in the large-scale performance dataset. An instance

type and the number of the same instances comprise the totally 66

candidate cloud configurations in the dataset.

AWS Time-varying Price: Based on the price, there are two

kinds of instances in Amazon EC2: On-demand instances and spot

instances. The price of On-Demand instances is fixed, while AWS

can adjust the price of spot instances gradually based on long-term

trends, up to 90% off discount. We collect a 3-month AWS time-

varying price history as depicted in Figure 2. We both consider the

fixed price case for AWSOn-demand instances and the time-varying

price case for AWS spot instances in the experiment.

Encode Cloud Configuration: Similar to CherryPick, in our

simulation, each cloud configuration is encoded using three feature

dimensions: the number of instances, number of CPU cores and

memory (RAM) allocation for each instance. We also test the per-

formance under other feature combinations and choose the best

one.

5.2 Evaluation results in the fixed price case
In this part, we set the price of instances the same as AWS On-

Demand instances and evaluate our Accordia algorithm in the fixed

price case.

Figure 3 presents the sequence of chosen cloud configurations in

the HadoopWordCount example. The search space is projected into

two dimensions. The x-axis is the total number of CPU cores and

the y-axis is the number of instances under the cloud configuration.

The 66 points represent the set of candidate cloud configurations

and the points with brighter color can achieve smaller job com-

pletion costs. In Accordia, 4-c4.xlarge-instances is the initial cloud

configuration in the left lower corner of the search space in Figure

3. Then, Accordia keeps jumping dramatically among the search

space to unearth the optimal cloud configuration until it finds out

a near-optimal cloud configuration at 5th runs and starts to do the

local search. Comparing to the other Bayesian Optimization algo-

rithm, Accordia does not need to use a fixed number of runs (e.g. 3

or 6) to do random sampling first. It can automatically sample the

first several runs as diverse as possible and cleverly decide when to

start the local search.

Figure 4 presents the performance of the stop condition under

the Hadoop WordCount example. The point represents the cloud

configuration associated with its job completion cost in the x-axis

and logistic regression result in the y-axis which shows the logis-

tic regression result decreases with the increasing job completion

cost. The cloud configuration with lower completion cost has a

high probability to achieve higher logistic regression result. As

the Accordia stop condition is defined as the cloud configuration

achieving the minimum job completion cost observed so far and

its logistic regression result larger than 0.8, it is highly possible to

stop at the near-optimal cloud configuration (i.e., within 10% of the

optimum).

Figure 5 shows the percentage of workloads achieving the near-

optimal cloud configurations with the number of runs increasing.

The x-axis in Figure 5 is the number of runs observed so far and the

y-axis is the percentage of workloads achieving the near-optimal

cloud configuration at current run. The curve of Accordia is above

that of CherryPick within the first eight runs and both of them

converge after 12 runs. It states that about 80% of workloads can find
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Figure 3: Sequence of Cloud Config-
urations Chosen by Accordia running
Hadoop WordCount Example.
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Figure 4: Relation between the Job Com-
pletion Cost and Logistic Regression Re-
sults with Early Stop.
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Figure 5: Percentage of Workloads
Achieving the Near-optimal Cloud
Configuration.

Accordia

(a) After the first run.

 
Accordia

(b) After 5 runs

 
Accordia

(c) After 10 runs

Figure 6: How Far the Selected Cloud Configuration is from the Optimal Cloud Configuration.

out the near-optimal configuration after 6 runs usingAccordiawhile

CherryPick requires 10 runs. It implies that Accordia can obtain

the optimal cloud configuration much faster than CherryPick.

Figure 6 shows how far the selected cloud configuration from the

optimal one with the number of runs increasing. The x-axis is the

normalized job completion cost and the y-axis is the percentage of

workloads. The curve represents the percentage of workloads that

can complete under the given budget. Figure 6(a), Figure 6(b) and

Figure 6(c) show the curves obtained by Accordia and Cherrypick

after the first run, after five runs, and after ten runs. They present,

with the number of runs increasing, an increasing percentage of

workloads can complete under the given budget. Both Accordia and

CherryPick use the same initial cloud configuration at the first run

and converge to the near-optimal cloud configuration after ten runs,

so the curves of Accordia and CherryPick are overlapped in Figure

6(a) and Figure 6(c). However, the curve of Accordia is totally above

that of CherryPick after five runs in Figure 6(b). It states Accordia

can helpmore workloads to achieve lower job completion costs than

CherryPick after five runs. Accordia can save more job completion

costs than CherryPick.

5.3 Evaluation for the time-varying price case
In this part, we evaluate Accordia using the time-varying price

of AWS EC2 spot instances as shown in Figure 2. We assume the

arriving of recurring big data analytic jobs follows the Poisson

Process and set different arriving rate to control the variation of

price. It has following three cases: i) fixed price case; ii) arriving

rate is one job per three hours and the price changes within 5%; iii)

arriving rate is one job per day and the price change may exceed

10%.

Accordia separately predicts the job completion time and the per

unit-time price to unearth the cloud configuration with minimum

job completion cost. To be fair, we add this feature to CherryPick as

CherryPick+ and show the percentage of workloads achieving the

near-optimal cloud configuration in Figure 7. In the fixed price case,

the curves of CherryPick and CherryPick+ are overlapped as shown

in Figure 7(a). Figure 7 shows the curves of Accordia always exceed

that of CherryPick and CherryPick+ at first 10 runs, which states

the efficiency of Accordia to find out the time-varying near-optimal

cloud configuration. Also, in Figure 7(a) and Figure 7(b) when the

price of cloud configuration changes within 5%, the methods sepa-

rately considered the job completion time and per unit-time price

get the similar performance of the methods considered job comple-

tion cost as a whole. However, when we decrease the arriving rate

and the price changes dramatically, Accordia performs much better

than CherryPick and CherryPick+ which states Accordia can han-

dle the time-varying price case. It is due to i) Accordia separately

predicts the job completion time and the per unit-time price; ii)

Accordia can quickly find out the near-optimal cloud configuration

and chase the time-varying price more closely.
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Figure 7: Percentage of Workloads Achieving Near-optimal Cloud Configuration in the Time-varying Price Case.

6 SYSTEM IMPLEMENTATION OF ACCORDIA
UNDER KUBERNETES

In this section, we present the system implementation of Accordia.

To be specific, we build the Accordia system to unearth the optimal

cloud configuration for Spark applications on top of Kubernetes in

the public clouds.

6.1 Spark in Kubernetes
Spark 2.3 or its above can run on the Kubernetes platform and

be managed by the native Kubernetes scheduler. When a Spark

job is submitted, a Spark driver and multiple Spark executors are

deployed as containers, each within its own Kubernetes pod. Accor-

dia then dynamically adjusts the resource types/ allocation for the

pods from over 7000 candidate choices. They form a 5-dimensional

search space, covering from the number of executors, as well as

the number of CPU cores and memory (RAM) allocation for the

driver and the executor pods. Unlike CherryPick, considering the

cloud configuration as the number and resource type of instances,

Accordia manages a higher dimensional search space and provides

a more fine-grained resource allocation for Spark jobs in the public

clouds.

Submit  Spark Job

Record  or Get Job History

Lauch Spark Job

5. Job Monitor

1. Optimization Engine

2. Database

4. Spark in Kubernetes 3. Price Predictor

Figure 8: SystemArchitecture ofAccordiaUnderKubernetes

6.2 System Architecture
Figure 8 depicts the system architecture of our implementation of

Accordia for Spark applications on top of Kubernetes. It has the

following four components.

Database: Database has the list of candidate cloud configura-

tions and stores all the job history information, including job name,

timestamp, cloud configuration, job completion time, cost and etc.

It is responsible for maintaining and sending the job history infor-

mation to Optimization Engine. There is a sliding window (e.g., N =

20) to limit the size of job history information sending to Optimiza-

tion Engine. It helps Optimization Engine to focus on the recent

20 recurring jobs and reduces the influence of the dynamic cloud

noise.

Price Predictor: Price Predictor can collect the real-time per

unit-time price for all the candidate cloud configurations and predict

their future price for the Optimization Engine. In our implemen-

tation, we just use the first order increment method as Eq.(24) to

predict the future price. Since the time-varying price of Amazon

EC2 is based on long-term trends in supply and demand, the first

order increment method is already accurate enough to predict the

price for common big data analytic jobs which can complete within

several hours.

Optimization Engine: Optimization Engine is an implementa-

tion of the Accordia algorithm in Python. Based on the Database’s

job history information, it can predict the job completion time

for all the candidate cloud configurations. Then combine the pre-

dicted price from Price Predictor to select and launch the cloud

configuration to minimize the job completion cost.

Job Monitor: As long as a Spark job is submitted to the Ku-

bernetes platform, Job Monitor starts to monitor its running time

information. It will use the 10% and 20% workload’s completion

time to predict the job completion cost. The running Spark job will

be aborted as soon as possible if its predicted job completion cost is

30% larger than the best one observed so for. The aborted job and

it’s predicted job completion time will also be recorded in Database

as the job history information.
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7 EXPERIMENTAL EVALUATION OF
ACCORDIA IMPLEMENTATION UNDER
KUBERNETES

In this section, we present the experimental results of Accordia on

Kubernetes implementation depicted in Section 6.

7.1 The Effect of Abort Mechanism
To avoid the waste of resources for the obvious poor-performance

cloud configuration, Job Monitor is designed to abort the job, as

long as its estimated job completion cost is 30% larger than the best

solution observed so far. We repeatedly submit the SparkPi jobs to

the Accordia system and record the job completion cost in Figure 9

to show the performance of Accordia and the abort mechanism.
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Figure 9: Abort Mechanism in SparkPi Example.

In Figure 9, the y-axis is the inverse of job completion cost and

the black dot represents the job is aborted because of large estimated

job completion cost. It shows that Accordia keeps searching for

the optimal cloud configuration and converges after fewer than 20

runs, which translates to a 2X-speedup and a 20.9% cost-savings

comparing to CherryPick. The curve of Accordia also increases

more smoothly and has a lower number of aborted jobs than that of

CherryPick. It states Accordia can efficiently unearth the optimal

cloud configuration in high-dimension large search space.

7.2 Tracking Changes in Job Characteristics
Since computing resources in a cloud are often shared by multiple

users/ jobs with non-perfect separation/ isolation, stragglers can

happen easily. The completion time of the same job/ application

under the same cloud configuration may still suffer from a large

variance. As such, there is a sliding window to make Optimiza-

tion Engine only focusing on the recent job history to reduce the

influence of the dynamic cloud noise in Accordia implementation.

To highlight Accordia’s capability to handle the dynamic cloud

environment and abrupt/ unexpected changes of the characteristics

of a recurring job, we submit one recurring spark job per day and

dynamic switch the job type (i.e., from SparkPi to PageRank to

WordCount) without notifying Accordia every 30 days. The perfor-

mance of Accordia under different window sizes is shown in Figure

10. The y-axis is the inverse of job completion cost and the x-axis is

the number of runs observed so far. The blue curve represents Ac-

cordia under the window size equaling to 40 which is similar with

no sliding window (i.e., remembering all the job history informa-

tion). With the misleading history information, it may take another

20 runs to find out the new optimal cloud configuration. The violet

curve and green curve represent Accordia under the window size

equaling to 10 and 20, which is enough for Accordia to find out the

new optimal cloud configuration and ignore the misleading history

information. They can find out the new optimal cloud configuration

within 15 rounds and beat the Accordia without sliding window.
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Figure 10: Different Window Size under Dynamic switching
the Job Type.

Dynamic switching the job type is the extreme case of dynamic

clouds. It can also simulate the misuse of Accordia, e.g., the user

replacing the job without notifying the system. We also compare

the cost-saving of Accordia with that of CherryPick under dynamic

switching the job type over exponentially-distributed time-intervals

(i.e., Poisson distribution with λ = 20) as shown in Table 2. Accordia

still can obtain up to 18.6% cost-savings comparing to CherryPick.

Table 2: Accordia Cost-saving under Changing Job Types

Window Size 10 20 40 60

Cost-saving 18.4% 18.6% 9.9% 10.2%

Accordia under the window size equaling to 20 can achieve

the best cost-saving, which is able to quickly find out the (near)

optimal cloud configuration and can ignore the misleading history

information. We even adjust the job arriving rate as one job per

week to simulate the dramatical changes in time-varying price.

Accordia still can obtain 18.2% cost-savings under the window size

equaling to 20.

8 CONCLUSION
In this paper, we identify the online selection problem to find out the

most economical cloud configuration for recurring big data analyt-

ics jobs. We propose the Accordia system, which separately predicts

the job completion time and per unit-time price to select the opti-

mal cloud configuration to minimize job completion cost. Accordia

is based on the solid mathematical foundation and implemented in

the Kubernetes platform for Spark applications. Accordia is also

evaluated in both numerical simulation and Kubernetes implemen-

tation, which can find out the (near) optimal cloud configuration

after fewer than 20 runs from over 7000 candidate choices, which

translates to a 2X-speedup and a 20.9% costing-savings comparing

to the state-of-art algorithm, CherryPick.
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A PROOF OF EQ.(11)
Proof. If r ∼ N (0, 1) is drawn from a Gaussian distribution, one

upper bound of Pr {r ≥ c} is given by:

Pr {r ≥ c}

= (2π )−1/2
∫ +∞
c

exp(−r2/2)dr

= e−c
2/2(2π )−1/2

∫ +∞
c

exp(−(r − c)2/2 − c(r − c))dr

≤ e−c
2/2(2π )−1/2

∫ +∞
c

exp(−(r − c)2/2)dr

≤ e−c
2/2(2π )−1/2

∫ +∞
0

exp(−r2/2)dr

≤ (1/2)e−c
2/2.

(27)

This completes the proof. �

B PROOF OF EQ.(20)
Proof. For a Gaussian distribution, H (N (µ, Σ)) =

loд |2πeΣ |
2

and I (yA; f ) = loд |I + σ−2KA |/2, where KA = [k(x,x ′)]x ,x ′∈A,

I (yA; f ) is bounded by:

I (yA; f ) ≤ max

|A | ≤T
I (yA; f ). (28)

The problem of finding the maximum information gain in Eq.(28)

is NP-hard. It can be bounded by γT = O((loдT )d+1) [17], if the
covariance function k(x,x ′) follows the squared exponential kernel.

In our setting, we observe the computing ratio function f at

points AT after T rounds, as a consequence, we have:

γT ≥ I (yT ; f )

≥ H (yT ) − H (yT | f )

≥ H (yT ) − loд |2πeσ 2I |/2

≥ H (yT−1) + H (yT |yT−1) − loд |2πeσ 2I |/2

≥ H (yT−1) + loд(2πe(σ
2 + σ 2

T−1(xT )))/2

− loд |2πeσ 2I |/2

≥

T∑
t=1

loд((1 + σ−2σ 2

t−1(xt )))/2

≥
loд(1 + σ−2)

2

T∑
t=1

σ 2

t−1(xt ).

(29)

This completes the proof. �
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C PROOF OF THEOREM 4.2
Proof. Following the same method as THEOREM 4.1, xt is the

optimal solution of the optimal problem P4 and satisfied the dead-

line constraint with probability ≥ 1 − 1

δ , while x∗t is a feasible

solution. Then,

µt−1(xt )/pt (xt ) + β
1/2
t σt−1(xt )/pt (xt )

≥ µt−1(x
∗
t )/pt (x

∗
t ) + β

1/2
t σt−1(x

∗
t )/pt (x

∗
t )

≥ f (x∗t )/pt (x
∗
t )

≥ (f (x∗t )/pt (x
∗
t )) · (pt (x

∗
t )/pt (x

∗
t )).

(30)

Therefore, the f (x)/pt (x) difference between the optimal cloud

configuration x∗t and our algorithm xt is bounded with probability

≥ 1 − ϵ , as follows:

f (x∗t )/pt (x
∗
t ) − f (xt )/pt (xt )

≤ [pt (x
∗
t )/pt (x

∗
t )] ·

(
µt−1(xt )/pt (xt ) + β

1/2
t σt−1(xt )/pt (xt )

)
− f (xt )/pt (xt )

≤ [pt (x
∗
t )/

(
pt (x

∗
t )pt (xt )

)
] ·

(
µt−1(xt ) + β

1/2
t σt−1(xt )

)
− f (xt )/pt (xt )

≤ [pt (x
∗
t )/

(
pt (x

∗
t )pt (xt )

)
] ·

(
µt−1(xt ) + β

1/2
t σt−1(xt )

)
− [pt (x

∗
t )/

(
pt (x

∗
t )pt (xt )

)
− pt (x

∗
t )/

(
pt (x

∗
t )pt (xt )

)
] · f (xt )

− f (xt )/pt (xt )

≤ [pt (x
∗
t )/

(
pt (x

∗
t )pt (xt )

)
]

(
µt−1(xt ) + β

1/2
t σt−1(xt ) − f (xt )

)
+ [pt (x

∗
t )/

(
pt (x

∗
t )pt (xt )

)
− 1/pt (xt )] · f (xt )

≤ 2[pt (x
∗
t )/

(
pt (x

∗
t )pt (xt )

)
]β

1/2
t σt−1(xt )

+ [
(
pt (x

∗
t )pt (xt ) − pt (x

∗
t )pt (xt )

)
/
(
pt (x

∗
t )pt (xt )pt (xt )

)
] · f (xt )

≤ O(β
1/2
t σt−1(xt )) + o(1/

√
T ).

(31)

The o(1/
√
t) in Eq.(31) is due to the differences between pt (xt )

and pt (xt ), captured by

���pt (xt ) − pt (xt )
��� = O( 1√

T
), as follows:

pt (x
∗
t )pt (xt ) − pt (x

∗
t )pt (xt )

= (pt (x
∗
t ) − pt (x

∗
t ))(pt (xt ) + pt (xt ))/2

− (pt (x
∗
t ) + pt (x

∗
t ))(pt (xt ) − pt (xt ))/2

= o(1/
√
T )(pt (xt ) + pt (xt )) + o(1/

√
T )(pt (x

∗
t ) + pt (x

∗
t ))

= o(1/
√
T ).

(32)

By Cauchy-Schwarz inequality, we can bound the dynamic regret

in Eq.7 as:

(ReдTd )
2 = (

T∑
t=1

f (x∗t )/pt (x
∗
t ) − f (xt )/pt (xt ))

2

≤ T
T∑
t=1

(f (x∗t )/pt (x
∗
t ) − f (xt )/pt (xt ))

2

≤ T
T∑
t=1

(O(β
1/2
t σt−1(xt )) + o(1/

√
T ))2

≤ O(TβT

T∑
t=1

σ 2

t−1(xt )) + o(1)

≤ O(TβT

T∑
t=1

σ 2

t−1(xt )).

(33)

We can bound the dynamic regret as the same order of static

regret in THEOREM 4.1. Precisely,

Pr {ReдdT ≤ O(

√
log (δ |X|)T (loдT )d+1)} ≥ 1 −

1

δ
. (34)

while the deadline constraint { f (xt ) > 1/Tmax ,∀t} is also satisfied
probability at least (1 − 1

δ ).

�
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